mirror of https://github.com/CGAL/cgal
compute_star
This commit is contained in:
parent
0f15bc8a38
commit
3d1f9a7206
|
|
@ -27,7 +27,7 @@ Regular_complex Regular_triangulation
|
|||
------------------
|
||||
|
||||
/is_finite/! is_infinite/
|
||||
is_boundary_facet
|
||||
flag stuff, really documented ? : is_boundary_facet
|
||||
|
||||
*) code done :
|
||||
--------------
|
||||
|
|
@ -46,12 +46,13 @@ is_boundary_facet
|
|||
/contract_face/collapse_face/
|
||||
/full_cell_of/full_cell/
|
||||
|
||||
|
||||
|
||||
*) to remove (comment) :
|
||||
------------------------
|
||||
|
||||
gather_incident_faces
|
||||
gather_incident_upper_faces (sam: I find them useful!)
|
||||
|
||||
gather_incident_upper_faces (sam: I find them useful! olivier: ok)
|
||||
|
||||
__________________________________________________________________________ALL
|
||||
|
||||
|
|
|
|||
|
|
@ -246,7 +246,7 @@ Returns the (probably modified) output iterator.
|
|||
}
|
||||
|
||||
\ccMethod{template< typename OutputIterator > OutputIterator
|
||||
compute_star(const Face & f, OutputIterator out) const;}
|
||||
star(const Face & f, OutputIterator out) const;}
|
||||
{Insert in \ccc{out} all the cells that share at least one vertex with the \ccc{Face
|
||||
f}. Returns the (probably modified) output iterator.
|
||||
%\ccPrecond\ccc{is_full_cell(f.full_cell())}.
|
||||
|
|
@ -261,29 +261,31 @@ constructed.
|
|||
\ccPrecond$0 < d$.
|
||||
}
|
||||
|
||||
% \ccMethod{template< typename OutputIterator > OutputIterator
|
||||
% incident_upper_faces(Vertex_const_handle v, int d, OutputIterator
|
||||
% out);}{Constructs all the \textbf{upper} \ccc{Face}s of dimension \ccc{d}
|
||||
% incident to \ccc{Vertex} v and inserts them in the \ccc{OutputIterator out}.\\
|
||||
% Assuming some total ordering on the vertices of the triangulation (which is
|
||||
% invariant as long as no vertex is inserted in or removed from the triangulation), a
|
||||
% \ccc{Face} incident to \ccc{v} is an \emph{upper} \ccc{Face} if and only if
|
||||
% its vertices occur at \ccc{v} or beyond \ccc{v} in the ordering.\\ In
|
||||
% particular, taking the disjoint union of the upper \ccc{Face}s of dimension
|
||||
% \ccc{d} incident to every vertex of the triangulation yields exactly the set of
|
||||
% faces of dimension \ccc{d} of the triangulation.\\ The constructed \ccc{Faces} are
|
||||
% lexicographically ordered using the vertex order as base ordering. In order to
|
||||
% make it easy to find the infinite \ccc{Faces}, the latter ordering makes the
|
||||
% vertex at infinity the smallest vertex; so calling the method on a finite
|
||||
% vertex will construct only finite faces and calling it on the vertex at
|
||||
% infinity will produce all infinite \ccc{d}-faces. (Elle est pas belle, la vie
|
||||
% ?) If \ccc{d >=} \ccVar.\ccc{current_dimension()}, then no \ccc{Face} is
|
||||
% constructed.\ccPrecond\ccc{0 < d}.}
|
||||
\ccMethod{template< typename OutputIterator > OutputIterator
|
||||
incident_upper_faces(Vertex_const_handle v, int d, OutputIterator
|
||||
out);}{Constructs all the \textbf{upper} \ccc{Face}s of dimension \ccc{d}
|
||||
incident to \ccc{Vertex} v and inserts them in the \ccc{OutputIterator out}.\\
|
||||
Assuming some total ordering on the vertices of the triangulation (which is
|
||||
invariant as long as no vertex is inserted in or removed from the triangulation), a
|
||||
\ccc{Face} incident to \ccc{v} is an \emph{upper} \ccc{Face} if and only if
|
||||
its vertices occur at \ccc{v} or beyond \ccc{v} in the ordering.\\ In
|
||||
particular, taking the disjoint union of the upper \ccc{Face}s of dimension
|
||||
\ccc{d} incident to every vertex of the triangulation yields exactly the set of
|
||||
faces of dimension \ccc{d} of the triangulation.\\ The constructed \ccc{Faces} are
|
||||
lexicographically ordered using the vertex order as base ordering. In order to
|
||||
make it easy to find the infinite \ccc{Faces}, the latter ordering makes the
|
||||
vertex at infinity the smallest vertex; so calling the method on a finite
|
||||
vertex will construct only finite faces and calling it on the vertex at
|
||||
infinity will produce all infinite \ccc{d}-faces. (Elle est pas belle, la vie
|
||||
?) If $d\geq $\ccVar.\ccc{current_dimension()}, then no \ccc{Face} is
|
||||
constructed.
|
||||
\ccPrecond$0 < d$.
|
||||
}
|
||||
|
||||
% \ccGlue\ccMethod{template< typename OutputIterator, typename Comparator >
|
||||
% OutputIterator incident_upper_faces(Vertex_const_handle v, const int d,
|
||||
% OutputIterator out, Comparator cmp);} {Same as above, but uses \ccc{cmp} as
|
||||
% the vertex ordering to define the upper faces.}
|
||||
\ccGlue\ccMethod{template< typename OutputIterator, typename Comparator >
|
||||
OutputIterator incident_upper_faces(Vertex_const_handle v, const int d,
|
||||
OutputIterator out, Comparator cmp);} {Same as above, but uses \ccc{cmp} as
|
||||
the vertex ordering to define the upper faces.}
|
||||
|
||||
\ccHeading{Faces and Facets} % - - - - - - - - - - - - - - - - - - - - FACETS
|
||||
|
||||
|
|
|
|||
|
|
@ -189,38 +189,43 @@ Returns the (probably modified) output iterator.
