From 3f807dba2a00aca8a3d6a1fdfc3d518322ab8294 Mon Sep 17 00:00:00 2001 From: Marc Pouget Date: Mon, 17 Dec 2007 08:45:59 +0000 Subject: [PATCH] mv captions below fig --- Jet_fitting_3/doc_tex/Jet_fitting_3/Jet_fitting_3_user.tex | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/Jet_fitting_3/doc_tex/Jet_fitting_3/Jet_fitting_3_user.tex b/Jet_fitting_3/doc_tex/Jet_fitting_3/Jet_fitting_3_user.tex index feb7dea8b0d..f7f76f47515 100644 --- a/Jet_fitting_3/doc_tex/Jet_fitting_3/Jet_fitting_3_user.tex +++ b/Jet_fitting_3/doc_tex/Jet_fitting_3/Jet_fitting_3_user.tex @@ -354,13 +354,13 @@ provide illustrations of principal directions of curvature. \centerline{ \includegraphics[width=.5\linewidth]{Jet_fitting_3/ppal_curv_poly2x2+y2}} \end{ccTexOnly} -\caption{Principal directions of curvature and normals at vertices of a mesh of the - graph of the function $f(x,y)=2x^2+y^2$.} \begin{ccHtmlOnly}
\end{ccHtmlOnly} +\caption{Principal directions of curvature and normals at vertices of a mesh of the + graph of the function $f(x,y)=2x^2+y^2$.} \label{fig:jet3:fig-elliptic-paraboloid} \end{figure} @@ -382,13 +382,13 @@ fitting-basis $(f_x,f_y,f_z)$, the Monge basis $(d_1,d_2,n)$. \end{ccTexOnly} \label{fig:jet_fitting_basis} -\caption{The three bases involved in the estimation.} \begin{ccHtmlOnly}
\end{ccHtmlOnly} +\caption{The three bases involved in the estimation.} \end{figure} \subsection{Computing a Basis for the Fitting}