From 3ffec6b1feca6a35f5aaf7f85e59a0262aae7b07 Mon Sep 17 00:00:00 2001 From: Michael Hemmer Date: Thu, 7 Aug 2008 12:12:36 +0000 Subject: [PATCH] Innermost_coefficient -> Innermost_coefficient_type Coefficient -> Coefficient_type --- Polynomial/doc_tex/Polynomial/intro.tex | 8 ++++---- .../Polynomial_ref/PolynomialToolBox_d.tex | 6 +++--- .../Polynomial_ref/PolynomialTraits_d.tex | 18 ++++++++--------- .../PolynomialTraits_d_Canonicalize.tex | 4 ++-- .../PolynomialTraits_d_Compare.tex | 2 +- ...PolynomialTraits_d_ConstructPolynomial.tex | 6 +++--- .../PolynomialTraits_d_Evaluate.tex | 4 ++-- ...PolynomialTraits_d_EvaluateHomogeneous.tex | 10 +++++----- ...lynomialTraits_d_GcdUpToConstantFactor.tex | 2 +- .../PolynomialTraits_d_GetCoefficient.tex | 2 +- ...nomialTraits_d_GetInnermostCoefficient.tex | 2 +- ...alTraits_d_InnermostLeadingCoefficient.tex | 2 +- ...s_d_IntegralDivisionUpToConstantFactor.tex | 2 +- ...PolynomialTraits_d_IsZeroAtHomogeneous.tex | 2 +- .../PolynomialTraits_d_LeadingCoefficient.tex | 2 +- ...PolynomialTraits_d_MultivariateContent.tex | 4 ++-- ...its_d_Principal_sturm_habicht_sequence.tex | 2 +- ...nomialTraits_d_Principal_subresultants.tex | 2 +- .../PolynomialTraits_d_PseudoDivision.tex | 4 ++-- .../PolynomialTraits_d_Resultant.tex | 5 +---- .../PolynomialTraits_d_Scale.tex | 2 +- .../PolynomialTraits_d_ScaleHomogeneous.tex | 10 +++++----- .../PolynomialTraits_d_SignAt.tex | 2 +- .../PolynomialTraits_d_SignAtHomogeneous.tex | 4 ++-- ...PolynomialTraits_d_SquareFreeFactorize.tex | 4 ++-- ..._SquareFreeFactorizeUpToConstantFactor.tex | 4 ++-- .../PolynomialTraits_d_Substitute.tex | 4 ++-- ...lynomialTraits_d_SubstituteHomogeneous.tex | 4 ++-- .../PolynomialTraits_d_Translate.tex | 2 +- ...olynomialTraits_d_TranslateHomogeneous.tex | 10 +++++----- .../PolynomialTraits_d_UnivariateContent.tex | 4 ++-- ..._d_UnivariateContentUpToConstantFactor.tex | 2 +- .../doc_tex/Polynomial_ref/Polynomial_d.tex | 8 ++++---- Polynomial/doc_tex/Polynomial_ref/main.tex | 20 ++++++++++--------- Polynomial/doc_tex/Polynomial_ref/open.tex | 2 +- 35 files changed, 85 insertions(+), 86 deletions(-) diff --git a/Polynomial/doc_tex/Polynomial/intro.tex b/Polynomial/doc_tex/Polynomial/intro.tex index 60c6c9b832e..55d429239c5 100644 --- a/Polynomial/doc_tex/Polynomial/intro.tex +++ b/Polynomial/doc_tex/Polynomial/intro.tex @@ -34,9 +34,9 @@ considers the polynomials as an element of $R [x_0,\dots,x_{d-1}]$. According to these two different views the traits class provides two different coefficients types: \begin{itemize} -\item \ccc{CGAL::Polynomial_traits_d::Coefficient} +\item \ccc{CGAL::Polynomial_traits_d::Coefficient_type} representing $R[x_0,\dots,x_{d-2}]$. -\item \ccc{CGAL::Polynomial_traits_d::Innermost_coefficient} +\item \ccc{CGAL::Polynomial_traits_d::Innermost_coefficient_type} representing the base ring $R$. \end{itemize} @@ -61,12 +61,12 @@ In general a polynomial is constructed using the functor \ccc{PolynomialTraits_d::ConstructPolynomial}. Basically there are two options: \begin{itemize} \item The polynomial is constructed from an iterator range with value type -\ccc{CGAL::Polynomial_traits_d::Coefficient}, +\ccc{CGAL::Polynomial_traits_d::Coefficient_type}, where the $begin$ iterator refers to the constant term (constant with respect to the outermost variable). \item The polynomial is constructed from an iterator range with value type \ccc{std::pair< CGAL::Exponent_vector, -CGAL::Polynomial_traits_d::Innermost_coefficient>}, +CGAL::Polynomial_traits_d::Innermost_coefficient_type>}, where each pair defines the coefficient for the monomial defined by the exponent vector. \end{itemize} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialToolBox_d.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialToolBox_d.tex index f9f36f11a27..4ecd27c90f4 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialToolBox_d.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialToolBox_d.tex @@ -16,16 +16,16 @@ it is arbitrary but fixed for a certain model of this concept. \ccHeading{Functors} In case a functor is not provided it is set to \ccc{CGAL::Null_functor}. -%,e.g., \ccc{Sign_at} if \ccc{Innermost_coefficient} is not \ccc{RealEmbeddable}. +%,e.g., \ccc{Sign_at} if \ccc{Innermost_coefficient_type} is not \ccc{RealEmbeddable}. \ccSetTwoColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{} \ccNestedType{Univariate_content}{ - In case \ccc{PolynomialTraits_d::Coefficient} is {\bf not} a model of + In case \ccc{PolynomialTraits_d::Coefficient_type} is {\bf not} a model of \ccc{UniqueFactorizationDomain}, this is \ccc{CGAL::Null_type}, otherwise this is a model of \ccc{PolynomialTraits_d::UnivariateContent}.} %\begin{ccAdvanced} \ccNestedType{Multivariate_content}{ - In case \ccc{PolynomialTraits_d::Innermost_coefficient} is {\bf not} + In case \ccc{PolynomialTraits_d::Innermost_coefficient_type} is {\bf not} a model of \ccc{UniqueFactorizationDomain}, this is \ccc{CGAL::Null_type}, otherwise this is a model of \ccc{PolynomialTraits_d::MultivariateContent}.} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d.tex index 299764448c4..cdd0fd4ce7b 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d.tex @@ -36,18 +36,18 @@ is possible to select a certain variable. \ccTypes \ccNestedType{Polynomial_d}{ Type representing $R[x_0,\dots,x_{d-1}]$.}\ccGlue -\ccNestedType{Coefficient }{ Type representing $R[x_0,\dots,x_{d-2}]$.}\ccGlue -\ccNestedType{Innermost_coefficient}{ Type representing the base ring $R$.} +\ccNestedType{Coefficient_type }{ Type representing $R[x_0,\dots,x_{d-2}]$.}\ccGlue +\ccNestedType{Innermost_coefficient_type}{ Type representing the base ring $R$.} \ccNestedType{template struct Rebind} {This nested template class has to define a type \ccc{Other} which is a model of the concept \ccc{PolynomialTraits_d}, where \ccc{d} is the number of -variables and \ccc{T} the \ccc{Innermost_coefficient}.} +variables and \ccc{T} the \ccc{Innermost_coefficient_type}.} \ccHeading{Functors} In case a functor is not provided it is set to \ccc{CGAL::Null_functor}. -%,e.g., \ccc{Sign_at} if \ccc{Innermost_coefficient} is not \ccc{RealEmbeddable}. +%,e.g., \ccc{Sign_at} if \ccc{Innermost_coefficient_type} is not \ccc{RealEmbeddable}. \ccSetTwoColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{} \ccNestedType{Construct_polynomial} @@ -99,25 +99,25 @@ In case a functor is not provided it is set to \ccc{CGAL::Null_functor}. \ccNestedType{Sign_at}{ A model of \ccc{PolynomialTraits_d::SignAt}.\\ - In case \ccc{Innermost_coefficient} is not \ccc{RealEmbeddable} this + In case \ccc{Innermost_coefficient_type} is not \ccc{RealEmbeddable} this is \ccc{CGAL::Null_functor}.} \ccNestedType{Sign_at_homogeneous}{ A model of \ccc{PolynomialTraits_d::SignAtHomogeneous}.\\ - In case \ccc{Innermost_coefficient} is not \ccc{RealEmbeddable} this + In case \ccc{Innermost_coefficient_type} is not \ccc{RealEmbeddable} this is \ccc{CGAL::Null_functor}.} \ccNestedType{Compare}{ A model of \ccc{PolynomialTraits_d::Compare}. \\ - In case \ccc{Innermost_coefficient} is not \ccc{RealEmbeddable} this + In case \ccc{Innermost_coefficient_type} is not \ccc{RealEmbeddable} this is \ccc{CGAL::Null_functor}.} \ccNestedType{Univariate_content}{ - In case \ccc{PolynomialTraits_d::Coefficient} is {\bf not} a model of + In case \ccc{PolynomialTraits_d::Coefficient_type} is {\bf not} a model of \ccc{UniqueFactorizationDomain}, this is \ccc{CGAL::Null_type}, otherwise this is a model of \ccc{PolynomialTraits_d::UnivariateContent}.} %\begin{ccAdvanced} \ccNestedType{Multivariate_content}{ - In case \ccc{PolynomialTraits_d::Innermost_coefficient} is {\bf not} + In case \ccc{PolynomialTraits_d::Innermost_coefficient_type} is {\bf not} a model of \ccc{UniqueFactorizationDomain}, this is \ccc{CGAL::Null_type}, otherwise this is a model of \ccc{PolynomialTraits_d::MultivariateContent}.} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Canonicalize.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Canonicalize.tex index abdc77cd7cf..7ec11339985 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Canonicalize.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Canonicalize.tex @@ -7,10 +7,10 @@ $\{ q | \lambda * q = p with \lambda \in R \}$, where $p$ is the given polynomi $R$ the base of the polynomial ring. In particular, the computed polynomial has the same zero set as the given one. -In case \ccc{PolynomialTraits::Innermost_coefficient} is a model of \ccc{Field}, +In case \ccc{PolynomialTraits::Innermost_coefficient_type} is a model of \ccc{Field}, the computed polynomial is the {\em monic} polynomial, that is the innermost leading coefficient equals one. -In case \ccc{PolynomialTraits::Innermost_coefficient} is a model +In case \ccc{PolynomialTraits::Innermost_coefficient_type} is a model of \ccc{UniqueFactorizationDomain}, the gcd over all innermost coefficients of the computed polynomial is one. For all other cases the notion of uniqueness is up to the concrete model. diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Compare.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Compare.tex index 2709aabc210..5b5cf37c995 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Compare.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Compare.tex @@ -5,7 +5,7 @@ This \ccc{AdaptableBinaryFunction} compares two polynomials, with respect to the lexicographic order with preference to the outermost variable. -This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficient} is +This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficient_type} is \ccc{RealEmbeddable}. \ccRefines diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ConstructPolynomial.