|
|||
}
|
||||
|
||||
\ccMethod{template< typename OutputIterator > OutputIterator
|
||||
compute_star(const Face & f, OutputIterator out) const;}
|
||||
star(const Face & f, OutputIterator out) const;}
|
||||
{Insert in \ccc{out} all the full cells that share at least one vertex with the \ccc{Face
|
||||
f}. Returns the (probably modified) output iterator.
|
||||
%\ccPrecond\ccc{is_full_cell(f.full_cell())}.
|
||||
}
|
||||
|
||||
% \ccMethod{template< typename OutputIterator > OutputIterator
|
||||
% gather_incident_faces(Vertex_const_handle v, const int d, OutputIterator
|
||||
% out);}{Constructs all the \ccc{Face}s of dimension \ccc{d} incident to
|
||||
% \ccc{Vertex} v and inserts them in the \ccc{OutputIterator out}. If \ccc{d
|
||||
% >=} \ccVar.\ccc{current_dimension()}, then no \ccc{Face} is
|
||||
% constructed.\ccPrecond\ccc{0 < d}.}
|
||||
\ccMethod{template< typename OutputIterator > OutputIterator
|
||||
incident_faces(Vertex_const_handle v, const int d, OutputIterator
|
||||
out);}{Constructs all the \ccc{Face}s of dimension \ccc{d} incident to
|
||||
\ccc{Vertex} v and inserts them in the \ccc{OutputIterator out}. If \ccc{d
|
||||
>=} \ccVar.\ccc{current_dimension()}, then no \ccc{Face} is
|
||||
constructed.
|
||||
\ccPrecond\ccc{0 < d}.
|
||||
}
|
||||
|
||||
% \ccMethod{template< typename OutputIterator > OutputIterator
|
||||
% gather_incident_upper_faces(Vertex_const_handle v, const int d, OutputIterator
|
||||
% out);}{Constructs all the \textbf{upper} \ccc{Face}s of dimension \ccc{d}
|
||||
% incident to \ccc{Vertex} v and inserts them in the \ccc{OutputIterator out}.\\
|
||||
% Assuming some total ordering on the vertices of the complex (which is
|
||||
% invariant as long as no vertex is inserted in or removed from the complex), a
|
||||
% \ccc{Face} incident to \ccc{v} is an \emph{upper} \ccc{Face} if and only if
|
||||
% its vertices occur at \ccc{v} or beyond \ccc{v} in the ordering.\\ In
|
||||
% particular, taking the disjoint union of the upper \ccc{Face}s of dimension
|
||||
% \ccc{d} incident to every vertex of the complex yields exactly the set of
|
||||
% faces of dimension \ccc{d} of the complex.\\ The constructed \ccc{Faces} are
|
||||
% lexicographically ordered (using the vertex order as base ordering). If \ccc{d
|
||||
% >=} \ccVar.\ccc{current_dimension()}, then no \ccc{Face} is
|
||||
% constructed.\ccPrecond\ccc{0 < d}.}
|
||||
\ccMethod{template< typename OutputIterator > OutputIterator
|
||||
incident_upper_faces(Vertex_const_handle v, const int d, OutputIterator
|
||||
out);}{Constructs all the \textbf{upper} \ccc{Face}s of dimension \ccc{d}
|
||||
incident to \ccc{Vertex} v and inserts them in the \ccc{OutputIterator out}.\\
|
||||
Assuming some total ordering on the vertices of the complex (which is
|
||||
invariant as long as no vertex is inserted in or removed from the complex), a
|
||||
\ccc{Face} incident to \ccc{v} is an \emph{upper} \ccc{Face} if and only if
|
||||
its vertices occur at \ccc{v} or beyond \ccc{v} in the ordering.\\ In
|
||||
particular, taking the disjoint union of the upper \ccc{Face}s of dimension
|
||||
\ccc{d} incident to every vertex of the complex yields exactly the set of
|
||||
faces of dimension \ccc{d} of the complex.\\ The constructed \ccc{Faces} are
|
||||
lexicographically ordered (using the vertex order as base
|
||||
ordering). If
|
||||
$d\geq$\ccVar.\ccc{current_dimension()}, then no \ccc{Face} is
|
||||
constructed.
|
||||
\ccPrecond\ccc{0 < d}.
|
||||
}
|
||||
|
||||
% \ccGlue\ccMethod{template< typename OutputIterator, typename Comparator >
|
||||
% OutputIterator gather_incident_upper_faces(Vertex_const_handle v, const int d,
|
||||
% OutputIterator out, Comparator cmp);} {Same as above, but uses \ccc{cmp} as
|
||||
% the vertex ordering to define the upper faces.}
|
||||
\ccGlue\ccMethod{template< typename OutputIterator, typename Comparator >
|
||||
OutputIterator incident_upper_faces(Vertex_const_handle v, const int d,
|
||||
OutputIterator out, Comparator cmp);} {Same as above, but uses \ccc{cmp} as
|
||||
the vertex ordering to define the upper faces.}
|
||||
|
||||
\ccHeading{Accessing the vertices} % --------------------- ACCESS TO VERTICES
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue