Rename Bool_type to Boolean.

This commit is contained in:
Sylvain Pion 2008-08-26 13:40:26 +00:00
parent a7097f7f22
commit 4c79d1d5cf
38 changed files with 399 additions and 399 deletions

View File

@ -81,11 +81,11 @@ struct Cartesian_base
typedef CGAL::Object Object_2;
typedef CGAL::Object Object_3;
// Bool_type had originally been Bool. It was renamed to avoid a conflict
// Boolean had originally been Bool. It was renamed to avoid a conflict
// between a macro defined in Xlib.h poorly chosen to have the same name,
// that is 'Bool'.
typedef typename Same_uncertainty_nt<bool, FT>::type
Bool_type;
Boolean;
typedef typename Same_uncertainty_nt<CGAL::Sign, FT>::type
Sign;
typedef typename Same_uncertainty_nt<CGAL::Comparison_result, FT>::type

View File

@ -66,8 +66,8 @@ public:
DirectionC3(const FT &x, const FT &y, const FT &z)
: base(CGAL::make_array(x, y, z)) {}
typename R::Bool_type operator==(const DirectionC3 &d) const;
typename R::Bool_type operator!=(const DirectionC3 &d) const;
typename R::Boolean operator==(const DirectionC3 &d) const;
typename R::Boolean operator!=(const DirectionC3 &d) const;
Vector_3 to_vector() const;
Vector_3 vector() const { return to_vector(); }
@ -105,7 +105,7 @@ public:
template < class R >
inline
typename R::Bool_type
typename R::Boolean
DirectionC3<R>::operator==(const DirectionC3<R> &d) const
{
if (CGAL::identical(base, d.base))
@ -115,7 +115,7 @@ DirectionC3<R>::operator==(const DirectionC3<R> &d) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
DirectionC3<R>::operator!=(const DirectionC3<R> &d) const
{
return !(*this == d);

View File

@ -105,8 +105,8 @@ public:
Construct_point_3()(max_hx/hw, max_hy/hw, max_hz/hw)));
}
typename R::Bool_type operator==(const Iso_cuboidC3& s) const;
typename R::Bool_type operator!=(const Iso_cuboidC3& s) const;
typename R::Boolean operator==(const Iso_cuboidC3& s) const;
typename R::Boolean operator!=(const Iso_cuboidC3& s) const;
const Point_3 & min BOOST_PREVENT_MACRO_SUBSTITUTION () const
{
@ -125,11 +125,11 @@ public:
}
Bounded_side bounded_side(const Point_3& p) const;
typename R::Bool_type has_on(const Point_3& p) const;
typename R::Bool_type has_on_boundary(const Point_3& p) const;
typename R::Bool_type has_on_bounded_side(const Point_3& p) const;
typename R::Bool_type has_on_unbounded_side(const Point_3& p) const;
typename R::Bool_type is_degenerate() const;
typename R::Boolean has_on(const Point_3& p) const;
typename R::Boolean has_on_boundary(const Point_3& p) const;
typename R::Boolean has_on_bounded_side(const Point_3& p) const;
typename R::Boolean has_on_unbounded_side(const Point_3& p) const;
typename R::Boolean is_degenerate() const;
const FT & xmin() const;
const FT & ymin() const;
const FT & zmin() const;
@ -144,7 +144,7 @@ public:
template < class R >
CGAL_KERNEL_INLINE
typename R::Bool_type
typename R::Boolean
Iso_cuboidC3<R>::operator==(const Iso_cuboidC3<R>& r) const
{ // FIXME : predicate
if (CGAL::identical(base, r.base))
@ -154,7 +154,7 @@ Iso_cuboidC3<R>::operator==(const Iso_cuboidC3<R>& r) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
Iso_cuboidC3<R>::operator!=(const Iso_cuboidC3<R>& r) const
{
return !(*this == r);
@ -287,7 +287,7 @@ bounded_side(const typename Iso_cuboidC3<R>::Point_3& p) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
Iso_cuboidC3<R>::
has_on_boundary(const typename Iso_cuboidC3<R>::Point_3& p) const
{
@ -296,7 +296,7 @@ has_on_boundary(const typename Iso_cuboidC3<R>::Point_3& p) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
Iso_cuboidC3<R>::
has_on(const typename Iso_cuboidC3<R>::Point_3& p) const
{
@ -305,7 +305,7 @@ has_on(const typename Iso_cuboidC3<R>::Point_3& p) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
Iso_cuboidC3<R>::
has_on_bounded_side(const typename Iso_cuboidC3<R>::Point_3& p) const
{
@ -314,7 +314,7 @@ has_on_bounded_side(const typename Iso_cuboidC3<R>::Point_3& p) const
template < class R >
CGAL_KERNEL_INLINE
typename R::Bool_type
typename R::Boolean
Iso_cuboidC3<R>::
has_on_unbounded_side(const typename Iso_cuboidC3<R>::Point_3& p)
const
@ -324,7 +324,7 @@ has_on_unbounded_side(const typename Iso_cuboidC3<R>::Point_3& p)
template < class R >
CGAL_KERNEL_INLINE
typename R::Bool_type
typename R::Boolean
Iso_cuboidC3<R>::is_degenerate() const
{ // FIXME : predicate
return (this->min)().hx() == (this->max)().hx()

View File

@ -55,8 +55,8 @@ public:
LineC2(const FT &a, const FT &b, const FT &c)
: base(CGAL::make_array(a, b, c)) {}
typename R_::Bool_type operator==(const LineC2 &l) const;
typename R_::Bool_type operator!=(const LineC2 &l) const;
typename R_::Boolean operator==(const LineC2 &l) const;
typename R_::Boolean operator!=(const LineC2 &l) const;
const FT & a() const
{
@ -75,7 +75,7 @@ public:
template < class R >
CGAL_KERNEL_INLINE
typename R::Bool_type
typename R::Boolean
LineC2<R>::operator==(const LineC2<R> &l) const
{
if (CGAL::identical(base, l.base))
@ -85,7 +85,7 @@ LineC2<R>::operator==(const LineC2<R> &l) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
LineC2<R>::operator!=(const LineC2<R> &l) const
{
return ! (*this == l);

View File

@ -79,8 +79,8 @@ public:
PlaneC3(const Ray_3 &r, const Point_3 &p)
{ *this = plane_from_points(r.start(), r.second_point(), p); }
typename R::Bool_type operator==(const PlaneC3 &p) const;
typename R::Bool_type operator!=(const PlaneC3 &p) const;
typename R::Boolean operator==(const PlaneC3 &p) const;
typename R::Boolean operator!=(const PlaneC3 &p) const;
const FT & a() const
{
@ -115,18 +115,18 @@ public:
Point_3 to_3d(const Point_2 &p) const;
typename R::Oriented_side oriented_side(const Point_3 &p) const;
typename R::Bool_type has_on_positive_side(const Point_3 &l) const;
typename R::Bool_type has_on_negative_side(const Point_3 &l) const;
typename R::Bool_type has_on(const Point_3 &p) const
typename R::Boolean has_on_positive_side(const Point_3 &l) const;
typename R::Boolean has_on_negative_side(const Point_3 &l) const;
typename R::Boolean has_on(const Point_3 &p) const
{
return oriented_side(p) == ON_ORIENTED_BOUNDARY;
}
typename R::Bool_type has_on(const Line_3 &l) const
typename R::Boolean has_on(const Line_3 &l) const
{
return has_on(l.point())
&& has_on(l.point() + l.direction().to_vector());
}
typename R::Bool_type has_on(const Circle_3 &circle) const
typename R::Boolean has_on(const Circle_3 &circle) const
{
if(circle.squared_radius() != FT(0)) {
const Plane_3& p = circle.supporting_plane();
@ -145,12 +145,12 @@ public:
} else return has_on(circle.center());
}
typename R::Bool_type is_degenerate() const;
typename R::Boolean is_degenerate() const;
};
template < class R >
CGAL_KERNEL_INLINE
typename R::Bool_type
typename R::Boolean
PlaneC3<R>::operator==(const PlaneC3<R> &p) const
{
if (CGAL::identical(base, p.base))
@ -160,7 +160,7 @@ PlaneC3<R>::operator==(const PlaneC3<R> &p) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
PlaneC3<R>::operator!=(const PlaneC3<R> &p) const
{
return !(*this == p);
@ -277,7 +277,7 @@ oriented_side(const typename PlaneC3<R>::Point_3 &p) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
PlaneC3<R>::
has_on_positive_side(const typename PlaneC3<R>::Point_3 &p) const
{
@ -286,7 +286,7 @@ has_on_positive_side(const typename PlaneC3<R>::Point_3 &p) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
PlaneC3<R>::
has_on_negative_side(const typename PlaneC3<R>::Point_3 &p) const
{
@ -295,7 +295,7 @@ has_on_negative_side(const typename PlaneC3<R>::Point_3 &p) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
PlaneC3<R>::
is_degenerate() const
{ // FIXME : predicate

View File

@ -89,11 +89,11 @@ public:
return base.cartesian_end();
}
typename R_::Bool_type operator==(const PointC2 &p) const
typename R_::Boolean operator==(const PointC2 &p) const
{
return base == p.base;
}
typename R_::Bool_type operator!=(const PointC2 &p) const
typename R_::Boolean operator!=(const PointC2 &p) const
{
return !(*this == p);
}

View File

@ -63,7 +63,7 @@ public:
return get(base)[1];
}
typename R_::Bool_type is_degenerate() const
typename R_::Boolean is_degenerate() const
{
return source() == second_point();
}

View File

@ -61,8 +61,8 @@ public:
RayC3(const Point_3 &sp, const Line_3 &l)
: base(CGAL::make_array(sp, sp + l.to_vector())) {}
typename R::Bool_type operator==(const RayC3 &r) const;
typename R::Bool_type operator!=(const RayC3 &r) const;
typename R::Boolean operator==(const RayC3 &r) const;
typename R::Boolean operator!=(const RayC3 &r) const;
const Point_3 & source() const
{
@ -79,14 +79,14 @@ public:
Line_3 supporting_line() const;
Ray_3 opposite() const;
typename R::Bool_type is_degenerate() const;
typename R::Bool_type has_on(const Point_3 &p) const;
typename R::Bool_type collinear_has_on(const Point_3 &p) const;
typename R::Boolean is_degenerate() const;
typename R::Boolean has_on(const Point_3 &p) const;
typename R::Boolean collinear_has_on(const Point_3 &p) const;
};
template < class R >
inline
typename R::Bool_type
typename R::Boolean
RayC3<R>::operator==(const RayC3<R> &r) const
{
if (CGAL::identical(base, r.base))
@ -96,7 +96,7 @@ RayC3<R>::operator==(const RayC3<R> &r) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
RayC3<R>::operator!=(const RayC3<R> &r) const
{
return !(*this == r);
@ -146,7 +146,7 @@ RayC3<R>::opposite() const
}
template < class R >
typename R::Bool_type
typename R::Boolean
RayC3<R>::
has_on(const typename RayC3<R>::Point_3 &p) const
{
@ -157,7 +157,7 @@ has_on(const typename RayC3<R>::Point_3 &p) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
RayC3<R>::is_degenerate() const
{
return source() == second_point();
@ -165,7 +165,7 @@ RayC3<R>::is_degenerate() const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
RayC3<R>::
collinear_has_on(const typename RayC3<R>::Point_3 &p) const
{