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ConstructPolynomial.tex index 65cd27ca325..817e20d8a96 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ConstructPolynomial.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ConstructPolynomial.tex @@ -24,7 +24,7 @@ to construct objects of type \ccc{PolynomialTraits_d::Polynomial_d}. \ccMethod{template < class InputIterator > result_type operator()(InputIterator begin, InputIterator end);} {\ccPrecond The value type of \ccc{InputIterator} is - \ccc{PolynomialTraits_d::Coefficient}. \\ + \ccc{PolynomialTraits_d::Coefficient_type}. \\ The operator constructs the a polynomial from the iterator range, with respect to the outermost variable, $x_{d-1}$. \\ @@ -38,14 +38,14 @@ to construct objects of type \ccc{PolynomialTraits_d::Polynomial_d}. %result_type operator()(InputIterator begin, InputIterator end, bool is_sorted = false);}{ Constructs a \ccc{Polynomial_d} from a given iterator range of - \ccc{std::pair}. + \ccc{std::pair}. The optional parameter \ccc{is_sorted} indicates whether the given iterator range is already sorted. \ccPrecond The value type of \ccc{InputIterator} is \ccc{std::pair}. + PolynomialTraits_d::Innermost_coefficient_type>}. \ccPrecond Each \ccc{Exponent_vector} must have size $d$. \ccPrecond All appearing \ccc{Exponent_vector}s are different. diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Evaluate.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Evaluate.tex index e6a75d7b474..cce1b62865b 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Evaluate.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Evaluate.tex @@ -11,9 +11,9 @@ This \ccc{AdaptableBinaryFunction} evaluates \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccCreationVariable{evaluate} -\ccTypedef{typedef PolynomialTraits_d::Coefficient result_type;}{}\ccGlue +\ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue -\ccTypedef{typedef PolynomialTraits_d::Coefficient second_argument_type;}{} +\ccTypedef{typedef PolynomialTraits_d::Coefficient_type second_argument_type;}{} \ccOperations \ccMethod{result_type operator()(first_argument_type p, diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_EvaluateHomogeneous.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_EvaluateHomogeneous.tex index 1a94900949e..0323b6734f2 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_EvaluateHomogeneous.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_EvaluateHomogeneous.tex @@ -14,19 +14,19 @@ $p(u,v) = u^3 + uv^2$ and evaluated as such. \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccCreationVariable{evaluate_homogeneous} -\ccTypedef{typedef PolynomialTraits_d::Coefficient result_type;}{} +\ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{} \ccOperations \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, - PolynomialTraits_d::Coefficient u, - PolynomialTraits_d::Coefficient v);} + PolynomialTraits_d::Coefficient_type u, + PolynomialTraits_d::Coefficient_type v);} { return $p(u,v)$, with respect to the outermost variable. \\ The homogeneous degree is considered as equal to the degree of $p$. } \ccMethod{result_type operator()( PolynomialTraits_d::Polynomial_d p, - PolynomialTraits_d::Coefficient u, - PolynomialTraits_d::Coefficient v, + PolynomialTraits_d::Coefficient_type u, + PolynomialTraits_d::Coefficient_type v, int i);} { return $p(u,v)$, with respect to the variable $x_i$. \\ The homogeneous degree is considered as equal to the $degree(p,i)$. diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GcdUpToConstantFactor.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GcdUpToConstantFactor.tex index 99f00912b2f..aec7a3bd994 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GcdUpToConstantFactor.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GcdUpToConstantFactor.tex @@ -6,7 +6,7 @@ This \ccc{AdaptableBinaryFunction} computes the $gcd$ {\em up to a constant factor (utcf)} of two polynomials of type \ccc{PolynomialTraits_d::Polynomial_d}. -In case the base ring $R$, \ccc{PolynomialTraits_d::Innermost_coefficient}, +In case the base ring $R$, \ccc{PolynomialTraits_d::Innermost_coefficient_type}, is not a \ccc{UniqueFactorizationDomain} or not a \ccc{Field} the polynomial ring $R[x_0,\dots,x_{d-1}]$ ,\ccc{PolynomialTraits_d::Polynomial_d}, may not possess greatest common divisor. However, since the $R$ is an integral diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GetCoefficient.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GetCoefficient.tex index e9ca2395725..9fe2fb808d0 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GetCoefficient.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GetCoefficient.tex @@ -11,7 +11,7 @@ This \ccc{AdaptableBinaryFunction} provides access to coefficients of a \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxx}{xxxxxxxxxxx}{} -\ccTypedef{typedef PolynomialTraits_d::Coefficient result_type;}{} +\ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type ;}{} \ccTypedef{typedef int second_argument_type;}{} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GetInnermostCoefficient.