mirror of https://github.com/CGAL/cgal
mv wang.h Wang_traits.h to CGAL/Polynomial/*.h
and all functions into namespace CGALi
This commit is contained in:
parent
80c93d487c
commit
509f5904a3
|
|
@ -1,163 +0,0 @@
|
||||||
// ============================================================================
|
|
||||||
//
|
|
||||||
// Copyright (c) 2001-2006 Max-Planck-Institut Saarbruecken (Germany).
|
|
||||||
// All rights reserved.
|
|
||||||
//
|
|
||||||
// This file is part of EXACUS (http://www.mpi-inf.mpg.de/projects/EXACUS/);
|
|
||||||
// you may redistribute it under the terms of the Q Public License version 1.0.
|
|
||||||
// See the file LICENSE.QPL distributed with EXACUS.
|
|
||||||
//
|
|
||||||
// Licensees holding a valid commercial license may use this file in
|
|
||||||
// accordance with the commercial license agreement provided with the software.
|
|
||||||
//
|
|
||||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
||||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
||||||
//
|
|
||||||
// ----------------------------------------------------------------------------
|
|
||||||
//
|
|
||||||
// Library : CGAL
|
|
||||||
// File : include/CGAL/Wang_traits.h
|
|
||||||
// CGAL_release : $Name: $
|
|
||||||
// Revision : $Revision$
|
|
||||||
// Revision_date : $Date$
|
|
||||||
//
|
|
||||||
// Author(s) : Michael Hemmer <mhemmer@uni-mainz.de>
|
|
||||||
//
|
|
||||||
// ============================================================================
|
|
||||||
|
|
||||||
#ifndef CGAL_WANG_TRAITS_H
|
|
||||||
#define CGAL_WANG_TRAITS_H 1
|
|
||||||
|
|
||||||
#include <CGAL/basic.h>
|
|
||||||
|
|
||||||
/*! \file CGAL/Wang_traits.h
|
|
||||||
* \brief Definition of traits class CGAL::Wang_traits.
|
|
||||||
*/
|
|
||||||
|
|
||||||
namespace CGAL{
|
|
||||||
// fwd
|
|
||||||
template <class A, class B> class Sqrt_extension;
|
|
||||||
} //namespace CGAL
|
|
||||||
namespace CGAL {
|
|
||||||
template <class A > class Polynomial;
|
|
||||||
|
|
||||||
/*! \nosubgrouping
|
|
||||||
* \brief traits class for rational reconstrcution based on wangs
|
|
||||||
* algorithm
|
|
||||||
*
|
|
||||||
* This is experimental, and should serve as a design study, i.e.,
|
|
||||||
* It may be joint with Scalar_factor_traits.
|
|
||||||
*
|
|
||||||
* This is the default implementation of CGAL::Wang_traits.
|
|
||||||
* It is valid for scalar types beeing a EuclideanRing, e.g., Integer
|
|
||||||
*/
|
|
||||||
template <class NT_>
|
|
||||||
class Wang_traits {
|
|
||||||
public:
|
|
||||||
// the supported number type
|
|
||||||
typedef NT_ NT;
|
|
||||||
// NT is also
|
|
||||||
typedef NT Scalar;
|
|
||||||
|
|
||||||
struct Wang {
|
|
||||||
bool
|
|
||||||
operator()
|
|
||||||
(const NT& u, const Scalar& m, NT& n, Scalar& d) const {
|
|
||||||
n = d = NT(0);
|
|
||||||
return CGAL::wang(u,m,n,d);
|
|
||||||
}
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
template <class AS, class ROOT>
|
|
||||||
class Wang_traits< CGAL::Sqrt_extension<AS,ROOT> >{
|
|
||||||
typedef Wang_traits<AS> WT;
|
|
||||||
public:
|
|
||||||
// the supported number type
|
|
||||||
typedef CGAL::Sqrt_extension<AS,ROOT> NT;
|
|
||||||
// the scalar type (same as Scalar factor traits ?)
