diff --git a/Hyperbolic_triangulation_2/doc/Hyperbolic_triangulation_2/Hyperbolic_triangulation_2.txt b/Hyperbolic_triangulation_2/doc/Hyperbolic_triangulation_2/Hyperbolic_triangulation_2.txt index 32d1b4e7afd..f6c887ab546 100644 --- a/Hyperbolic_triangulation_2/doc/Hyperbolic_triangulation_2/Hyperbolic_triangulation_2.txt +++ b/Hyperbolic_triangulation_2/doc/Hyperbolic_triangulation_2/Hyperbolic_triangulation_2.txt @@ -48,7 +48,7 @@ unit disk, the combinatorial structure of the hyperbolic Delaunay triangulation of a set \f$\mathcal P\f$ of points in \f$\mathbb H^2\f$ is a subset of the Euclidean Delaunay triangulation of \f$\mathcal P\f$ (see -\cgalFigureRef{Hyperbolic_triangulation_2Euclidean_vs_hyperbolic}-Left). More +\cgalFigureRef{Hyperbolic_triangulation_2Euclidean_vs_hyperbolic} - Left). More precisely, the hyperbolic Delaunay triangulation of \f$\mathcal P\f$ only contains the simplices of the Euclidean Delaunay triangulation that are hyperbolic: @@ -64,7 +64,7 @@ are hyperbolic: In the Euclidean Delaunay triangulation, there is a bijection between non-hyperbolic faces and non-hyperbolic edges \cgalCite{cgal:bdt-hdcvd-14}, illustrated by -\cgalFigureRef{Hyperbolic_triangulation_2Euclidean_vs_hyperbolic}-Right. +\cgalFigureRef{Hyperbolic_triangulation_2Euclidean_vs_hyperbolic} - Right. \cgalFigureAnchor{Hyperbolic_triangulation_2Euclidean_vs_hyperbolic}