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GetInnermostCoefficient.tex index c855ceff3f3..507beda85c1 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GetInnermostCoefficient.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GetInnermostCoefficient.tex @@ -12,7 +12,7 @@ the (multivariate) monomial specified by the given \ccc{Exponent_vector}. \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxx}{xxxxxxxxxxx}{} -\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient result_type;}{} +\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type result_type;}{} \ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type ;}{} \ccGlue diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_InnermostLeadingCoefficient.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_InnermostLeadingCoefficient.tex index 469ff2b7b89..9fec61f371e 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_InnermostLeadingCoefficient.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_InnermostLeadingCoefficient.tex @@ -11,7 +11,7 @@ of a \ccc{PolynomialTraits_d::Polynomial_d}. The innermost leading coefficient i \ccTypes \ccCreationVariable{innermost_leading_coefficient} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient result_type;}{} +\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type result_type;}{} \ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} \ccGlue diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IntegralDivisionUpToConstantFactor.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IntegralDivisionUpToConstantFactor.tex index 8a76a360728..e99bbbf90b2 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IntegralDivisionUpToConstantFactor.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IntegralDivisionUpToConstantFactor.tex @@ -8,7 +8,7 @@ of two polynomials of type \ccc{PolynomialTraits_d::Polynomial_d} \ccPrecond $g$ divides $f$ in $Q(R)[x_0,\dots,x_{d-1}]$, where $Q(R)$ is the quotient -field of the base ring $R$, \ccc{PolynomialTraits_d::Innermost_coefficient}. +field of the base ring $R$, \ccc{PolynomialTraits_d::Innermost_coefficient_type}. \ccRefines diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IsZeroAtHomogeneous.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IsZeroAtHomogeneous.tex index bbe02e4a5b0..5973aca24c7 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IsZeroAtHomogeneous.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_IsZeroAtHomogeneous.tex @@ -26,7 +26,7 @@ template Computes whether $p$ is zero at the homogeneous point given by the iterator range, where $begin$ is referring to the innermost variable. \ccPrecond{\ccc{std::iterator_traits< InputIterator >::value_type} is - \ccc{PolynomialTraits_d::Innermost_coefficient}.} + \ccc{PolynomialTraits_d::Innermost_coefficient_type}.} \ccPrecond } %\ccHasModels diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_LeadingCoefficient.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_LeadingCoefficient.tex index e3ea19769da..74065c96a5d 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_LeadingCoefficient.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_LeadingCoefficient.tex @@ -12,7 +12,7 @@ of a \ccc{PolynomialTraits_d::Polynomial_d}. \ccTypes \ccCreationVariable{leading_coefficient} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccTypedef{typedef PolynomialTraits_d::Coefficient result_type;}{}\ccGlue +\ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}\ccGlue \ccOperations diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_MultivariateContent.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_MultivariateContent.tex index ce0ae040042..c7ebd3c9150 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_MultivariateContent.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_MultivariateContent.tex @@ -6,7 +6,7 @@ This \ccc{AdaptableUnaryFunction} computes the content of a \ccc{PolynomialTraits_d::Polynomial_d} with respect to the symmetric view on the polynomial, that is, it computes the gcd of all innermost coefficients. -This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficients} is a +This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficient_type} is a \ccc{Field} or a \ccc{UniqueFactorizationDomain}. \ccRefines @@ -16,7 +16,7 @@ This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficients} \ccCreationVariable{multivariate_content} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxx}{xxx}{} -\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient result_type;}{} +\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient_type result_type;}{} \ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Principal_sturm_habicht_sequence.