|
|
||||||
typedef typename WT::Scalar Scalar;
|
|
||||||
|
|
||||||
struct Wang {
|
|
||||||
bool
|
|
||||||
operator()
|
|
||||||
(const NT& ext, const Scalar& m, NT& n, Scalar& d) const {
|
|
||||||
typename Algebraic_structure_traits<Scalar>::Integral_division idiv;
|
|
||||||
typename WT::Wang wang;
|
|
||||||
|
|
||||||
AS a0,a1;
|
|
||||||
Scalar d0,d1;
|
|
||||||
ROOT root;
|
|
||||||
n = NT(0);
|
|
||||||
d = Scalar(0);
|
|
||||||
|
|
||||||
if(!wang(ext.a0(),m,a0,d0)) return false;
|
|
||||||
|
|
||||||
if(ext.is_extended()){
|
|
||||||
if(!wang(ext.a1(),m,a1,d1)) return false;
|
|
||||||
d = d0 * idiv(d1,CGAL::gcd(d0,d1));
|
|
||||||
a0 = a0 * idiv(d,d0);
|
|
||||||
a1 = a1 * idiv(d,d1);
|
|
||||||
n = NT(a0,a1,ext.root());
|
|
||||||
}else{
|
|
||||||
d = d0;
|
|
||||||
n = NT(a0);
|
|
||||||
}
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
template <class AS >
|
|
||||||
class Wang_traits< Polynomial<AS> >{
|
|
||||||
|
|
||||||
typedef Wang_traits<AS> WT;
|
|
||||||
public:
|
|
||||||
// the supported number type
|
|
||||||
typedef Polynomial<AS> NT;
|
|
||||||
// the scalar type (same as Scalar factor traits ?)
|
|
||||||
typedef typename WT::Scalar Scalar;
|
|
||||||
|
|
||||||
struct Wang {
|
|
||||||
bool operator()
|
|
||||||
(const NT& p, const Scalar& m, NT& result_n, Scalar& result_d) const {
|
|
||||||
typename Algebraic_structure_traits<Scalar>::Integral_division idiv;
|
|
||||||
typename Algebraic_structure_traits<Scalar>::Gcd gcd;
|
|
||||||
typename WT::Wang wang;
|
|
||||||
|
|
||||||
result_n = NT(0);
|
|
||||||
result_d = Scalar(0);
|
|
||||||
// std::cout<<"Poly "<<p<<" m "<<m<<std::endl;
|
|
||||||
const int d = p.degree();
|
|
||||||
std::vector<AS> nums(d+1);
|
|
||||||
std::vector<Scalar> denoms(d+1);
|
|
||||||
for (int i = 0; i <= d; i++) {
|
|
||||||
// bool w = wang(p[i], m, nums[i], denoms[i]);
|
|
||||||
// wang(p[i], m, nums[i], denoms[i]);
|
|
||||||
// std::cout<<i<<" "<<p[i]<<" "<<w<<std::endl;
|
|
||||||
if(!wang(p[i], m, nums[i], denoms[i])) return false;
|
|
||||||
// if(!w) return false; !!!!!!
|
|
||||||
}
|
|
||||||
|
|
||||||
// c = lcm(denoms[0], ..., denoms[d])
|
|
||||||
result_d = denoms[0];
|
|
||||||
for (int i = 1; i <= d; i++) {
|
|
||||||
result_d *= idiv(denoms[i], gcd(result_d, denoms[i]));
|
|
||||||
}
|
|
||||||
|
|
||||||
// expand each (nums[i], denoms[i]) pair to common denominator
|
|
||||||
for (int i = 0; i <= d; i++) {
|
|
||||||
nums[i] *= AS(idiv(result_d, denoms[i]));
|
|
||||||
}
|
|
||||||
result_n = NT(nums.begin(),nums.end());
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
} // namespace CGAL
|
|
||||||
|
|
||||||
#endif // CGAL_WANG_TRAITS_H
|
|
||||||
// EOF
|
|
||||||
|
|
@ -1,111 +0,0 @@
|
||||||
// ============================================================================
|
|
||||||
//
|
|
||||||
// Copyright (c) 2001-2006 Max-Planck-Institut Saarbruecken (Germany).
|
|
||||||
// All rights reserved.
|
|
||||||
//
|
|
||||||
// This file is part of EXACUS (http://www.mpi-inf.mpg.de/projects/EXACUS/);
|
|
||||||
// you may redistribute it under the terms of the Q Public License version 1.0.
|
|
||||||
// See the file LICENSE.QPL distributed with EXACUS.