View File

@ -101,8 +101,8 @@ public:
base = Rep(center, FT(0), o);
}
typename R::Bool_type operator==(const SphereC3 &) const;
typename R::Bool_type operator!=(const SphereC3 &) const;
typename R::Boolean operator==(const SphereC3 &) const;
typename R::Boolean operator!=(const SphereC3 &) const;
const Point_3 & center() const
{
@ -120,7 +120,7 @@ public:
}
// A circle is degenerate if its (squared) radius is null or negative
typename R::Bool_type is_degenerate() const;
typename R::Boolean is_degenerate() const;
// Returns a circle with opposite orientation
Sphere_3 opposite() const;
@ -129,21 +129,21 @@ public:
//! precond: ! x.is_degenerate() (when available)
// Returns R::ON_POSITIVE_SIDE, R::ON_ORIENTED_BOUNDARY or
// R::ON_NEGATIVE_SIDE
typename R::Bool_type has_on(const Circle_3 &p) const;
typename R::Bool_type has_on_boundary(const Point_3 &p) const;
typename R::Bool_type has_on_positive_side(const Point_3 &p) const;
typename R::Bool_type has_on_negative_side(const Point_3 &p) const;
typename R::Boolean has_on(const Circle_3 &p) const;
typename R::Boolean has_on_boundary(const Point_3 &p) const;
typename R::Boolean has_on_positive_side(const Point_3 &p) const;
typename R::Boolean has_on_negative_side(const Point_3 &p) const;
typename R_::Bounded_side bounded_side(const Point_3 &p) const;
//! precond: ! x.is_degenerate() (when available)
// Returns R::ON_BOUNDED_SIDE, R::ON_BOUNDARY or R::ON_UNBOUNDED_SIDE
typename R::Bool_type has_on_bounded_side(const Point_3 &p) const;
typename R::Bool_type has_on_unbounded_side(const Point_3 &p) const;
typename R::Boolean has_on_bounded_side(const Point_3 &p) const;
typename R::Boolean has_on_unbounded_side(const Point_3 &p) const;
};
template < class R >
CGAL_KERNEL_INLINE
typename R::Bool_type
typename R::Boolean
SphereC3<R>::operator==(const SphereC3<R> &t) const
{
if (CGAL::identical(base, t.base))
@ -155,7 +155,7 @@ SphereC3<R>::operator==(const SphereC3<R> &t) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
SphereC3<R>::operator!=(const SphereC3<R> &t) const
{
return !(*this == t);
@ -182,7 +182,7 @@ bounded_side(const typename SphereC3<R>::Point_3 &p) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
SphereC3<R>::
has_on(const typename SphereC3<R>::Circle_3 &c) const
{
@ -198,7 +198,7 @@ has_on(const typename SphereC3<R>::Circle_3 &c) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
SphereC3<R>::
has_on_boundary(const typename SphereC3<R>::Point_3 &p) const
{
@ -211,7 +211,7 @@ has_on_boundary(const typename SphereC3<R>::Point_3 &p) const
template < class R >
CGAL_KERNEL_INLINE
typename R::Bool_type
typename R::Boolean
SphereC3<R>::
has_on_negative_side(const typename SphereC3<R>::Point_3 &p) const
{
@ -224,7 +224,7 @@ has_on_negative_side(const typename SphereC3<R>::Point_3 &p) const
template < class R >
CGAL_KERNEL_INLINE
typename R::Bool_type
typename R::Boolean
SphereC3<R>::
has_on_positive_side(const typename SphereC3<R>::Point_3 &p) const
{
@ -237,7 +237,7 @@ has_on_positive_side(const typename SphereC3<R>::Point_3 &p) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
SphereC3<R>::
has_on_bounded_side(const typename SphereC3<R>::Point_3 &p) const
{
@ -249,7 +249,7 @@ has_on_bounded_side(const typename SphereC3<R>::Point_3 &p) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
SphereC3<R>::
has_on_unbounded_side(const typename SphereC3<R>::Point_3 &p) const
{
@ -261,7 +261,7 @@ has_on_unbounded_side(const typename SphereC3<R>::Point_3 &p) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
SphereC3<R>::
is_degenerate() const
{

View File

@ -56,24 +56,24 @@ public:
const Point_3 & vertex(int i) const;
const Point_3 & operator[](int i) const;
typename R::Bool_type operator==(const TetrahedronC3 &t) const;
typename R::Bool_type operator!=(const TetrahedronC3 &t) const;
typename R::Boolean operator==(const TetrahedronC3 &t) const;
typename R::Boolean operator!=(const TetrahedronC3 &t) const;
typename R::Orientation orientation() const;
typename R::Oriented_side oriented_side(const Point_3 &p) const;
typename R::Bounded_side bounded_side(const Point_3 &p) const;
typename R::Bool_type has_on_boundary(const Point_3 &p) const;
typename R::Bool_type has_on_positive_side(const Point_3 &p) const;
typename R::Bool_type has_on_negative_side(const Point_3 &p) const;
typename R::Bool_type has_on_bounded_side(const Point_3 &p) const;
typename R::Bool_type has_on_unbounded_side(const Point_3 &p) const;
typename R::Boolean has_on_boundary(const Point_3 &p) const;
typename R::Boolean has_on_positive_side(const Point_3 &p) const;
typename R::Boolean has_on_negative_side(const Point_3 &p) const;
typename R::Boolean has_on_bounded_side(const Point_3 &p) const;
typename R::Boolean has_on_unbounded_side(const Point_3 &p) const;
typename R::Bool_type is_degenerate() const;
typename R::Boolean is_degenerate() const;
};
template < class R >
typename R::Bool_type
typename R::Boolean
TetrahedronC3<R>::
operator==(const TetrahedronC3<R> &t) const
{
@ -101,7 +101,7 @@ operator==(const TetrahedronC3<R> &t) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
TetrahedronC3<R>::
operator!=(const TetrahedronC3<R> &t) const
{
@ -166,7 +166,7 @@ bounded_side(const typename TetrahedronC3<R>::Point_3 &p) const
template < class R >
inline
typename R::Bool_type
typename R::Boolean
TetrahedronC3<R>::has_on_boundary
(const typename TetrahedronC3<R>::Point_3 &p) const
{
@ -175,7 +175,7 @@ TetrahedronC3<R>::has_on_boundary
template < class R >
inline
typename R::Bool_type
typename R::Boolean
TetrahedronC3<R>::has_on_positive_side
(const typename TetrahedronC3<R>::Point_3 &p) const
{
@ -184,7 +184,7 @@ TetrahedronC3<R>::has_on_positive_side
template < class R >
inline
typename R::Bool_type
typename R::Boolean
TetrahedronC3<R>::has_on_negative_side
(const typename TetrahedronC3<R>::Point_3 &p) const
{
@ -193,7 +193,7 @@ TetrahedronC3<R>::has_on_negative_side
template < class R >
inline
typename R::Bool_type
typename R::Boolean
TetrahedronC3<R>::has_on_bounded_side
(const typename TetrahedronC3<R>::Point_3 &p) const
{
@ -202,7 +202,7 @@ TetrahedronC3<R>::has_on_bounded_side
template < class R >
inline
typename R::Bool_type
typename R::Boolean
TetrahedronC3<R>::has_on_unbounded_side
(const typename TetrahedronC3<R>::Point_3 &p) const
{
@ -211,7 +211,7 @@ TetrahedronC3<R>::has_on_unbounded_side
template < class R >
inline
typename R::Bool_type
typename R::Boolean
TetrahedronC3<R>::is_degenerate() const
{
return orientation() == COPLANAR;

View File

@ -73,7 +73,7 @@ namespace CartesianKernelFunctors {
typedef typename K::Ray_2 Ray_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()(const Line_2& l1, const Line_2& l2) const
@ -105,7 +105,7 @@ namespace CartesianKernelFunctors {
typedef typename K::Plane_3 Plane_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()(const Line_3& l1, const Line_3& l2) const
@ -251,7 +251,7 @@ namespace CartesianKernelFunctors {
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
@ -267,7 +267,7 @@ namespace CartesianKernelFunctors {
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()(const Point_3& p, const Point_3& q, const Point_3& r) const
@ -284,7 +284,7 @@ namespace CartesianKernelFunctors {
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
@ -300,7 +300,7 @@ namespace CartesianKernelFunctors {
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()(const Point_3& p, const Point_3& q, const Point_3& r) const
@ -319,7 +319,7 @@ namespace CartesianKernelFunctors {
typedef typename K::Ray_2 Ray_2;
typedef typename K::Segment_2 Segment_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Ray_2& r, const Point_2& p) const
@ -357,7 +357,7 @@ namespace CartesianKernelFunctors {
typedef typename K::Orientation_2 Orientation_2;
Orientation_2 o;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
Collinear_2() {}
Collinear_2(const Orientation_2 o_) : o(o_) {}
@ -372,7 +372,7 @@ namespace CartesianKernelFunctors {
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()(const Point_3& p, const Point_3& q, const Point_3& r) const
@ -3421,7 +3421,7 @@ namespace CartesianKernelFunctors {
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_3& p, const Point_3& q) const
@ -3435,7 +3435,7 @@ namespace CartesianKernelFunctors {
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_2& p, const Point_2& q) const
@ -3447,7 +3447,7 @@ namespace CartesianKernelFunctors {
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_3& p, const Point_3& q) const
@ -3459,7 +3459,7 @@ namespace CartesianKernelFunctors {
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_2& p, const Point_2& q) const
@ -3471,7 +3471,7 @@ namespace CartesianKernelFunctors {
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_3& p, const Point_3& q) const
@ -3483,7 +3483,7 @@ namespace CartesianKernelFunctors {
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_3& p, const Point_3& q) const
@ -3504,7 +3504,7 @@ namespace CartesianKernelFunctors {
typedef typename K::Circle_3 Circle_3;
typedef typename K::Sphere_3 Sphere_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Line_3& l, const Point_3& p) const
@ -3564,7 +3564,7 @@ namespace CartesianKernelFunctors {
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
@ -3580,7 +3580,7 @@ namespace CartesianKernelFunctors {
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()(const Point_3& p, const Point_3& q, const Point_3& r) const
@ -3599,7 +3599,7 @@ namespace CartesianKernelFunctors {
typedef typename K::Line_2 Line_2;
typedef typename K::Equal_2 Equal_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()(const Point_2& a, const Point_2& b,
@ -3629,7 +3629,7 @@ namespace CartesianKernelFunctors {
typedef typename K::Plane_3 Plane_3;
typedef typename K::Collinear_3 Collinear_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Plane_3& h, const Point_3& p, const Point_3& q) const
@ -3660,7 +3660,7 @@ namespace CartesianKernelFunctors {
typedef typename K::Compare_xyz_3 Compare_xyz_3;
Compare_xyz_3 c;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
Less_xyz_3() {}
Less_xyz_3(const Compare_xyz_3& c_) : c(c_) {}
@ -3677,7 +3677,7 @@ namespace CartesianKernelFunctors {
typedef typename K::Compare_xy_2 Compare_xy_2;
Compare_xy_2 c;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
Less_xy_2() {}
Less_xy_2(const Compare_xy_2& c_) : c(c_) {}
@ -3694,7 +3694,7 @@ namespace CartesianKernelFunctors {
typedef typename K::Compare_xy_3 Compare_xy_3;
Compare_xy_3 c;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
Less_xy_3() {}
Less_xy_3(const Compare_xy_3& c_) : c(c_) {}
@ -3709,7 +3709,7 @@ namespace CartesianKernelFunctors {
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_2& p, const Point_2& q) const
@ -3721,7 +3721,7 @@ namespace CartesianKernelFunctors {
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_3& p, const Point_3& q) const
@ -3733,7 +3733,7 @@ namespace CartesianKernelFunctors {
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_2& p, const Point_2& q) const
@ -3748,7 +3748,7 @@ namespace CartesianKernelFunctors {
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_2& p, const Point_2& q) const
@ -3760,7 +3760,7 @@ namespace CartesianKernelFunctors {
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_3& p, const Point_3& q) const
@ -3772,7 +3772,7 @@ namespace CartesianKernelFunctors {
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_3& p, const Point_3& q) const