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Principal_sturm_habicht_sequence.tex index bc6e9214c1d..41c5e74f8dd 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Principal_sturm_habicht_sequence.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Principal_sturm_habicht_sequence.tex @@ -18,7 +18,7 @@ necessarily give the leading coefficient of the Sturm-Habicht polynomials { computes the principal coefficients of the Sturm-Habicht sequence of $f$, with respect to the outermost variable. Each element is of type - \ccc{PolynomialTraits_d::Coefficient}.} + \ccc{PolynomialTraits_d::Coefficient_type}.} \ccMethod{template OutputIterator operator()(Polynomial_d f, diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Principal_subresultants.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Principal_subresultants.tex index 64de85426c8..9b7fd025fe9 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Principal_subresultants.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Principal_subresultants.tex @@ -23,7 +23,7 @@ starting with the $0$th principal subresultant OutputIterator out);} { computes the principal subresultants of $f$ and $g$, with respect to the outermost variable. Each element is of type - \ccc{PolynomialTraits_d::Coefficient}.} + \ccc{PolynomialTraits_d::Coefficient_type}.} \ccMethod{template OutputIterator operator()(Polynomial_d f, diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_PseudoDivision.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_PseudoDivision.tex index 1a560fc2677..22637f41ed4 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_PseudoDivision.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_PseudoDivision.tex @@ -10,7 +10,7 @@ remainder $r$ such that $D \cdot f = g \cdot q + r$ and $degree(r) < degree(g)$, where $ D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}$ This functor is useful if the regular division is not available, -which is the case if \ccc{PolynomialTraits_d::Coefficient} is not a \ccc{Field}. +which is the case if \ccc{PolynomialTraits_d::Coefficient_type} is not a \ccc{Field}. Hence in general it is not possible to invert the leading coefficient of $g$. Instead $f$ is extended by $D$ allowing integral divisions in the internal computation. @@ -32,7 +32,7 @@ computation. PolynomialTraits_d::Polynomial_d g, PolynomialTraits_d::Polynomial_d & q, PolynomialTraits_d::Polynomial_d & r, - PolynomialTraits_d::Coefficient & D);}{ + PolynomialTraits_d::Coefficient_type & D);}{ Computes the pseudo division with respect to the outermost variable $x_{d-1}$. } diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Resultant.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Resultant.tex index 145d8c87bef..567d56f09f4 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Resultant.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Resultant.tex @@ -24,16 +24,13 @@ which is a variant of the Euclidean Algorithm. More sophisticated methods may use modular arithmetic and interpolation. For more information we refer to, e.g., \cite{gg-mca-99}. - - - \ccRefines \ccc{AdaptableBinaryFunction} \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccCreationVariable{resultant} -\ccTypedef{typedef PolynomialTraits_d::Coefficient result_type;}{} +\ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{} \ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{} \ccGlue diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Scale.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Scale.tex index bfbac964c38..488d11399fd 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Scale.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Scale.tex @@ -17,7 +17,7 @@ the polynomial is considered as a univariate polynomial in one specific variable \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{} \ccGlue -\ccTypedef{typedef PolynomialTraits_d::Coefficient second_argument_type;}{} +\ccTypedef{typedef PolynomialTraits_d::Coefficient_type second_argument_type;}{} \ccOperations \ccMethod{result_type operator()(first_argument_type p, diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ScaleHomogeneous.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ScaleHomogeneous.tex index ecceb05e30a..b976734c320 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ScaleHomogeneous.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_ScaleHomogeneous.tex @@ -7,7 +7,7 @@ This \ccc{AdaptableFunctor} scale a Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as a univariate polynomial in one specific variable. Moreover, the polynomial is considered as a homogeneous polynomial in that variable. -Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient}. +Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}. \ccRefines @@ -21,12 +21,12 @@ Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient}. \ccOperations \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, - PolynomialTraits_d::Coefficient a, - PolynomialTraits_d::Coefficient b);} + PolynomialTraits_d::Coefficient_type a, + PolynomialTraits_d::Coefficient_type b);} { return $b^{degree}\cdot p(a/b\cdot x)$, with respect to the outermost variable. } \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, - PolynomialTraits_d::Coefficient a, - PolynomialTraits_d::Coefficient b, + PolynomialTraits_d::Coefficient_type a, + PolynomialTraits_d::Coefficient_type b, int i);} { Same as first operator but for variable $x_i$. \ccPrecond $0 \leq i < d$ diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SignAt.