From 3d1f9a7206395d3c42f25cdf48a91b557eff9dcc Mon Sep 17 00:00:00 2001 From: Olivier Devillers Date: Wed, 11 May 2011 11:37:16 +0000 Subject: [PATCH] compute_star --- Triangulation/TODO | 7 ++- .../Triangulation_ref/Triangulation.tex | 48 ++++++++-------- .../TriangulationDataStructure.tex | 55 ++++++++++--------- 3 files changed, 59 insertions(+), 51 deletions(-) diff --git a/Triangulation/TODO b/Triangulation/TODO index 605e670d6f5..2a28283975c 100644 --- a/Triangulation/TODO +++ b/Triangulation/TODO @@ -27,7 +27,7 @@ Regular_complex Regular_triangulation ------------------ /is_finite/! is_infinite/ -is_boundary_facet +flag stuff, really documented ? : is_boundary_facet *) code done : -------------- @@ -46,12 +46,13 @@ is_boundary_facet /contract_face/collapse_face/ /full_cell_of/full_cell/ + + *) to remove (comment) : ------------------------ gather_incident_faces -gather_incident_upper_faces (sam: I find them useful!) - +gather_incident_upper_faces (sam: I find them useful! olivier: ok) __________________________________________________________________________ALL diff --git a/Triangulation/doc_tex/Triangulation_ref/Triangulation.tex b/Triangulation/doc_tex/Triangulation_ref/Triangulation.tex index 89398e04d4e..63b6cbb13d2 100644 --- a/Triangulation/doc_tex/Triangulation_ref/Triangulation.tex +++ b/Triangulation/doc_tex/Triangulation_ref/Triangulation.tex @@ -246,7 +246,7 @@ Returns the (probably modified) output iterator. } \ccMethod{template< typename OutputIterator > OutputIterator -compute_star(const Face & f, OutputIterator out) const;} +star(const Face & f, OutputIterator out) const;} {Insert in \ccc{out} all the cells that share at least one vertex with the \ccc{Face f}. Returns the (probably modified) output iterator. %\ccPrecond\ccc{is_full_cell(f.full_cell())}. @@ -261,29 +261,31 @@ constructed. \ccPrecond$0 < d$. } -% \ccMethod{template< typename OutputIterator > OutputIterator -% incident_upper_faces(Vertex_const_handle v, int d, OutputIterator -% out);}{Constructs all the \textbf{upper} \ccc{Face}s of dimension \ccc{d} -% incident to \ccc{Vertex} v and inserts them in the \ccc{OutputIterator out}.\\ -% Assuming some total ordering on the vertices of the triangulation (which is -% invariant as long as no vertex is inserted in or removed from the triangulation), a -% \ccc{Face} incident to \ccc{v} is an \emph{upper} \ccc{Face} if and only if -% its vertices occur at \ccc{v} or beyond \ccc{v} in the ordering.\\ In -% particular, taking the disjoint union of the upper \ccc{Face}s of dimension -% \ccc{d} incident to every vertex of the triangulation yields exactly the set of -% faces of dimension \ccc{d} of the triangulation.\\ The constructed \ccc{Faces} are -% lexicographically ordered using the vertex order as base ordering. In order to -% make it easy to find the infinite \ccc{Faces}, the latter ordering makes the -% vertex at infinity the smallest vertex; so calling the method on a finite -% vertex will construct only finite faces and calling it on the vertex at -% infinity will produce all infinite \ccc{d}-faces. (Elle est pas belle, la vie -% ?) If \ccc{d >=} \ccVar.\ccc{current_dimension()}, then no \ccc{Face} is -% constructed.\ccPrecond\ccc{0 < d}.} +\ccMethod{template< typename OutputIterator > OutputIterator +incident_upper_faces(Vertex_const_handle v, int d, OutputIterator +out);}{Constructs all the \textbf{upper} \ccc{Face}s of dimension \ccc{d} +incident to \ccc{Vertex} v and inserts them in the \ccc{OutputIterator out}.\\ +Assuming some total ordering on the vertices of the triangulation (which is +invariant as long as no vertex is inserted in or removed from the triangulation), a +\ccc{Face} incident to \ccc{v} is an \emph{upper} \ccc{Face} if and only if +its vertices occur at \ccc{v} or beyond \ccc{v} in the ordering.\\ In +particular, taking the disjoint union of the upper \ccc{Face}s of dimension +\ccc{d} incident to every vertex of the triangulation yields exactly the set of +faces of dimension \ccc{d} of the triangulation.\\ The constructed \ccc{Faces} are +lexicographically ordered using the vertex order as base ordering. In order to +make it easy to find the infinite \ccc{Faces}, the latter ordering makes the +vertex at infinity the smallest vertex; so calling the method on a finite +vertex will construct only finite faces and calling it on the vertex at +infinity will produce all infinite \ccc{d}-faces. (Elle est pas belle, la vie +?) If $d\geq $\ccVar.\ccc{current_dimension()}, then no \ccc{Face} is +constructed. +\ccPrecond$0 < d$. +} -% \ccGlue\ccMethod{template< typename OutputIterator, typename Comparator > -% OutputIterator incident_upper_faces(Vertex_const_handle v, const int d, -% OutputIterator out, Comparator cmp);} {Same as above, but uses \ccc{cmp} as -% the vertex ordering to define the upper faces.} +\ccGlue\ccMethod{template< typename OutputIterator, typename Comparator > +OutputIterator incident_upper_faces(Vertex_const_handle v, const int d, +OutputIterator out, Comparator cmp);} {Same as above, but uses \ccc{cmp} as +the vertex ordering to define the upper faces.} \ccHeading{Faces and Facets} % - - - - - - - - - - - - - - - - - - - - FACETS diff --git a/Triangulation/doc_tex/Triangulation_ref/TriangulationDataStructure.tex b/Triangulation/doc_tex/Triangulation_ref/TriangulationDataStructure.tex index ace81a31b7e..811c19a2787 100644 --- a/Triangulation/doc_tex/Triangulation_ref/TriangulationDataStructure.tex +++ b/Triangulation/doc_tex/Triangulation_ref/TriangulationDataStructure.tex @@ -189,38 +189,43 @@ Returns the (probably modified) output iterator. } \ccMethod{template< typename OutputIterator > OutputIterator -compute_star(const Face & f, OutputIterator out) const;} +star(const Face & f, OutputIterator out) const;} {Insert in \ccc{out} all the full cells that share at least one vertex with the \ccc{Face f}. Returns the (probably modified) output iterator. %\ccPrecond\ccc{is_full_cell(f.full_cell())}. } -% \ccMethod{template< typename OutputIterator > OutputIterator -% gather_incident_faces(Vertex_const_handle v, const int d, OutputIterator -% out);}{Constructs all the \ccc{Face}s of dimension \ccc{d} incident to -% \ccc{Vertex} v and inserts them in the \ccc{OutputIterator out}. If \ccc{d -% >=} \ccVar.\ccc{current_dimension()}, then no \ccc{Face} is -% constructed.\ccPrecond\ccc{0 < d}.} +\ccMethod{template< typename OutputIterator > OutputIterator + incident_faces(Vertex_const_handle v, const int d, OutputIterator + out);}{Constructs all the \ccc{Face}s of dimension \ccc{d} incident to + \ccc{Vertex} v and inserts them in the \ccc{OutputIterator out}. If \ccc{d + >=} \ccVar.\ccc{current_dimension()}, then no \ccc{Face} is + constructed. +\ccPrecond\ccc{0 < d}. +} -% \ccMethod{template< typename OutputIterator > OutputIterator -% gather_incident_upper_faces(Vertex_const_handle v, const int d, OutputIterator -% out);}{Constructs all the \textbf{upper} \ccc{Face}s of dimension \ccc{d} -% incident to \ccc{Vertex} v and inserts them in the \ccc{OutputIterator out}.\\ -% Assuming some total ordering on the vertices of the complex (which is -% invariant as long as no vertex is inserted in or removed from the complex), a -% \ccc{Face} incident to \ccc{v} is an \emph{upper} \ccc{Face} if and only if -% its vertices occur at \ccc{v} or beyond \ccc{v} in the ordering.\\ In -% particular, taking the disjoint union of the upper \ccc{Face}s of dimension -% \ccc{d} incident to every vertex of the complex yields exactly the set of -% faces of dimension \ccc{d} of the complex.\\ The constructed \ccc{Faces} are -% lexicographically ordered (using the vertex order as base ordering). If \ccc{d -% >=} \ccVar.\ccc{current_dimension()}, then no \ccc{Face} is -% constructed.\ccPrecond\ccc{0 < d}.} +\ccMethod{template< typename OutputIterator > OutputIterator +incident_upper_faces(Vertex_const_handle v, const int d, OutputIterator + out);}{Constructs all the \textbf{upper} \ccc{Face}s of dimension \ccc{d} + incident to \ccc{Vertex} v and inserts them in the \ccc{OutputIterator out}.\\ + Assuming some total ordering on the vertices of the complex (which is + invariant as long as no vertex is inserted in or removed from the complex), a + \ccc{Face} incident to \ccc{v} is an \emph{upper} \ccc{Face} if and only if + its vertices occur at \ccc{v} or beyond \ccc{v} in the ordering.\\ In + particular, taking the disjoint union of the upper \ccc{Face}s of dimension + \ccc{d} incident to every vertex of the complex yields exactly the set of + faces of dimension \ccc{d} of the complex.\\ The constructed \ccc{Faces} are + lexicographically ordered (using the vertex order as base + ordering). If +$d\geq$\ccVar.\ccc{current_dimension()}, then no \ccc{Face} is + constructed. +\ccPrecond\ccc{0 < d}. +} -% \ccGlue\ccMethod{template< typename OutputIterator, typename Comparator > -% OutputIterator gather_incident_upper_faces(Vertex_const_handle v, const int d, -% OutputIterator out, Comparator cmp);} {Same as above, but uses \ccc{cmp} as -% the vertex ordering to define the upper faces.} +\ccGlue\ccMethod{template< typename OutputIterator, typename Comparator > + OutputIterator incident_upper_faces(Vertex_const_handle v, const int d, + OutputIterator out, Comparator cmp);} {Same as above, but uses \ccc{cmp} as + the vertex ordering to define the upper faces.} \ccHeading{Accessing the vertices} % --------------------- ACCESS TO VERTICES