View File

@ -28,7 +28,7 @@ CGAL_BEGIN_NAMESPACE
template < class K >
inline
typename K::Bool_type
typename K::Boolean
equal_direction(const DirectionC2<K> &d1,
const DirectionC2<K> &d2)
{

View File

@ -40,7 +40,7 @@ side_of_oriented_plane(const PlaneC3<K> &h,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
equal_plane(const PlaneC3<K> &h, const PlaneC3<K> &p)
{
return equal_planeC3(h.a(), h.b(), h.c(), h.d(),

View File

@ -686,7 +686,7 @@ class Do_overlap_2
class Do_intersect_2
{
public:
typedef typename BK::Bool_type result_type;
typedef typename BK::Boolean result_type;
template <class T1, class T2>
result_type
operator()(const T1& t1, const T2& t2) const

View File

@ -81,7 +81,7 @@ public:
typedef FT RT;
typedef typename Same_uncertainty_nt<bool, FT>::type
Bool_type;
Boolean;
typedef typename Same_uncertainty_nt<CGAL::Sign, FT>::type
Sign;
typedef typename Same_uncertainty_nt<CGAL::Comparison_result, FT>::type

View File

@ -89,7 +89,7 @@ struct Homogeneous_base
typedef CGAL::Object Object_3;
typedef typename Same_uncertainty_nt<bool, FT>::type
Bool_type;
Boolean;
typedef typename Same_uncertainty_nt<CGAL::Sign, FT>::type
Sign;
typedef typename Same_uncertainty_nt<CGAL::Comparison_result, FT>::type

View File

@ -241,7 +241,7 @@ namespace HomogeneousKernelFunctors {
Collinear_2 c;
#endif // CGAL_kernel_exactness_preconditions
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
#ifdef CGAL_kernel_exactness_preconditions
Collinear_are_ordered_along_line_2() {}
@ -291,7 +291,7 @@ namespace HomogeneousKernelFunctors {
Collinear_3 c;
#endif // CGAL_kernel_exactness_preconditions
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
#ifdef CGAL_kernel_exactness_preconditions
Collinear_are_ordered_along_line_3() {}
@ -372,7 +372,7 @@ namespace HomogeneousKernelFunctors {
Collinear_2 c;
#endif // CGAL_kernel_exactness_preconditions
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
#ifdef CGAL_kernel_exactness_preconditions
Collinear_are_strictly_ordered_along_line_2() {}
@ -423,7 +423,7 @@ namespace HomogeneousKernelFunctors {
Collinear_3 c;
#endif // CGAL_kernel_exactness_preconditions
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
#ifdef CGAL_kernel_exactness_preconditions
Collinear_are_strictly_ordered_along_line_3() {}
@ -457,7 +457,7 @@ namespace HomogeneousKernelFunctors {
Construct_point_on_2 cp;
Compare_xy_2 cxy;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
Collinear_has_on_2() {}
Collinear_has_on_2(const Construct_point_on_2& cp_,
@ -486,7 +486,7 @@ namespace HomogeneousKernelFunctors {
typedef typename K::Orientation_2 Orientation_2;
Orientation_2 o;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
Collinear_2() {}
Collinear_2(const Orientation_2 o_) : o(o_) {}
@ -3636,7 +3636,7 @@ namespace HomogeneousKernelFunctors {
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_3& p, const Point_3& q) const
@ -3651,7 +3651,7 @@ namespace HomogeneousKernelFunctors {
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_2& p, const Point_2& q) const
@ -3663,7 +3663,7 @@ namespace HomogeneousKernelFunctors {
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_3& p, const Point_3& q) const
@ -3675,7 +3675,7 @@ namespace HomogeneousKernelFunctors {
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_2& p, const Point_2& q) const
@ -3687,7 +3687,7 @@ namespace HomogeneousKernelFunctors {
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_3& p, const Point_3& q) const
@ -3699,7 +3699,7 @@ namespace HomogeneousKernelFunctors {
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_3& p, const Point_3& q) const
@ -3717,7 +3717,7 @@ namespace HomogeneousKernelFunctors {
typedef typename K::Triangle_3 Triangle_3;
typedef typename K::Tetrahedron_3 Tetrahedron_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Line_3& l, const Point_3& p) const
@ -3784,7 +3784,7 @@ namespace HomogeneousKernelFunctors {
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()(const Point_2& p, const Point_2& q, const Point_2& r) const
@ -3836,7 +3836,7 @@ namespace HomogeneousKernelFunctors {
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()(const Point_3& p, const Point_3& q, const Point_3& r) const
@ -3874,7 +3874,7 @@ namespace HomogeneousKernelFunctors {
typedef typename K::Point_2 Point_2;
typedef typename K::Line_2 Line_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()(const Point_2& p, const Point_2& q,
@ -3933,7 +3933,7 @@ namespace HomogeneousKernelFunctors {
typedef typename K::Plane_3 Plane_3;
typedef typename K::Construct_plane_3 Construct_plane_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Plane_3& pl, const Point_3& p, const Point_3& q) const
@ -3974,7 +3974,7 @@ namespace HomogeneousKernelFunctors {
typedef typename K::Compare_xyz_3 Compare_xyz_3;
Compare_xyz_3 c;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
Less_xyz_3() {}
Less_xyz_3(const Compare_xyz_3& c_) : c(c_) {}
@ -3991,7 +3991,7 @@ namespace HomogeneousKernelFunctors {
typedef typename K::Compare_xy_2 Compare_xy_2;
Compare_xy_2 c;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
Less_xy_2() {}
Less_xy_2(const Compare_xy_2& c_) : c(c_) {}
@ -4008,7 +4008,7 @@ namespace HomogeneousKernelFunctors {
typedef typename K::Compare_xy_3 Compare_xy_3;
Compare_xy_3 c;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
Less_xy_3() {}
Less_xy_3(const Compare_xy_3& c_) : c(c_) {}
@ -4023,7 +4023,7 @@ namespace HomogeneousKernelFunctors {
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_2& p, const Point_2& q) const
@ -4035,7 +4035,7 @@ namespace HomogeneousKernelFunctors {
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_3& p, const Point_3& q) const
@ -4047,7 +4047,7 @@ namespace HomogeneousKernelFunctors {
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_2& p, const Point_2& q) const
@ -4082,7 +4082,7 @@ namespace HomogeneousKernelFunctors {
{
typedef typename K::Point_2 Point_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_2& p, const Point_2& q) const
@ -4094,7 +4094,7 @@ namespace HomogeneousKernelFunctors {
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_3& p, const Point_3& q) const
@ -4106,7 +4106,7 @@ namespace HomogeneousKernelFunctors {
{
typedef typename K::Point_3 Point_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Point_3& p, const Point_3& q) const

View File

@ -32,7 +32,7 @@ namespace CGALi {
// This code is not optimized:
template <class K>
typename K::Bool_type
typename K::Boolean
do_intersect(const typename K::Triangle_3 &tr,
const typename K::Tetrahedron_3 &tet,
const K & k)
@ -59,7 +59,7 @@ do_intersect(const typename K::Triangle_3 &tr,
template <class K>
inline
typename K::Bool_type
typename K::Boolean
do_intersect(const typename K::Tetrahedron_3 &tet,
const typename K::Triangle_3 &tr,
const K & k)

View File

@ -194,7 +194,7 @@ bool do_intersect_coplanar(const typename K::Triangle_3 &t1,
template <class K>
typename K::Bool_type
typename K::Boolean
do_intersect(const typename K::Triangle_3 &t1,
const typename K::Triangle_3 &t2,
const K & k)
@ -446,7 +446,7 @@ do_intersect(const typename K::Triangle_3 &t1,
template <class K>
inline typename K::Bool_type
inline typename K::Boolean
do_intersect(const Triangle_3<K> &t1,
const Triangle_3<K> &t2)
{

View File

@ -35,7 +35,7 @@ map to \ccc{bool} and CGAL kernel enum types, except when an interval arithmetic
number type is used such as within the filtering kernels, in which case it is
\ccc{Uncertain<bool>} or similar.
\ccNestedType{Bool_type}{\ccc{bool} or \ccc{Uncertain<bool>}}
\ccNestedType{Boolean}{\ccc{bool} or \ccc{Uncertain<bool>}}
\ccGlue
\ccNestedType{Sign}{\ccc{CGAL::Sign} or \ccc{Uncertain<CGAL::Sign>}}
\ccGlue