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SignAt.tex index c52cca999a3..d0a43ca5a62 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SignAt.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SignAt.tex @@ -5,7 +5,7 @@ This \ccc{AdaptableFunctor} returns the sign of a \ccc{PolynomialTraits_d::Polynomial_d} $p$ at given Cartesian point represented as an iterator range. -This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficient} is +This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficient_type} is \ccc{RealEmbeddable}. \ccRefines diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SignAtHomogeneous.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SignAtHomogeneous.tex index 385f14d5978..1c3e47c88ed 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SignAtHomogeneous.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SignAtHomogeneous.tex @@ -9,7 +9,7 @@ The polynomial is interpreted as a homogeneous polynomial in all variables. \\ For instance the polynomial $p(x_0,x_1) = x_0^2x_1^3+x_1^4$ is interpreted as the homogeneous polynomial $p(x_0,x_1,w) = x_0^2x_1^3+x_1^4w^1$. -This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficient} is +This functor is well defined if \ccc{PolynomialTraits_d::Innermost_coefficient_type} is \ccc{RealEmbeddable}. \ccRefines @@ -29,7 +29,7 @@ template Returns the sign of $p$ at the given homogeneous point, where $begin$ is referring to the innermost variable. \ccPrecond{\ccc{std::iterator_traits< InputIterator >::value_type} is - \ccc{PolynomialTraits_d::Innermost_coefficient}.} + \ccc{PolynomialTraits_d::Innermost_coefficient_type}.} \ccPrecond (end-begin == \ccc{PolynomialTraits_d::d} + 1) } %\ccHasModels diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SquareFreeFactorize.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SquareFreeFactorize.tex index d70451449b4..7da744f332e 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SquareFreeFactorize.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SquareFreeFactorize.tex @@ -30,7 +30,7 @@ DefaultConstructible\\ \ccMethod{template OutputIterator operator()(PolynomialTraits_d::Polynomial_d p, OutputIterator it, - PolynomialTraits_d::Innermost_coefficient& a);} + PolynomialTraits_d::Innermost_coefficient_type& a);} { computes square-free factorization of $p$.\\ The \ccc{OutputIterator} must allow the value type \ccc{std::pair}. @@ -39,7 +39,7 @@ OutputIterator operator()(PolynomialTraits_d::Polynomial_d p, \ccMethod{template OutputIterator operator()(PolynomialTraits_d::Polynomial_d p, OutputIterator it, - PolynomialTraits_d::Innermost_coefficient& a);} + PolynomialTraits_d::Innermost_coefficient_type& a);} { As the first operator, just not computing the factor $a$. } %\ccHasModels diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SquareFreeFactorizeUpToConstantFactor.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SquareFreeFactorizeUpToConstantFactor.tex index 93f20eb8840..ca50160acf5 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SquareFreeFactorizeUpToConstantFactor.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SquareFreeFactorizeUpToConstantFactor.tex @@ -14,7 +14,7 @@ The pairs $(g_i,m_i)$ are written into the given output iterator.\\ The constant factor $a$ is not computed. This functor is well defined even though -\ccc{PolynomialTraits_d::Innermost_coefficient} may not be a +\ccc{PolynomialTraits_d::Innermost_coefficient_type} may not be a \ccc{UniqueFactorizationDomain}. \ccRefines @@ -34,7 +34,7 @@ DefaultConstructible\\ \ccMethod{template OutputIterator operator()(PolynomialTraits_d::Polynomial_d p, OutputIterator it, - PolynomialTraits_d::Innermost_coefficient& a);} + PolynomialTraits_d::Innermost_coefficient_type& a);} { computes square-free factorization of $p$.\\ The \ccc{OutputIterator} must allow the value type \ccc{std::pair}. diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Substitute.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Substitute.tex index dc668385fff..71c99fff9e9 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Substitute.