|
|
||||||
//
|
|
||||||
// Licensees holding a valid commercial license may use this file in
|
|
||||||
// accordance with the commercial license agreement provided with the software.
|
|
||||||
//
|
|
||||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
||||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
||||||
//
|
|
||||||
// ----------------------------------------------------------------------------
|
|
||||||
//
|
|
||||||
// Library : CGAL
|
|
||||||
// File : include/CGAL/wang.h
|
|
||||||
// CGAL_release : $Name: $
|
|
||||||
// Revision : $Revision$
|
|
||||||
// Revision_date : $Date$
|
|
||||||
//
|
|
||||||
// Author(s) : Dominik Huelse <dominik.huelse@gmx.de>
|
|
||||||
// Michael Hemmer <hemmer@mpi-inf.mpg.de>
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// ============================================================================
|
|
||||||
|
|
||||||
/*! \file CGAL/wang.h
|
|
||||||
* \brief Wang's algorithm for Rational Reconstruction.
|
|
||||||
*/
|
|
||||||
|
|
||||||
#ifndef CGAL_WANG_H
|
|
||||||
#define CGAL_WANG_H 1
|
|
||||||
|
|
||||||
|
|
||||||
#include <cmath>
|
|
||||||
#include <CGAL/basic.h>
|
|
||||||
//#include <CGAL/number_type_utils.h>
|
|
||||||
#include <cstdlib>
|
|
||||||
|
|
||||||
namespace CGAL {
|
|
||||||
|
|
||||||
namespace CGALi{
|
|
||||||
|
|
||||||
|
|
||||||
template<typename Integer>
|
|
||||||
inline
|
|
||||||
bool wang_general(const Integer& u, const Integer& m,
|
|
||||||
Integer& n, Integer& d,
|
|
||||||
const Integer& N, const Integer& D) {
|
|
||||||
Integer r0,r1,t0,t1,q,hilf;
|
|
||||||
|
|
||||||
// std::cout<<" wang general "<<std::endl;
|
|
||||||
Integer u1 = u;
|
|
||||||
if(u1<0){
|
|
||||||
u1=u1+m;
|
|
||||||
}
|
|
||||||
CGAL_precondition(u1>=0);
|
|
||||||
CGAL_precondition((m>u) && (2*N*D<m));
|
|
||||||
r0=m;
|
|
||||||
t0=0;
|
|
||||||
r1=u1;
|
|
||||||
t1=1;
|
|
||||||
while(r1>N){
|
|
||||||
q = CGAL::div(r0,r1);
|
|
||||||
hilf=r0;
|
|
||||||
r0=r1;
|
|
||||||
r1=hilf-q*r1;
|
|
||||||
hilf=t0;
|
|
||||||
t0=t1;
|
|
||||||
t1=hilf-q*t1;
|
|
||||||
}
|
|
||||||
n=r1;
|
|
||||||
d=t1;
|
|
||||||
if(d<0){
|
|
||||||
n=-n;
|
|
||||||
d=-d;
|
|
||||||
}
|
|
||||||
|
|
||||||
if(d<=D && (CGAL::gcd(n,d))==1)
|
|
||||||
return true;
|
|
||||||
else{
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
} // wang_general
|
|
||||||
} // namespace CGALi
|
|
||||||
|
|
||||||
|
|
||||||
/*!
|
|
||||||
* \brief Wang's algorithm for Rational Reconstruction
|
|
||||||
*/
|
|
||||||
template<typename Integer>
|
|
||||||
bool wang( const Integer& u, const Integer& m,
|
|
||||||
Integer& n, Integer& d ){
|
|
||||||
|
|
||||||
typename CGAL::Algebraic_structure_traits<Integer>::Sqrt sqrt;
|
|
||||||
// set N and D to wang's default values
|
|
||||||
Integer N = sqrt(CGAL::div(m,Integer(2)));
|
|
||||||
Integer D = N-Integer(1);
|
|
||||||
|
|
||||||
return CGALi::wang_general(u, m, n, d, N, D);
|
|
||||||
|
|
||||||
}// wang
|
|
||||||
} // namespace CGAL
|
|
||||||
|
|
||||||
#endif // CGAL_WANG_H
|
|
||||||
|
|
||||||
// EOF
|
|
||||||
Loading…
Reference in New Issue