View File

@ -126,25 +126,25 @@ public:
return R().oriented_side_2_object()(*this, p);
}
typename R::Bool_type
typename R::Boolean
has_on_boundary(const Point_2 &p) const
{
return bounded_side(p) == ON_BOUNDARY;
}
typename R::Bool_type
typename R::Boolean
has_on_bounded_side(const Point_2 &p) const
{
return bounded_side(p) == ON_BOUNDED_SIDE;
}
typename R::Bool_type
typename R::Boolean
has_on_unbounded_side(const Point_2 &p) const
{
return bounded_side(p) == ON_UNBOUNDED_SIDE;
}
typename R::Bool_type
typename R::Boolean
has_on_negative_side(const Point_2 &p) const
{
if (orientation() == COUNTERCLOCKWISE)
@ -152,7 +152,7 @@ public:
return has_on_bounded_side(p);
}
typename R::Bool_type
typename R::Boolean
has_on_positive_side(const Point_2 &p) const
{
if (orientation() == COUNTERCLOCKWISE)
@ -160,7 +160,7 @@ public:
return has_on_unbounded_side(p);
}
typename R::Bool_type
typename R::Boolean
is_degenerate() const
{
return CGAL_NTS is_zero(squared_radius());
@ -181,13 +181,13 @@ public:
return R().construct_bbox_2_object()(*this);
}
typename R::Bool_type
typename R::Boolean
operator==(const Circle_2 &c) const
{
return R().equal_2_object()(*this, c);
}
typename R::Bool_type
typename R::Boolean
operator!=(const Circle_2 &c) const
{
return !(*this == c);

View File

@ -85,7 +85,7 @@ public:
Direction_2(const RT &x, const RT &y)
: RDirection_2(typename R::Construct_direction_2()(Return_base_tag(), x,y)) {}
typename R::Bool_type
typename R::Boolean
counterclockwise_in_between(const Direction_2 &d1,
const Direction_2 &d2) const
{
@ -116,28 +116,28 @@ public:
return (i==0) ? dx() : dy();
}
typename R::Bool_type
typename R::Boolean
operator<(const Direction_2 &d) const
{
return R().compare_angle_with_x_axis_2_object()(*this, d) == SMALLER;
}
typename R::Bool_type
typename R::Boolean
operator>(const Direction_2 &d) const
{
return d < *this;
}
typename R::Bool_type
typename R::Boolean
operator>=(const Direction_2 &d) const
{
return R().compare_angle_with_x_axis_2_object()(*this, d) != SMALLER;
}
typename R::Bool_type
typename R::Boolean
operator<=(const Direction_2 &d) const
{
return R().compare_angle_with_x_axis_2_object()(*this, d) != LARGER;
@ -159,13 +159,13 @@ public:
return this->vector();
}
typename R::Bool_type
typename R::Boolean
operator==(const Direction_2& d) const
{
return R().equal_2_object()(*this, d);
}
typename R::Bool_type
typename R::Boolean
operator!=(const Direction_2& d) const
{
return !(*this == d);

View File

@ -48,7 +48,7 @@ namespace CommonKernelFunctors {
Collinear_2 c;
Collinear_are_ordered_along_line_2 cao;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
Are_ordered_along_line_2() {}
Are_ordered_along_line_2(const Collinear_2& c_,
@ -72,7 +72,7 @@ namespace CommonKernelFunctors {
Collinear_3 c;
Collinear_are_ordered_along_line_3 cao;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
Are_ordered_along_line_3() {}
Are_ordered_along_line_3(const Collinear_3& c_,
@ -96,7 +96,7 @@ namespace CommonKernelFunctors {
Collinear_2 c;
Collinear_are_strictly_ordered_along_line_2 cao;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
Are_strictly_ordered_along_line_2() {}
Are_strictly_ordered_along_line_2(
@ -121,7 +121,7 @@ namespace CommonKernelFunctors {
Collinear_3 c;
Collinear_are_strictly_ordered_along_line_3 cao;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
Are_strictly_ordered_along_line_3() {}
Are_strictly_ordered_along_line_3(
@ -140,7 +140,7 @@ namespace CommonKernelFunctors {
{
typedef typename K::Object_2 Object_2;
public:
//typedef typename K::Bool_type result_type;
//typedef typename K::Boolean result_type;
typedef bool result_type;
template <class T>
@ -154,7 +154,7 @@ namespace CommonKernelFunctors {
{
typedef typename K::Object_3 Object_3;
public:
//typedef typename K::Bool_type result_type;
//typedef typename K::Boolean result_type;
typedef bool result_type;
template <class T>
@ -1807,7 +1807,7 @@ namespace CommonKernelFunctors {
typedef typename K::Orientation_3 Orientation_3;
Orientation_3 o;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
Coplanar_3() {}
Coplanar_3(const Orientation_3& o_) : o(o_) {}
@ -1825,7 +1825,7 @@ namespace CommonKernelFunctors {
{
typedef typename K::Direction_2 Direction_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Direction_2& p, const Direction_2& q,
@ -1842,7 +1842,7 @@ namespace CommonKernelFunctors {
class Do_intersect_2
{
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
// There are 36 combinaisons, so I use a template.
template <class T1, class T2>
@ -1855,7 +1855,7 @@ namespace CommonKernelFunctors {
class Do_intersect_3
{
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
// There are x combinaisons, so I use a template.
template <class T1, class T2>
@ -1878,7 +1878,7 @@ namespace CommonKernelFunctors {
typedef typename K::Circle_2 Circle_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()(const Point_2 &p, const Point_2 &q) const
@ -1966,7 +1966,7 @@ namespace CommonKernelFunctors {
typedef typename K::Circle_3 Circle_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
// Point_3 is special case since the global operator== would recurse.
result_type
@ -2056,7 +2056,7 @@ namespace CommonKernelFunctors {
typedef typename K::Circle_2 Circle_2;
typedef typename K::Triangle_2 Triangle_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Circle_2& c, const Point_2& p) const
@ -2080,7 +2080,7 @@ namespace CommonKernelFunctors {
typedef typename K::Tetrahedron_3 Tetrahedron_3;
typedef typename K::Plane_3 Plane_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Sphere_3& s, const Point_3& p) const
@ -2104,7 +2104,7 @@ namespace CommonKernelFunctors {
typedef typename K::Circle_2 Circle_2;
typedef typename K::Triangle_2 Triangle_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Circle_2& c, const Point_2& p) const
@ -2128,7 +2128,7 @@ namespace CommonKernelFunctors {
typedef typename K::Tetrahedron_3 Tetrahedron_3;
typedef typename K::Circle_3 Circle_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Sphere_3& s, const Point_3& p) const
@ -2160,7 +2160,7 @@ namespace CommonKernelFunctors {
typedef typename K::Circle_2 Circle_2;
typedef typename K::Triangle_2 Triangle_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Circle_2& c, const Point_2& p) const
@ -2183,7 +2183,7 @@ namespace CommonKernelFunctors {
typedef typename K::Sphere_3 Sphere_3;
typedef typename K::Tetrahedron_3 Tetrahedron_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Sphere_3& s, const Point_3& p) const
@ -2206,7 +2206,7 @@ namespace CommonKernelFunctors {
typedef typename K::Circle_2 Circle_2;
typedef typename K::Triangle_2 Triangle_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Circle_2& c, const Point_2& p) const
@ -2229,7 +2229,7 @@ namespace CommonKernelFunctors {
typedef typename K::Sphere_3 Sphere_3;
typedef typename K::Tetrahedron_3 Tetrahedron_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Sphere_3& s, const Point_3& p) const
@ -2252,7 +2252,7 @@ namespace CommonKernelFunctors {
typedef typename K::Circle_2 Circle_2;
typedef typename K::Triangle_2 Triangle_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Circle_2& c, const Point_2& p) const
@ -2279,7 +2279,7 @@ namespace CommonKernelFunctors {
typedef typename K::Circle_3 Circle_3;
typedef typename K::Tetrahedron_3 Tetrahedron_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Sphere_3& s, const Point_3& p) const
@ -2311,7 +2311,7 @@ namespace CommonKernelFunctors {
typedef typename K::Ray_2 Ray_2;
typedef typename K::Segment_2 Segment_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Line_2& l, const Point_2& p) const
@ -2370,7 +2370,7 @@ namespace CommonKernelFunctors {
typedef typename K::Triangle_2 Triangle_2;
typedef typename K::Circle_3 Circle_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Circle_2& c) const
@ -2413,7 +2413,7 @@ namespace CommonKernelFunctors {
typedef typename K::Triangle_3 Triangle_3;
typedef typename K::Tetrahedron_3 Tetrahedron_3;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Iso_cuboid_3& c) const
@ -2455,7 +2455,7 @@ namespace CommonKernelFunctors {
typedef typename K::Segment_2 Segment_2;
typedef typename K::Ray_2 Ray_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Line_2& l) const
@ -2477,7 +2477,7 @@ namespace CommonKernelFunctors {
typedef typename K::Segment_2 Segment_2;
typedef typename K::Ray_2 Ray_2;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
result_type
operator()( const Line_2& l) const
@ -2499,7 +2499,7 @@ namespace CommonKernelFunctors {
typedef typename K::Orientation_2 Orientation_2;
Orientation_2 o;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
Left_turn_2() {}
Left_turn_2(const Orientation_2& o_) : o(o_) {}
@ -2519,7 +2519,7 @@ namespace CommonKernelFunctors {
Orientation_2 o;
Collinear_are_ordered_along_line_2 co;
public:
typedef typename K::Bool_type result_type;
typedef typename K::Boolean result_type;
Less_rotate_ccw_2() {}
Less_rotate_ccw_2(const Orientation_2& o_,