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Substitute.tex @@ -6,9 +6,9 @@ This \ccc{Functor} substitutes all variables of a given multivariate iterator range, where begin refers the the value for the innermost variable. Note that the \ccc{result_type} is the coercion type of the value type of the -given iterator range and \ccc{PolynomialTraits_d::Innermost_coefficient}. +given iterator range and \ccc{PolynomialTraits_d::Innermost_coefficient_type}. In particular \ccc{std::iterator_traits::value_type} must be at least -\ccc{ExplicitInteroperable} with \ccc{PolynomialTraits_d::Innermost_coefficient}. +\ccc{ExplicitInteroperable} with \ccc{PolynomialTraits_d::Innermost_coefficient_type}. \ccRefines diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SubstituteHomogeneous.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SubstituteHomogeneous.tex index 383e04a0581..6fc4fd49d08 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SubstituteHomogeneous.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_SubstituteHomogeneous.tex @@ -11,9 +11,9 @@ For instance the polynomial $p(x_0,x_1) = x_0^2x_1^3+x_1^4$ is interpreted as th polynomial $p(x_0,x_1,w) = x_0^2x_1^3+x_1^4w^1$. Note that the \ccc{result_type} is the coercion type of the value type of the -given iterator range and \ccc{PolynomialTraits_d::Innermost_coefficient}. +given iterator range and \ccc{PolynomialTraits_d::Innermost_coefficient_type}. In particular \ccc{std::iterator_traits::value_type} must be at least -\ccc{ExplicitInteroperable} with \ccc{PolynomialTraits_d::Innermost_coefficient}. +\ccc{ExplicitInteroperable} with \ccc{PolynomialTraits_d::Innermost_coefficient_type}. \ccRefines diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Translate.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Translate.tex index 38bd066f3a8..76b328ca31e 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Translate.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Translate.tex @@ -18,7 +18,7 @@ the polynomial is considered as a univariate polynomial in one specific variable \ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{} \ccGlue -\ccTypedef{typedef PolynomialTraits_d::Coefficient second_argument_type;}{} +\ccTypedef{typedef PolynomialTraits_d::Coefficient_type second_argument_type;}{} \ccOperations \ccMethod{result_type operator()(first_argument_type p, diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_TranslateHomogeneous.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_TranslateHomogeneous.tex index a1b4c2391cc..67e952fb502 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_TranslateHomogeneous.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_TranslateHomogeneous.tex @@ -7,7 +7,7 @@ Given numerator $a$ and denominator $b$ this \ccc{AdaptableFunctor} translates a Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as a univariate polynomial in one specific variable. Moreover, the polynomial is considered as a homogeneous polynomial in that variable. -Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient}. +Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}. \ccRefines @@ -21,12 +21,12 @@ Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient}. \ccOperations \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, - PolynomialTraits_d::Coefficient a, - PolynomialTraits_d::Coefficient b);} + PolynomialTraits_d::Coefficient_type a, + PolynomialTraits_d::Coefficient_type b);} { return $b^{degree}\cdot p(x+a/b)$, with respect to the outermost variable. } \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, - PolynomialTraits_d::Coefficient a, - PolynomialTraits_d::Coefficient b, + PolynomialTraits_d::Coefficient_type a, + PolynomialTraits_d::Coefficient_type b, int i);} { Same as first operator but for variable $x_i$. \ccPrecond $0 \leq i < d$ diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_UnivariateContent.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_UnivariateContent.tex index d95e26dd7e5..82be22e7c07 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_UnivariateContent.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_UnivariateContent.tex @@ -8,7 +8,7 @@ with respect to the univariate (recursive) view on the polynomial, that is, it computes the gcd of all coefficients with respect to one variable. -This functor is well defined if \ccc{PolynomialTraits_d::Coefficient} is +This functor is well defined if \ccc{PolynomialTraits_d::Coefficient_type} is a \ccc{Field} or a \ccc{UniqueFactorizationDomain}. \ccRefines @@ -18,7 +18,7 @@ a \ccc{Field} or a \ccc{UniqueFactorizationDomain}. \ccCreationVariable{univariate_content} \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccTypedef{typedef PolynomialTraits_d::Coefficient result_type;}{}\ccGlue +\ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}\ccGlue \ccOperations diff --git a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_UnivariateContentUpToConstantFactor.tex b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_UnivariateContentUpToConstantFactor.tex index e551dab3bb6..9765d262dd7 100644 --- a/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_UnivariateContentUpToConstantFactor.tex +++ b/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_UnivariateContentUpToConstantFactor.tex @@ -20,7 +20,7 @@ does not exist since the result is trivial. \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} -\ccTypedef{typedef PolynomialTraits_d::Coefficient result_type;}{}\ccGlue +\ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue \ccTypedef{typedef int second_argument_type;}{} diff --git a/Polynomial/doc_tex/Polynomial_ref/Polynomial_d.tex b/Polynomial/doc_tex/Polynomial_ref/Polynomial_d.tex index 0641bbaf8ba..83b503effcd 100644 --- a/Polynomial/doc_tex/Polynomial_ref/Polynomial_d.tex +++ b/Polynomial/doc_tex/Polynomial_ref/Polynomial_d.tex @@ -13,18 +13,18 @@ all functionality related to polynomials is provided by the traits. %The innermost coefficient type of the polynomial is accessible through %the traits, that is, the traits provides the public type -%\ccc{CGAL::Polynomial_traits_d::Innermost_coefficient}. +%\ccc{CGAL::Polynomial_traits_d::Innermost_coefficient_type}. \ccRefines \ccc{IntegralDomainWithoutDiv} \\ The algebraic structure of \ccc{Polynomial_d} depends on the -algebraic structure of \ccc{Innermost_coefficient}: +algebraic structure of \ccc{Innermost_coefficient_type}: \begin{tabular}{|l|l|} \hline -\ccc{Innermost_coefficient}&\ccc{Polynomial_d}\\ +\ccc{Innermost_coefficient_type}&\ccc{Polynomial_d}\\ \hline \ccc{IntegralDomainWithoutDiv}&\ccc{IntegralDomainWithoutDiv}\\ \ccc{IntegralDomain}&\ccc{IntegralDomain}\\ @@ -37,7 +37,7 @@ algebraic structure of \ccc{Innermost_coefficient}: Note: In case the polynomial is univariate and the innermost coefficient is a \ccc{Field} the polynomial is model of \ccc{EuclideanRing}. %Note:The concept \ccc{Polynomial_1} refines \ccc{EuclideanRing} in case -%\ccc{Innermost_coefficient} is a \ccc{Field}. +%\ccc{Innermost_coefficient_type} is a \ccc{Field}. \ccSeeAlso diff --git a/Polynomial/doc_tex/Polynomial_ref/main.tex b/Polynomial/doc_tex/Polynomial_ref/main.tex index 1a39152d448..fcc70282110 100644 --- a/Polynomial/doc_tex/Polynomial_ref/main.tex +++ b/Polynomial/doc_tex/Polynomial_ref/main.tex @@ -2,9 +2,9 @@ \input{Polynomial_ref/intro.tex} -\input{Polynomial_ref/Polynomial_d.tex} -%\input{Polynomial_ref/Polynomial_1.tex} -%\input{Polynomial_ref/Polynomial_2.tex} +\input{Polynomial_ref/Polynomial_d.tex} +%%//\input{Polynomial_ref/Polynomial_1.tex} +%%//\input{Polynomial_ref/Polynomial_2.tex} \input{Polynomial_ref/PolynomialTraits_d.tex} @@ -37,7 +37,7 @@ \input{Polynomial_ref/PolynomialTraits_d_Compare.tex} -%\input{Polynomial_ref/PolynomialToolBox_d.tex} +%//%\input{Polynomial_ref/PolynomialToolBox_d.tex} \input{Polynomial_ref/PolynomialTraits_d_UnivariateContent.tex} \input{Polynomial_ref/PolynomialTraits_d_MultivariateContent.tex} @@ -54,6 +54,8 @@ \input{Polynomial_ref/PolynomialTraits_d_UnivariateContentUpToConstantFactor.tex} \input{Polynomial_ref/PolynomialTraits_d_SquareFreeFactorizeUpToConstantFactor.tex} + + \input{Polynomial_ref/PolynomialTraits_d_Shift.tex} \input{Polynomial_ref/PolynomialTraits_d_Negate.tex} \input{Polynomial_ref/PolynomialTraits_d_Invert.tex} @@ -65,11 +67,11 @@ \input{Polynomial_ref/PolynomialTraits_d_Resultant.tex} %// This was added by Michael Kerber, missing review -%\input{Polynomial_ref/PolynomialTraits_d_Polynomial_subresultants.tex} -%\input{Polynomial_ref/PolynomialTraits_d_Principal_subresultants.tex} -%\input{Polynomial_ref/PolynomialTraits_d_Sturm_habicht_sequence.tex} -%\input{Polynomial_ref/PolynomialTraits_d_Sturm_habicht_sequence_with_cofactors.tex} -%\input{Polynomial_ref/PolynomialTraits_d_Principal_sturm_habicht_sequence.tex} +%%\input{Polynomial_ref/PolynomialTraits_d_Polynomial_subresultants.tex} +%%\input{Polynomial_ref/PolynomialTraits_d_Principal_subresultants.tex} +%%\input{Polynomial_ref/PolynomialTraits_d_Sturm_habicht_sequence.tex} +%%\input{Polynomial_ref/PolynomialTraits_d_Sturm_habicht_sequence_with_cofactors.tex} +%%\input{Polynomial_ref/PolynomialTraits_d_Principal_sturm_habicht_sequence.tex} \input{Polynomial_ref/Polynomial.tex} \input{Polynomial_ref/Polynomial_traits_d.tex} diff --git a/Polynomial/doc_tex/Polynomial_ref/open.tex b/Polynomial/doc_tex/Polynomial_ref/open.tex index 1208849e395..303ad73e67b 100644 --- a/Polynomial/doc_tex/Polynomial_ref/open.tex +++ b/Polynomial/doc_tex/Polynomial_ref/open.tex @@ -22,7 +22,7 @@ However, the \ccc{Polynomial_traits} could easily derive from \ccc{Algebraic_structure_traits}.\\ see also package: \ccc{Algebraic_foundations}. -\item \ccc{PolynomialTraits_d::Evaluate}: take \ccc{Innermost_coefficient} as argument type only. +\item \ccc{PolynomialTraits_d::Evaluate}: take \ccc{Innermost_coefficient_type} as argument type only. this relates \ccc{Coercion_traits} \ccc{Algebraic_foundations} \item This is just the general concept for \ccc{Polynomial_d}. \\