mirror of https://github.com/CGAL/cgal
fix doc warnings
This commit is contained in:
parent
90c50f47dc
commit
4d842ab2da
|
|
@ -57,14 +57,14 @@ A vertex is created for each grid edge with a sign change, i.e., where the edge
|
|||
More specifically, the vertex position is computed via linear interpolation of
|
||||
the scalar field values evaluated at the cell corners forming the edge.
|
||||
These vertices are connected to form triangles within the cell, depending on the configuration
|
||||
of signs at the cell corners. Figure \ref Fig_IsosurfacingMCCases illustrates the configurations in 2D.
|
||||
of signs at the cell corners. Figure \cgalFigureRef{IsosurfacingMCCases} illustrates the configurations in 2D.
|
||||
In 3D, there is no less than 33 cases (not shown) \cgalCite{cgal:c-mcctci-95}.
|
||||
|
||||
\cgalFigureAnchor{Fig_IsosurfacingMCCases}
|
||||
\cgalFigureAnchor{IsosurfacingMCCases}
|
||||
<center>
|
||||
<img src="MC_cases.png" style="max-width:70%;"/>
|
||||
</center>
|
||||
\cgalFigureCaptionBegin{Fig_IsosurfacingMCCases}
|
||||
\cgalFigureCaptionBegin{IsosurfacingMCCases}
|
||||
Examples of some configurations for 2D Marching Cubes.
|
||||
\cgalFigureCaptionEnd
|
||||
|
||||
|
|
@ -84,7 +84,7 @@ MC often generates more triangles, and more skinny triangles with small or large
|
|||
depicting the mesh edges in black in addition to the shaded facets.
|
||||
|
||||
MC does not preserve the sharp features present in the isovalue of the input scalar field
|
||||
(see Figure \ref Fig_IsosurfacingMCDC).
|
||||
(see Figure \cgalFigureRef{IsosurfacingMCDC}).
|
||||
|
||||
\subsection SubSecTMC Topologically Correct Marching Cubes (TMC)
|
||||
|
||||
|
|
@ -97,11 +97,11 @@ To achieve this, the algorithm can insert additional vertices within cells.
|
|||
Furthermore, the mesh is guaranteed to be 2-manifold and watertight, as long as the isosurface
|
||||
does not intersect the domain boundaries. [and the input is 2-manifold?]
|
||||
|
||||
\cgalFigureAnchor{Fig_IsosurfacingMCTMC}
|
||||
\cgalFigureAnchor{IsosurfacingMCTMC}
|
||||
<center>
|
||||
<img src="MC_TMC.png" style="max-width:70%;"/>
|
||||
</center>
|
||||
\cgalFigureCaptionBegin{Fig_IsosurfacingMCTMC}
|
||||
\cgalFigureCaptionBegin{IsosurfacingMCTMC}
|
||||
MC vs TMC [todo]
|
||||
\cgalFigureCaptionEnd
|
||||
|
||||
|
|
@ -114,11 +114,11 @@ of the incident cells. For a uniform hexahedral grid, this results into a quadri
|
|||
On the other hand it generates fewer faces and high quality faces than Marching Cubes, in general.
|
||||
Finally, its main advantage over Marching Cubes is its ability to recover sharp creases and corners.
|
||||
|
||||
\cgalFigureAnchor{Fig_IsosurfacingMCDC}
|
||||
\cgalFigureAnchor{IsosurfacingMCDC}
|
||||
<center>
|
||||
<img src="MC_DC.png" style="max-width:70%;"/>
|
||||
</center>
|
||||
\cgalFigureCaptionBegin{Fig_IsosurfacingMCDC}
|
||||
\cgalFigureCaptionBegin{IsosurfacingMCDC}
|
||||
Comparison between a mesh of a CSG shape generated by Marching Cubes (left) and %Dual Contouring (right).
|
||||
\cgalFigureCaptionEnd
|
||||
|
||||
|
|
@ -153,13 +153,13 @@ of the output surface mesh.
|
|||
(** not guaranteed)
|
||||
|
||||
Note that the output mesh has boundaries when the isosurface intersects the domain boundaries,
|
||||
regardless of the method (see Figure \ref Fig_IsosurfacingOpen).
|
||||
regardless of the method (see Figure \cgalFigureRef{IsosurfacingOpen}).
|
||||
|
||||
\cgalFigureAnchor{Fig_IsosurfacingOpen}
|
||||
\cgalFigureAnchor{IsosurfacingOpen}
|
||||
<center>
|
||||
<img src="MC_DC_open.png" style="max-width:70%;"/>
|
||||
</center>
|
||||
\cgalFigureCaptionBegin{Fig_IsosurfacingOpen}
|
||||
\cgalFigureCaptionBegin{IsosurfacingOpen}
|
||||
Output meshes can have boundaries when the isosurface intersects the domain boundary:
|
||||
outputs of Marching Cubes (left) and %Dual Contouring (right) for an implicit sphere
|
||||
of radius 1.1 and a domain of size 2x2x2, both centered at the origin.
|
||||
|
|
@ -240,11 +240,10 @@ Both these domain models possess template parameters to allow the user to custom
|
|||
|
||||
Due to their cell-based nature, the isosurfacing algorithms are well-suited for parallel execution.
|
||||
|
||||
\cgalFigureAnchor{fig_IsosurfacingPerf}
|
||||
\cgalFigureAnchor{IsosurfacingPerf}
|
||||
<center>
|
||||
<img src="MC_DC_performance.png" style="max-width:70%;"/>
|
||||
</center>
|
||||
\cgalFigureCaptionEnd
|
||||
|
||||
\section SecIsosurfacingExamples Examples
|
||||
|
||||
|
|
@ -268,11 +267,11 @@ that enable triangulating (or not) the output, and to constrain the vertex place
|
|||
|
||||
\cgalExample{Isosurfacing_3/dual_contouring.cpp}
|
||||
|
||||
\cgalFigureAnchor{Fig_IsosurfacingDC}
|
||||
\cgalFigureAnchor{IsosurfacingDC}
|
||||
<center>
|
||||
<img src="DC.png" style="max-width:70%;"/>
|
||||
</center>
|
||||
\cgalFigureCaptionBegin{Fig_IsosurfacingDC}
|
||||
\cgalFigureCaptionBegin{IsosurfacingDC}
|
||||
Results of the %Dual Contouring algorithm: untriangulated (left column) or triangulated (right column),
|
||||
unconstrained placement (top row) or constrained placement (bottom row).
|
||||
\cgalFigureCaptionEnd
|
||||
|
|
@ -298,11 +297,11 @@ from this voxel data.
|
|||
|
||||
\cgalExample{Isosurfacing_3/contouring_inrimage.cpp}
|
||||
|
||||
\cgalFigureAnchor{Fig_IsosurfacingDC}
|
||||
\cgalFigureAnchor{IsosurfacingDCEx}
|
||||
<center>
|
||||
<img src="isosurfacing_inrimage.png" style="max-width:70%;"/>
|
||||
</center>
|
||||
\cgalFigureCaptionBegin{Fig_IsosurfacingDC}
|
||||
\cgalFigureCaptionBegin{IsosurfacingDCEx}
|
||||
Results of the Topologically Correct Marching Cubes algorithm for different isovalues (1, 2, and 2.9)
|
||||
on the skull model.
|
||||
\cgalFigureCaptionEnd
|
||||
|
|
|
|||
Loading…
Reference in New Issue