View File

@ -36,14 +36,14 @@
CGAL_BEGIN_NAMESPACE
template < class K >
typename K::Bool_type
typename K::Boolean
operator==(const Point_2<K> &p, const Origin& o)
{
return p == Point_2<K>(o);
}
template < class K >
typename K::Bool_type
typename K::Boolean
operator!=(const Point_2<K> &p, const Origin& o)
{
return p != Point_2<K>(o);
@ -61,7 +61,7 @@ angle(const Point_2<K> &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
are_ordered_along_line(const Point_2<K> &p,
const Point_2<K> &q,
const Point_2<K> &r)
@ -71,7 +71,7 @@ are_ordered_along_line(const Point_2<K> &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
are_strictly_ordered_along_line(const Point_2<K> &p,
const Point_2<K> &q,
const Point_2<K> &r)
@ -221,7 +221,7 @@ circumcenter(const Triangle_2<K> &t)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
collinear(const Point_2<K> &p, const Point_2<K> &q, const Point_2<K> &r)
{
return CGALi::collinear(p, q, r, K());
@ -229,7 +229,7 @@ collinear(const Point_2<K> &p, const Point_2<K> &q, const Point_2<K> &r)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
collinear_are_ordered_along_line(const Point_2<K> &p,
const Point_2<K> &q,
const Point_2<K> &r)
@ -239,7 +239,7 @@ collinear_are_ordered_along_line(const Point_2<K> &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
collinear_are_strictly_ordered_along_line(const Point_2<K> &p,
const Point_2<K> &q,
const Point_2<K> &r)
@ -534,7 +534,7 @@ determinant(const Vector_2<K> &v0, const Vector_2<K> &v1)
template <class K>
inline
typename K::Bool_type
typename K::Boolean
has_larger_distance_to_point(const Point_2<K>& p,
const Point_2<K>& q,
const Point_2<K>& r)
@ -544,7 +544,7 @@ has_larger_distance_to_point(const Point_2<K>& p,
template <class K>
inline
typename K::Bool_type
typename K::Boolean
has_smaller_distance_to_point(const Point_2<K>& p,
const Point_2<K>& q,
const Point_2<K>& r)
@ -554,7 +554,7 @@ has_smaller_distance_to_point(const Point_2<K>& p,
template <class K>
inline
typename K::Bool_type
typename K::Boolean
has_smaller_signed_distance_to_line(const Line_2<K>& l,
const Point_2<K>& p,
const Point_2<K>& q)
@ -564,7 +564,7 @@ has_smaller_signed_distance_to_line(const Line_2<K>& l,
template <class K>
inline
typename K::Bool_type
typename K::Boolean
has_larger_signed_distance_to_line(const Line_2<K>& l,
const Point_2<K>& p,
const Point_2<K>& q)
@ -574,7 +574,7 @@ has_larger_signed_distance_to_line(const Line_2<K>& l,
template <class K>
inline
typename K::Bool_type
typename K::Boolean
has_larger_signed_distance_to_line(const Point_2<K>& p,
const Point_2<K>& q,
const Point_2<K>& r,
@ -585,7 +585,7 @@ has_larger_signed_distance_to_line(const Point_2<K>& p,
template <class K>
inline
typename K::Bool_type
typename K::Boolean
has_smaller_signed_distance_to_line(const Point_2<K>& p,
const Point_2<K>& q,
const Point_2<K>& r,
@ -596,7 +596,7 @@ has_smaller_signed_distance_to_line(const Point_2<K>& p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
left_turn(const Point_2<K> &p, const Point_2<K> &q, const Point_2<K> &r)
{
return CGALi::left_turn(p, q, r, K());
@ -604,7 +604,7 @@ left_turn(const Point_2<K> &p, const Point_2<K> &q, const Point_2<K> &r)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
less_x(const Point_2<K> &p, const Point_2<K> &q)
{
return CGALi::less_x(p, q, K());
@ -612,7 +612,7 @@ less_x(const Point_2<K> &p, const Point_2<K> &q)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
less_y(const Point_2<K> &p, const Point_2<K> &q)
{
return CGALi::less_y(p, q, K());
@ -620,7 +620,7 @@ less_y(const Point_2<K> &p, const Point_2<K> &q)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_xy_larger(const Point_2<K> &p, const Point_2<K> &q)
{
return CGALi::lexicographically_xy_larger(p, q, K());
@ -628,7 +628,7 @@ lexicographically_xy_larger(const Point_2<K> &p, const Point_2<K> &q)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_xy_larger_or_equal(const Point_2<K> &p, const Point_2<K> &q)
{
return CGALi::lexicographically_xy_larger_or_equal(p, q, K());
@ -636,7 +636,7 @@ lexicographically_xy_larger_or_equal(const Point_2<K> &p, const Point_2<K> &q)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_xy_smaller(const Point_2<K> &p, const Point_2<K> &q)
{
return CGALi::lexicographically_xy_smaller(p, q, K());
@ -644,7 +644,7 @@ lexicographically_xy_smaller(const Point_2<K> &p, const Point_2<K> &q)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_xy_smaller_or_equal(const Point_2<K> &p,
const Point_2<K> &q)
{
@ -653,7 +653,7 @@ lexicographically_xy_smaller_or_equal(const Point_2<K> &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_yx_smaller(const Point_2<K> &p, const Point_2<K> &q)
{
return CGALi::lexicographically_yx_smaller(p, q, K());
@ -661,7 +661,7 @@ lexicographically_yx_smaller(const Point_2<K> &p, const Point_2<K> &q)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_yx_smaller_or_equal(const Point_2<K> &p, const Point_2<K> &q)
{
return CGALi::lexicographically_yx_smaller_or_equal(p, q, K());
@ -670,7 +670,7 @@ lexicographically_yx_smaller_or_equal(const Point_2<K> &p, const Point_2<K> &q)
// FIXME : Undocumented
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_yx_larger(const Point_2<K> &p, const Point_2<K> &q)
{
return CGALi::lexicographically_yx_larger(p, q, K());
@ -679,7 +679,7 @@ lexicographically_yx_larger(const Point_2<K> &p, const Point_2<K> &q)
// FIXME : Undocumented
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_yx_larger_or_equal(const Point_2<K> &p, const Point_2<K> &q)
{
return CGALi::lexicographically_yx_larger_or_equal(p, q, K());
@ -713,73 +713,73 @@ min_vertex(const Iso_rectangle_2<K> &ir)
// They have no counter part with the kernel argument...
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator<(const Direction_2<K>& d1, const Direction_2<K>& d2)
{ return compare_angle_with_x_axis(d1, d2) == SMALLER; }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator>(const Direction_2<K>& d1, const Direction_2<K>& d2)
{ return compare_angle_with_x_axis(d1, d2) == LARGER; }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator>=(const Direction_2<K>& d1, const Direction_2<K>& d2)
{ return compare_angle_with_x_axis(d1, d2) != SMALLER; }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator<=(const Direction_2<K>& d1, const Direction_2<K>& d2)
{ return compare_angle_with_x_axis(d1, d2) != LARGER; }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator==(const Point_2<K>& p, const Point_2<K>& q)
{ return K().equal_2_object()(p, q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator!=(const Point_2<K>& p, const Point_2<K>& q)
{ return ! (p == q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator<(const Point_2<K>& p, const Point_2<K>& q)
{ return K().less_xy_2_object()(p, q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator>(const Point_2<K>& p, const Point_2<K>& q)
{ return K().less_xy_2_object()(q, p); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator<=(const Point_2<K>& p, const Point_2<K>& q)
{ return ! K().less_xy_2_object()(q, p); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator>=(const Point_2<K>& p, const Point_2<K>& q)
{ return ! K().less_xy_2_object()(p, q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator==(const Vector_2<K>& v, const Vector_2<K>& w)
{ return K().equal_2_object()(v, w); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator!=(const Vector_2<K>& v, const Vector_2<K>& w)
{ return ! (v == w); }
@ -905,7 +905,7 @@ orientation(const Vector_2<K> &u, const Vector_2<K> &v)
template <typename K>
inline
typename K::Bool_type
typename K::Boolean
right_turn(const Point_2<K> &p, const Point_2<K> &q, const Point_2<K> &r)
{
return CGALi::right_turn(p, q, r, K());
@ -961,7 +961,7 @@ squared_radius(const Point_2<K>& p, const Point_2<K>& q, const Point_2<K>& r)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
x_equal(const Point_2<K> &p, const Point_2<K> &q)
{
return CGALi::x_equal(p, q, K());
@ -969,7 +969,7 @@ x_equal(const Point_2<K> &p, const Point_2<K> &q)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
y_equal(const Point_2<K> &p, const Point_2<K> &q)
{
return CGALi::y_equal(p, q, K());

View File

@ -43,7 +43,7 @@ angle(const Point_3<K> &p, const Point_3<K> &q, const Point_3<K> &r)
template < typename K >
inline
typename K::Bool_type
typename K::Boolean
are_negative_oriented(const Point_3<K>& p, const Point_3<K>& q,
const Point_3<K>& r, const Point_3<K>& s)
{
@ -52,7 +52,7 @@ are_negative_oriented(const Point_3<K>& p, const Point_3<K>& q,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
are_ordered_along_line(const Point_3<K> &p,
const Point_3<K> &q,
const Point_3<K> &r)
@ -62,7 +62,7 @@ are_ordered_along_line(const Point_3<K> &p,
template < typename K >
inline
typename K::Bool_type
typename K::Boolean
are_positive_oriented(const Point_3<K>& p, const Point_3<K>& q,
const Point_3<K>& r, const Point_3<K>& s)
{
@ -71,7 +71,7 @@ are_positive_oriented(const Point_3<K>& p, const Point_3<K>& q,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
are_strictly_ordered_along_line(const Point_3<K> &p,
const Point_3<K> &q,
const Point_3<K> &r)
@ -234,7 +234,7 @@ circumcenter(const Triangle_3<K> &t)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
collinear(const Point_3<K> &p, const Point_3<K> &q, const Point_3<K> &r)
{
return CGALi::collinear(p, q, r, K());
@ -242,7 +242,7 @@ collinear(const Point_3<K> &p, const Point_3<K> &q, const Point_3<K> &r)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
collinear_are_ordered_along_line(const Point_3<K> &p,
const Point_3<K> &q,
const Point_3<K> &r)
@ -252,7 +252,7 @@ collinear_are_ordered_along_line(const Point_3<K> &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
collinear_are_strictly_ordered_along_line(const Point_3<K> &p,
const Point_3<K> &q,
const Point_3<K> &r)
@ -378,7 +378,7 @@ compare_xyz(const Point_3<K> &p, const Point_3<K> &q)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
coplanar(const Point_3<K> &p, const Point_3<K> &q,
const Point_3<K> &r, const Point_3<K> &s)
{
@ -445,7 +445,7 @@ equidistant_line(const Point_3<K> &p, const Point_3<K> &q, const Point_3<K> &r)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
has_larger_distance_to_point(const Point_3<K> &p,
const Point_3<K> &q,
const Point_3<K> &r)
@ -455,7 +455,7 @@ has_larger_distance_to_point(const Point_3<K> &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
has_larger_signed_distance_to_plane(const Point_3<K> &hp,
const Point_3<K> &hq,
const Point_3<K> &hr,
@ -467,7 +467,7 @@ has_larger_signed_distance_to_plane(const Point_3<K> &hp,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
has_larger_signed_distance_to_plane(const Plane_3<K> &h,
const Point_3<K> &p,
const Point_3<K> &q)
@ -477,7 +477,7 @@ has_larger_signed_distance_to_plane(const Plane_3<K> &h,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
has_smaller_distance_to_point(const Point_3<K> &p,
const Point_3<K> &q,
const Point_3<K> &r)
@ -487,7 +487,7 @@ has_smaller_distance_to_point(const Point_3<K> &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
has_smaller_signed_distance_to_plane(const Point_3<K> &hp,
const Point_3<K> &hq,
const Point_3<K> &hr,
@ -499,7 +499,7 @@ has_smaller_signed_distance_to_plane(const Point_3<K> &hp,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
has_smaller_signed_distance_to_plane(const Plane_3<K> &h,
const Point_3<K> &p,
const Point_3<K> &q)
@ -509,7 +509,7 @@ has_smaller_signed_distance_to_plane(const Plane_3<K> &h,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
less_x(const Point_3<K> &p, const Point_3<K> &q)
{
return CGALi::less_x(p, q, K());
@ -517,7 +517,7 @@ less_x(const Point_3<K> &p, const Point_3<K> &q)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
less_y(const Point_3<K> &p, const Point_3<K> &q)
{
return CGALi::less_y(p, q, K());
@ -525,7 +525,7 @@ less_y(const Point_3<K> &p, const Point_3<K> &q)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
less_z(const Point_3<K> &p, const Point_3<K> &q)
{
return CGALi::less_z(p, q, K());
@ -533,7 +533,7 @@ less_z(const Point_3<K> &p, const Point_3<K> &q)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_xyz_smaller(const Point_3<K> &p, const Point_3<K> &q)
{
return CGALi::lexicographically_xyz_smaller(p, q, K());
@ -541,7 +541,7 @@ lexicographically_xyz_smaller(const Point_3<K> &p, const Point_3<K> &q)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_xyz_smaller_or_equal(const Point_3<K> &p,
const Point_3<K> &q)
{
@ -583,182 +583,182 @@ normal(const Point_3<K> &p, const Point_3<K> &q, const Point_3<K> &r)
// FIXME TODO : what to do with the operators ?
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator==(const Point_3<K>& p, const Point_3<K>& q)
{ return K().equal_3_object()(p, q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator!=(const Point_3<K>& p, const Point_3<K>& q)
{ return ! (p == q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator==(const Point_3<K>& p, const Origin& o)
{ return K().equal_3_object()(p, Point_3<K>(o)); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator!=(const Point_3<K>& p, const Origin& o)
{ return ! (p == o); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator==(const Iso_cuboid_3<K>& p, const Iso_cuboid_3<K>& q)
{ return K().equal_3_object()(p, q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator!=(const Iso_cuboid_3<K>& p, const Iso_cuboid_3<K>& q)
{ return ! (p == q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator==(const Plane_3<K>& p, const Plane_3<K>& q)
{ return K().equal_3_object()(p, q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator!=(const Plane_3<K>& p, const Plane_3<K>& q)
{ return ! (p == q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator==(const Segment_3<K>& p, const Segment_3<K>& q)
{ return K().equal_3_object()(p, q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator!=(const Segment_3<K>& p, const Segment_3<K>& q)
{ return ! (p == q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator==(const Line_3<K>& p, const Line_3<K>& q)
{ return K().equal_3_object()(p, q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator!=(const Line_3<K>& p, const Line_3<K>& q)
{ return ! (p == q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator==(const Ray_3<K>& p, const Ray_3<K>& q)
{ return K().equal_3_object()(p, q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator!=(const Ray_3<K>& p, const Ray_3<K>& q)
{ return ! (p == q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator==(const Triangle_3<K>& p, const Triangle_3<K>& q)
{ return K().equal_3_object()(p, q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator!=(const Triangle_3<K>& p, const Triangle_3<K>& q)
{ return ! (p == q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator==(const Tetrahedron_3<K>& p, const Tetrahedron_3<K>& q)
{ return K().equal_3_object()(p, q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator!=(const Tetrahedron_3<K>& p, const Tetrahedron_3<K>& q)
{ return ! (p == q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator==(const Direction_3<K>& p, const Direction_3<K>& q)
{ return K().equal_3_object()(p, q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator!=(const Direction_3<K>& p, const Direction_3<K>& q)
{ return ! (p == q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator==(const Sphere_3<K>& p, const Sphere_3<K>& q)
{ return K().equal_3_object()(p, q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator!=(const Sphere_3<K>& p, const Sphere_3<K>& q)
{ return ! (p == q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator==(const Vector_3<K>& p, const Vector_3<K>& q)
{ return K().equal_3_object()(p, q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator!=(const Vector_3<K>& p, const Vector_3<K>& q)
{ return ! (p == q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator==(const Vector_3<K>& p, const Null_vector& o)
{ return K().equal_3_object()(p, Vector_3<K>(o)); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator!=(const Vector_3<K>& p, const Null_vector& o)
{ return ! (p == o); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator<(const Point_3<K>& p, const Point_3<K>& q)
{ return K().less_xyz_3_object()(p, q); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator>(const Point_3<K>& p, const Point_3<K>& q)
{ return K().less_xyz_3_object()(q, p); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator<=(const Point_3<K>& p, const Point_3<K>& q)
{ return ! K().less_xyz_3_object()(q, p); }
template < class K >
inline
typename K::Bool_type
typename K::Boolean
operator>=(const Point_3<K>& p, const Point_3<K>& q)
{ return ! K().less_xyz_3_object()(p, q); }
@ -1010,7 +1010,7 @@ volume(const Point_3<K> &p, const Point_3<K> &q,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
x_equal(const Point_3<K> &p, const Point_3<K> &q)
{
return CGALi::x_equal(p, q, K());
@ -1018,7 +1018,7 @@ x_equal(const Point_3<K> &p, const Point_3<K> &q)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
y_equal(const Point_3<K> &p, const Point_3<K> &q)
{
return CGALi::y_equal(p, q, K());
@ -1026,7 +1026,7 @@ y_equal(const Point_3<K> &p, const Point_3<K> &q)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
z_equal(const Point_3<K> &p, const Point_3<K> &q)
{
return CGALi::z_equal(p, q, K());

View File

@ -47,7 +47,7 @@ angle(const typename K::Point_2 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
are_ordered_along_line(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const typename K::Point_2 &r, const K& k)
@ -57,7 +57,7 @@ are_ordered_along_line(const typename K::Point_2 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
are_strictly_ordered_along_line(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const typename K::Point_2 &r,
@ -213,7 +213,7 @@ circumcenter(const typename K::Triangle_2 &t, const K& k)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
collinear(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const typename K::Point_2 &r, const K& k)
@ -223,7 +223,7 @@ collinear(const typename K::Point_2 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
collinear_are_ordered_along_line(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const typename K::Point_2 &r,
@ -234,7 +234,7 @@ collinear_are_ordered_along_line(const typename K::Point_2 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
collinear_are_strictly_ordered_along_line(
const typename K::Point_2 &p,
const typename K::Point_2 &q,
@ -537,7 +537,7 @@ determinant(const typename K::Vector_2 &v0,
template <class K>
inline
typename K::Bool_type
typename K::Boolean
has_larger_distance_to_point(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const typename K::Point_2 &r,
@ -548,7 +548,7 @@ has_larger_distance_to_point(const typename K::Point_2 &p,
template <class K>
inline
typename K::Bool_type
typename K::Boolean
has_smaller_distance_to_point(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const typename K::Point_2 &r,
@ -559,7 +559,7 @@ has_smaller_distance_to_point(const typename K::Point_2 &p,
template <class K>
inline
typename K::Bool_type
typename K::Boolean
has_smaller_signed_distance_to_line(const typename K::Line_2& l,
const typename K::Point_2& p,
const typename K::Point_2& q,
@ -570,7 +570,7 @@ has_smaller_signed_distance_to_line(const typename K::Line_2& l,
template <class K>
inline
typename K::Bool_type
typename K::Boolean
has_larger_signed_distance_to_line(const typename K::Line_2& l,
const typename K::Point_2& p,
const typename K::Point_2& q,
@ -581,7 +581,7 @@ has_larger_signed_distance_to_line(const typename K::Line_2& l,
template <class K>
inline
typename K::Bool_type
typename K::Boolean
has_larger_signed_distance_to_line(const typename K::Point_2& p,
const typename K::Point_2& q,
const typename K::Point_2& r,
@ -593,7 +593,7 @@ has_larger_signed_distance_to_line(const typename K::Point_2& p,
template <class K>
inline
typename K::Bool_type
typename K::Boolean
has_smaller_signed_distance_to_line(const typename K::Point_2& p,
const typename K::Point_2& q,
const typename K::Point_2& r,
@ -605,7 +605,7 @@ has_smaller_signed_distance_to_line(const typename K::Point_2& p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
left_turn(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const typename K::Point_2 &r, const K& k)
@ -615,7 +615,7 @@ left_turn(const typename K::Point_2 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
less_x(const typename K::Point_2 &p,
const typename K::Point_2 &q, const K& k)
{
@ -624,7 +624,7 @@ less_x(const typename K::Point_2 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
less_y(const typename K::Point_2 &p,
const typename K::Point_2 &q, const K& k)
{
@ -633,7 +633,7 @@ less_y(const typename K::Point_2 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_xy_larger(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const K& k)
@ -643,7 +643,7 @@ lexicographically_xy_larger(const typename K::Point_2 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_xy_larger_or_equal(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const K& k)
@ -653,7 +653,7 @@ lexicographically_xy_larger_or_equal(const typename K::Point_2 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_xy_smaller(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const K& k)
@ -663,7 +663,7 @@ lexicographically_xy_smaller(const typename K::Point_2 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_xy_smaller_or_equal(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const K& k)
@ -673,7 +673,7 @@ lexicographically_xy_smaller_or_equal(const typename K::Point_2 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_yx_smaller(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const K& k)
@ -683,7 +683,7 @@ lexicographically_yx_smaller(const typename K::Point_2 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_yx_smaller_or_equal(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const K& k)
@ -694,7 +694,7 @@ lexicographically_yx_smaller_or_equal(const typename K::Point_2 &p,
// FIXME : Undocumented
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_yx_larger(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const K& k)
@ -705,7 +705,7 @@ lexicographically_yx_larger(const typename K::Point_2 &p,
// FIXME : Undocumented
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_yx_larger_or_equal(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const K& k)
@ -759,7 +759,7 @@ orientation(const typename K::Vector_2 &u,
template <typename K>
inline
typename K::Bool_type
typename K::Boolean
parallel(const typename K::Line_2 &l1,
const typename K::Line_2 &l2, const K &k)
{
@ -768,7 +768,7 @@ parallel(const typename K::Line_2 &l1,
template <typename K>
inline
typename K::Bool_type
typename K::Boolean
parallel(const typename K::Ray_2 &r1,
const typename K::Ray_2 &r2, const K &k)
{
@ -777,7 +777,7 @@ parallel(const typename K::Ray_2 &r1,
template <typename K>
inline
typename K::Bool_type
typename K::Boolean
parallel(const typename K::Segment_2 &s1,
const typename K::Segment_2 &s2, const K &k)
{
@ -786,7 +786,7 @@ parallel(const typename K::Segment_2 &s1,
template <typename K>
inline
typename K::Bool_type
typename K::Boolean
right_turn(const typename K::Point_2 &p,
const typename K::Point_2 &q,
const typename K::Point_2 &r, const K &k)
@ -847,7 +847,7 @@ squared_radius(const typename K::Point_2 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
x_equal(const typename K::Point_2 &p,
const typename K::Point_2 &q, const K &k)
{
@ -856,7 +856,7 @@ x_equal(const typename K::Point_2 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
y_equal(const typename K::Point_2 &p,
const typename K::Point_2 &q, const K &k)
{

View File

@ -43,7 +43,7 @@ angle(const typename K::Point_3 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
are_ordered_along_line(const typename K::Point_3 &p,
const typename K::Point_3 &q,
const typename K::Point_3 &r, const K& k)
@ -53,7 +53,7 @@ are_ordered_along_line(const typename K::Point_3 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
are_strictly_ordered_along_line(const typename K::Point_3 &p,
const typename K::Point_3 &q,
const typename K::Point_3 &r,
@ -225,7 +225,7 @@ circumcenter(const typename K::Triangle_3 &t, const K& k)
template < class K >
inline
typename K::Bool_type
typename K::Boolean
collinear(const typename K::Point_3 &p,
const typename K::Point_3 &q,
const typename K::Point_3 &r,
@ -236,7 +236,7 @@ collinear(const typename K::Point_3 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
collinear_are_ordered_along_line(
const typename K::Point_3 &p,
const typename K::Point_3 &q,
@ -248,7 +248,7 @@ collinear_are_ordered_along_line(
template < class K >
inline
typename K::Bool_type
typename K::Boolean
collinear_are_strictly_ordered_along_line(
const typename K::Point_3 &p,
const typename K::Point_3 &q,
@ -398,7 +398,7 @@ compare_xyz(const typename K::Point_3 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
coplanar(const typename K::Point_3 &p,
const typename K::Point_3 &q,
const typename K::Point_3 &r,
@ -471,7 +471,7 @@ equidistant_line(const typename K::Point_3 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
has_smaller_distance_to_point(const typename K::Point_3 &p,
const typename K::Point_3 &q,
const typename K::Point_3 &r,
@ -482,7 +482,7 @@ has_smaller_distance_to_point(const typename K::Point_3 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
has_larger_distance_to_point(const typename K::Point_3 &p,
const typename K::Point_3 &q,
const typename K::Point_3 &r,
@ -493,7 +493,7 @@ has_larger_distance_to_point(const typename K::Point_3 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
has_larger_signed_distance_to_plane(const typename K::Plane_3 &h,
const typename K::Point_3 &p,
const typename K::Point_3 &q,
@ -504,7 +504,7 @@ has_larger_signed_distance_to_plane(const typename K::Plane_3 &h,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
has_larger_signed_distance_to_plane(const typename K::Point_3 &hp,
const typename K::Point_3 &hq,
const typename K::Point_3 &hr,
@ -517,7 +517,7 @@ has_larger_signed_distance_to_plane(const typename K::Point_3 &hp,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
has_smaller_signed_distance_to_plane(const typename K::Plane_3 &h,
const typename K::Point_3 &p,
const typename K::Point_3 &q,
@ -528,7 +528,7 @@ has_smaller_signed_distance_to_plane(const typename K::Plane_3 &h,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
has_smaller_signed_distance_to_plane(const typename K::Point_3 &hp,
const typename K::Point_3 &hq,
const typename K::Point_3 &hr,
@ -541,7 +541,7 @@ has_smaller_signed_distance_to_plane(const typename K::Point_3 &hp,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
less_x(const typename K::Point_3 &p,
const typename K::Point_3 &q,
const K &k)
@ -551,7 +551,7 @@ less_x(const typename K::Point_3 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
less_y(const typename K::Point_3 &p,
const typename K::Point_3 &q,
const K &k)
@ -561,7 +561,7 @@ less_y(const typename K::Point_3 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
less_z(const typename K::Point_3 &p,
const typename K::Point_3 &q,
const K &k)
@ -571,7 +571,7 @@ less_z(const typename K::Point_3 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_xyz_smaller(const typename K::Point_3 &p,
const typename K::Point_3 &q,
const K &k)
@ -660,7 +660,7 @@ orthogonal_vector(const typename K::Plane_3 &p, const K &k)
template <typename K>
inline
typename K::Bool_type
typename K::Boolean
parallel(const typename K::Line_3 &l1,
const typename K::Line_3 &l2, const K &k)
{
@ -669,7 +669,7 @@ parallel(const typename K::Line_3 &l1,
template <typename K>
inline
typename K::Bool_type
typename K::Boolean
parallel(const typename K::Plane_3 &h1,
const typename K::Plane_3 &h2, const K &k)
{
@ -678,7 +678,7 @@ parallel(const typename K::Plane_3 &h1,
template <typename K>
inline
typename K::Bool_type
typename K::Boolean
parallel(const typename K::Ray_3 &r1,
const typename K::Ray_3 &r2, const K &k)
{
@ -687,7 +687,7 @@ parallel(const typename K::Ray_3 &r1,
template <typename K>
inline
typename K::Bool_type
typename K::Boolean
parallel(const typename K::Segment_3 &s1,
const typename K::Segment_3 &s2, const K &k)
{
@ -792,7 +792,7 @@ volume(const typename K::Point_3 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
x_equal(const typename K::Point_3 &p,
const typename K::Point_3 &q, const K &k)
{
@ -801,7 +801,7 @@ x_equal(const typename K::Point_3 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
y_equal(const typename K::Point_3 &p,
const typename K::Point_3 &q, const K &k)
{
@ -810,7 +810,7 @@ y_equal(const typename K::Point_3 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
z_equal(const typename K::Point_3 &p,
const typename K::Point_3 &q, const K &k)
{
@ -822,7 +822,7 @@ z_equal(const typename K::Point_3 &p,
template <typename K>
inline
typename K::Bool_type
typename K::Boolean
are_negative_oriented(const typename K::Point_3 &p,
const typename K::Point_3 &q,
const typename K::Point_3 &r,
@ -833,7 +833,7 @@ are_negative_oriented(const typename K::Point_3 &p,
template <typename K>
inline
typename K::Bool_type
typename K::Boolean
are_positive_oriented(const typename K::Point_3 &p,
const typename K::Point_3 &q,
const typename K::Point_3 &r,
@ -844,7 +844,7 @@ are_positive_oriented(const typename K::Point_3 &p,
template < class K >
inline
typename K::Bool_type
typename K::Boolean
lexicographically_xyz_smaller_or_equal(const typename K::Point_3 &p,
const typename K::Point_3 &q,
const K&k)

View File

@ -251,7 +251,7 @@ class Kernel_checker
public:
typedef bool Bool_type;
typedef bool Boolean;
typedef CGAL::Sign Sign;
typedef CGAL::Comparison_result Comparison_result;
typedef CGAL::Orientation Orientation;

View File

@ -143,19 +143,19 @@ public:
return R().construct_projected_point_2_object()(*this,p);
}
typename R::Bool_type
typename R::Boolean
is_horizontal() const
{
return R().is_horizontal_2_object()(*this);
}
typename R::Bool_type
typename R::Boolean
is_vertical() const
{
return R().is_vertical_2_object()(*this);
}
typename R::Bool_type
typename R::Boolean
is_degenerate() const
{ return R().is_degenerate_2_object()(*this); }
@ -165,25 +165,25 @@ public:
return R().oriented_side_2_object()(*this,p);
}
typename R::Bool_type
typename R::Boolean
has_on_boundary(const Point_2 &p) const
{
return oriented_side(p) == ON_ORIENTED_BOUNDARY;
}
typename R::Bool_type
typename R::Boolean
has_on_positive_side(const Point_2 &p) const
{
return oriented_side(p) == ON_POSITIVE_SIDE;
}
typename R::Bool_type
typename R::Boolean
has_on_negative_side(const Point_2 &p) const
{
return oriented_side(p) == ON_NEGATIVE_SIDE;
}
typename R::Bool_type
typename R::Boolean
has_on(const Point_2 &p) const
{
return has_on_boundary(p);
@ -213,13 +213,13 @@ public:
return R().construct_point_2_object()(*this,i);
}
typename R::Bool_type
typename R::Boolean
operator==(const Line_2 &l) const
{
return R().equal_2_object()(*this, l);
}
typename R::Bool_type
typename R::Boolean
operator!=(const Line_2 &l) const
{
return !(*this == l);

View File

@ -125,26 +125,26 @@ public:
return R().oriented_side_3_object()(*this, p);
}
typename R::Bool_type
typename R::Boolean
has_on_boundary(const Point_3 &p) const
{
return R().has_on_boundary_3_object()(*this, p);
//return bounded_side(p) == ON_BOUNDARY;
}
typename R::Bool_type
typename R::Boolean
has_on_bounded_side(const Point_3 &p) const
{
return bounded_side(p) == ON_BOUNDED_SIDE;
}
typename R::Bool_type
typename R::Boolean
has_on_unbounded_side(const Point_3 &p) const
{
return bounded_side(p) == ON_UNBOUNDED_SIDE;
}
typename R::Bool_type
typename R::Boolean
has_on_negative_side(const Point_3 &p) const
{
if (orientation() == COUNTERCLOCKWISE)
@ -152,7 +152,7 @@ public:
return has_on_bounded_side(p);
}
typename R::Bool_type
typename R::Boolean
has_on_positive_side(const Point_3 &p) const
{
if (orientation() == COUNTERCLOCKWISE)
@ -160,7 +160,7 @@ public:
return has_on_unbounded_side(p);
}
typename R::Bool_type
typename R::Boolean
is_degenerate() const
{
return R().is_degenerate_3_object()(*this);

View File

@ -94,13 +94,13 @@ public:
return R().oriented_side_2_object()(*this,p);
}
typename R::Bool_type
typename R::Boolean
operator==(const Triangle_2 &t) const
{
return R().equal_2_object()(*this,t);
}
typename R::Bool_type
typename R::Boolean
operator!=(const Triangle_2 &t) const
{
return !(*this == t);
@ -118,37 +118,37 @@ public:
return vertex(i);
}
typename R::Bool_type
typename R::Boolean
has_on_bounded_side(const Point_2 &p) const
{
return bounded_side(p) == ON_BOUNDED_SIDE;
}
typename R::Bool_type
typename R::Boolean
has_on_unbounded_side(const Point_2 &p) const
{
return bounded_side(p) == ON_UNBOUNDED_SIDE;
}
typename R::Bool_type
typename R::Boolean
has_on_boundary(const Point_2 &p) const
{
return bounded_side(p) == ON_BOUNDARY;
}
typename R::Bool_type
typename R::Boolean
has_on_negative_side(const Point_2 &p) const
{
return oriented_side(p) == ON_NEGATIVE_SIDE;
}
typename R::Bool_type
typename R::Boolean
has_on_positive_side(const Point_2 &p) const
{
return oriented_side(p) == ON_POSITIVE_SIDE;
}
typename R::Bool_type
typename R::Boolean
is_degenerate() const
{
return R().collinear_2_object()(vertex(0), vertex(1), vertex(2));

View File

@ -37,8 +37,8 @@ class Are_parallel_C2
public:
typedef typename K::Site_2 Site_2;
typedef typename K::Bool_type Bool_type;
typedef Bool_type result_type;
typedef typename K::Boolean Boolean;
typedef Boolean result_type;
typedef Site_2 argument_type;
private:
@ -46,7 +46,7 @@ private:
typedef typename K::FT FT;
private:
Bool_type predicate(const Site_2& p, const Site_2& q) const {
Boolean predicate(const Site_2& p, const Site_2& q) const {
CGAL_precondition( p.is_segment() && q.is_segment() );
Segment_2 s1 = p.segment();

View File

@ -36,20 +36,20 @@ private:
typedef typename K::Site_2 Site_2;
typedef typename K::Compare_x_2 Compare_x_2;
typedef typename K::Compare_y_2 Compare_y_2;
typedef typename K::Bool_type Bool_type;
typedef typename K::Boolean Boolean;
typedef typename K::Intersections_tag ITag;
Compare_x_2 compare_x_2;
Compare_y_2 compare_y_2;
Bool_type are_same(const Point_2& p, const Point_2& q) const
Boolean are_same(const Point_2& p, const Point_2& q) const
{
return
compare_x_2(p, q) == EQUAL && compare_y_2(p, q) == EQUAL;
}
Bool_type are_same(const Site_2& s, const Site_2& t) const
Boolean are_same(const Site_2& s, const Site_2& t) const
{
return
( are_same(s.source(), t.source()) &&
@ -58,12 +58,12 @@ private:
are_same(s.target(), t.source()) );
}
Bool_type predicate(const Site_2& p, const Site_2& q, const Tag_false&) const
Boolean predicate(const Site_2& p, const Site_2& q, const Tag_false&) const
{
return are_same(p.point(), q.point());
}
Bool_type predicate(const Site_2& p, const Site_2& q, const Tag_true&) const
Boolean predicate(const Site_2& p, const Site_2& q, const Tag_true&) const
{
if ( !p.is_input() && !q.is_input() ) {
Site_2 s[2] = { p.supporting_site(0), p.supporting_site(1) };
@ -79,10 +79,10 @@ private:
}
public:
typedef Bool_type result_type;
typedef Boolean result_type;
typedef Site_2 argument_type;
Bool_type operator()(const Site_2& p, const Site_2& q) const
Boolean operator()(const Site_2& p, const Site_2& q) const
{
CGAL_precondition( p.is_point() && q.is_point() );

View File

@ -60,7 +60,7 @@ private:
typedef typename Base::Comparison_result Comparison_result;
typedef typename Base::Oriented_side Oriented_side;
typedef typename Base::Sign Sign;
typedef typename Base::Bool_type Bool_type;
typedef typename Base::Boolean Boolean;
typedef typename K::Orientation_2 Orientation_2;
@ -285,7 +285,7 @@ private:
}
Bool_type inside_segment(const Site_2& s, const Site_2& p) const
Boolean inside_segment(const Site_2& s, const Site_2& p) const
{
CGAL_precondition( s.is_segment() && p.is_point() );
@ -300,7 +300,7 @@ private:
// the point does not belong to the same line as the segment
return false;
if (! is_certain( os != ON_ORIENTED_BOUNDARY ) )
return indeterminate<Bool_type>();
return indeterminate<Boolean>();
Line_2 lp1 = compute_perpendicular(l, s.segment().source());

View File

@ -52,7 +52,7 @@ public:
typedef typename K::Comparison_result Comparison_result;
typedef typename K::Sign Sign;
typedef typename K::Orientation Orientation;
typedef typename K::Bool_type Bool_type;
typedef typename K::Boolean Boolean;
typedef CGAL::Sqrt_extension_1<RT> Sqrt_1;
typedef CGAL::Sqrt_extension_2<RT> Sqrt_2;

View File

@ -51,7 +51,7 @@ public:
typedef typename Base::Sign Sign;
typedef typename Base::Orientation Orientation;
typedef typename Base::Oriented_side Oriented_side;
typedef typename Base::Bool_type Bool_type;
typedef typename Base::Boolean Boolean;
typedef typename Base::Homogeneous_point_2 Homogeneous_point_2;
@ -71,12 +71,12 @@ private:
//--------------------------------------------------------------------
//--------------------------------------------------------------------
Bool_type
Boolean
is_interior_in_conflict_both(const Site_2& p, const Site_2& q,
const Site_2& r, const Site_2& s,
const Site_2& t, Method_tag tag) const
{
Bool_type in_conflict(false);
Boolean in_conflict(false);
if ( p.is_point() && q.is_point() ) {
in_conflict = is_interior_in_conflict_both_pp(p, q, r, s, t, tag);
@ -172,7 +172,7 @@ private:
//--------------------------------------------------------------------
Bool_type
Boolean
is_interior_in_conflict_both_ps(const Site_2& p, const Site_2& q,
const Site_2& r, const Site_2& s,
const Site_2& t, Method_tag tag) const
@ -192,7 +192,7 @@ private:
//--------------------------------------------------------------------
Bool_type
Boolean
is_interior_in_conflict_both_ps_p(const Site_2& p, const Site_2& q,
const Site_2& r, const Site_2& s,
const Site_2& t, Method_tag ) const
@ -207,7 +207,7 @@ private:
//if ( res != SMALLER ) { return true; }
if (certainly( res != SMALLER ) ) { return true; }
if (! is_certain( res != SMALLER ) ) { return indeterminate<Bool_type>(); }
if (! is_certain( res != SMALLER ) ) { return indeterminate<Boolean>(); }
Voronoi_vertex_2 vpqr(p, q, r);
Voronoi_vertex_2 vqps(q, p, s);
@ -232,7 +232,7 @@ private:
return t1.is_input();
}
Bool_type
Boolean
is_interior_in_conflict_both_ps_s(const Site_2& sp, const Site_2& sq,
const Site_2& r, const Site_2& s,
const Site_2& st, Method_tag ) const
@ -258,13 +258,13 @@ private:
Oriented_side opqr = vpqr.oriented_side(lqperp);
Oriented_side oqps = vqps.oriented_side(lqperp);
Bool_type on_different_parabola_arcs =
Boolean on_different_parabola_arcs =
((opqr == ON_NEGATIVE_SIDE) & (oqps == ON_POSITIVE_SIDE)) |
((opqr == ON_POSITIVE_SIDE) & (oqps == ON_NEGATIVE_SIDE));
//if ( !on_different_parabola_arcs ) { return true; }
if (certainly( !on_different_parabola_arcs ) ) { return true; }
if (! is_certain( !on_different_parabola_arcs ) ) { return indeterminate<Bool_type>(); }
if (! is_certain( !on_different_parabola_arcs ) ) { return indeterminate<Boolean>(); }
Site_2 t1;
if ( same_points(sp, st.source_site()) ) {
@ -336,7 +336,7 @@ private:
(o_l_qps == ON_POSITIVE_SIDE) ) )
return true;
if (! is_certain((o_l_pqr == -o_l_qps) & (o_l_pqr != ZERO)))
return indeterminate<Bool_type>();
return indeterminate<Boolean>();
//>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
//>>>>>>>>>> HERE I NEED TO CHECK THE BOUNDARY CASES <<<<<<
@ -346,11 +346,11 @@ private:
Oriented_side opqr = vpqr.oriented_side(lqperp);
Oriented_side oqps = vqps.oriented_side(lqperp);
Bool_type on_different_parabola_arcs = (opqr == -oqps) & (opqr != ZERO);
Boolean on_different_parabola_arcs = (opqr == -oqps) & (opqr != ZERO);
// if ( !on_different_parabola_arcs ) { return true; }
if (certainly( !on_different_parabola_arcs ) ) { return true; }
if (! is_certain( !on_different_parabola_arcs ) ) { return indeterminate<Bool_type>(); }
if (! is_certain( !on_different_parabola_arcs ) ) { return indeterminate<Boolean>(); }
Homogeneous_point_2 pv = projection_on_line(lq, p);
Homogeneous_point_2 hp(p);
@ -374,7 +374,7 @@ private:
//--------------------------------------------------------------------
Bool_type
Boolean
is_interior_in_conflict_both_sp(const Site_2& p, const Site_2& q,
const Site_2& r, const Site_2& s,
const Site_2& t, Method_tag tag) const
@ -640,10 +640,10 @@ private:
//------------------------------------------------------------------------
public:
typedef Bool_type result_type;
typedef Boolean result_type;
typedef Site_2 argument_type;
Bool_type operator()(const Site_2& p, const Site_2& q, const Site_2& r,
Boolean operator()(const Site_2& p, const Site_2& q, const Site_2& r,
const Site_2& s, const Site_2& t, Sign sgn) const
{
if ( sgn == POSITIVE ) {
@ -656,7 +656,7 @@ public:
}
Bool_type operator()(const Site_2& p, const Site_2& q, const Site_2& ,
Boolean operator()(const Site_2& p, const Site_2& q, const Site_2& ,
const Site_2& t, Sign sgn) const
{
if ( t.is_point() ) {
@ -679,7 +679,7 @@ public:
return ( p_is_endpoint && q_is_endpoint );
}
Bool_type operator()(const Site_2& p, const Site_2& q, const Site_2& t,
Boolean operator()(const Site_2& p, const Site_2& q, const Site_2& t,
Sign ) const
{
if ( p.is_segment() || q.is_segment()) {

View File

@ -37,11 +37,11 @@ class Infinite_edge_interior_conflict_C2
public:
typedef typename K::Site_2 Site_2;
typedef typename K::RT RT;
typedef typename K::Bool_type Bool_type;
typedef typename K::Boolean Boolean;
typedef Are_same_points_C2<K> Are_same_points_2;
typedef Are_same_segments_C2<K> Are_same_segments_2;
typedef Bool_type result_type;
typedef Boolean result_type;
struct argument_type {};
private:
@ -49,7 +49,7 @@ private:
Are_same_segments_2 same_segments;
public:
Bool_type operator()(const Site_2& q, const Site_2& s, const Site_2& r,
Boolean operator()(const Site_2& q, const Site_2& s, const Site_2& r,
const Site_2& t, Sign sgn) const
{
if ( t.is_segment() ) {

View File

@ -34,7 +34,7 @@ class Is_degenerate_edge_C2
{
public:
typedef typename K::Site_2 Site_2;
typedef typename K::Bool_type Bool_type;
typedef typename K::Boolean Boolean;
private:
typedef Voronoi_vertex_C2<K,Method_tag> Voronoi_vertex_2;
@ -50,10 +50,10 @@ private:
}
public:
typedef Bool_type result_type;
typedef Boolean result_type;
typedef Site_2 argument_type;
Bool_type operator()(const Site_2& p, const Site_2& q,
Boolean operator()(const Site_2& p, const Site_2& q,
const Site_2& r, const Site_2& s) const
{
Voronoi_vertex_2 vpqr(p, q, r);