mv wang.h Wang_traits.h to CGAL/Polynomial/*.h

and all functions into namespace CGALi
This commit is contained in:
Michael Hemmer 2008-04-01 15:59:16 +00:00
parent 80c93d487c
commit 509f5904a3
2 changed files with 0 additions and 274 deletions

View File

@ -1,163 +0,0 @@
// ============================================================================
//
// Copyright (c) 2001-2006 Max-Planck-Institut Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of EXACUS (http://www.mpi-inf.mpg.de/projects/EXACUS/);
// you may redistribute it under the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with EXACUS.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// ----------------------------------------------------------------------------
//
// Library : CGAL
// File : include/CGAL/Wang_traits.h
// CGAL_release : $Name: $
// Revision : $Revision$
// Revision_date : $Date$
//
// Author(s) : Michael Hemmer <mhemmer@uni-mainz.de>
//
// ============================================================================
#ifndef CGAL_WANG_TRAITS_H
#define CGAL_WANG_TRAITS_H 1
#include <CGAL/basic.h>
/*! \file CGAL/Wang_traits.h
* \brief Definition of traits class CGAL::Wang_traits.
*/
namespace CGAL{
// fwd
template <class A, class B> class Sqrt_extension;
} //namespace CGAL
namespace CGAL {
template <class A > class Polynomial;
/*! \nosubgrouping
* \brief traits class for rational reconstrcution based on wangs
* algorithm
*
* This is experimental, and should serve as a design study, i.e.,
* It may be joint with Scalar_factor_traits.
*
* This is the default implementation of CGAL::Wang_traits.
* It is valid for scalar types beeing a EuclideanRing, e.g., Integer
*/
template <class NT_>
class Wang_traits {
public:
// the supported number type
typedef NT_ NT;
// NT is also
typedef NT Scalar;
struct Wang {
bool
operator()
(const NT& u, const Scalar& m, NT& n, Scalar& d) const {
n = d = NT(0);
return CGAL::wang(u,m,n,d);
}
};
};
template <class AS, class ROOT>
class Wang_traits< CGAL::Sqrt_extension<AS,ROOT> >{
typedef Wang_traits<AS> WT;
public:
// the supported number type
typedef CGAL::Sqrt_extension<AS,ROOT> NT;
// the scalar type (same as Scalar factor traits ?)
typedef typename WT::Scalar Scalar;
struct Wang {
bool
operator()
(const NT& ext, const Scalar& m, NT& n, Scalar& d) const {
typename Algebraic_structure_traits<Scalar>::Integral_division idiv;
typename WT::Wang wang;
AS a0,a1;
Scalar d0,d1;
ROOT root;
n = NT(0);
d = Scalar(0);
if(!wang(ext.a0(),m,a0,d0)) return false;
if(ext.is_extended()){
if(!wang(ext.a1(),m,a1,d1)) return false;
d = d0 * idiv(d1,CGAL::gcd(d0,d1));
a0 = a0 * idiv(d,d0);
a1 = a1 * idiv(d,d1);
n = NT(a0,a1,ext.root());
}else{
d = d0;
n = NT(a0);
}
return true;
}
};
};
template <class AS >
class Wang_traits< Polynomial<AS> >{
typedef Wang_traits<AS> WT;
public:
// the supported number type
typedef Polynomial<AS> NT;
// the scalar type (same as Scalar factor traits ?)
typedef typename WT::Scalar Scalar;
struct Wang {
bool operator()
(const NT& p, const Scalar& m, NT& result_n, Scalar& result_d) const {
typename Algebraic_structure_traits<Scalar>::Integral_division idiv;
typename Algebraic_structure_traits<Scalar>::Gcd gcd;
typename WT::Wang wang;
result_n = NT(0);
result_d = Scalar(0);
// std::cout<<"Poly "<<p<<" m "<<m<<std::endl;
const int d = p.degree();
std::vector<AS> nums(d+1);
std::vector<Scalar> denoms(d+1);
for (int i = 0; i <= d; i++) {
// bool w = wang(p[i], m, nums[i], denoms[i]);
// wang(p[i], m, nums[i], denoms[i]);
// std::cout<<i<<" "<<p[i]<<" "<<w<<std::endl;
if(!wang(p[i], m, nums[i], denoms[i])) return false;
// if(!w) return false; !!!!!!
}
// c = lcm(denoms[0], ..., denoms[d])
result_d = denoms[0];
for (int i = 1; i <= d; i++) {
result_d *= idiv(denoms[i], gcd(result_d, denoms[i]));
}
// expand each (nums[i], denoms[i]) pair to common denominator
for (int i = 0; i <= d; i++) {
nums[i] *= AS(idiv(result_d, denoms[i]));
}
result_n = NT(nums.begin(),nums.end());
return true;
}
};
};
} // namespace CGAL
#endif // CGAL_WANG_TRAITS_H
// EOF

View File

@ -1,111 +0,0 @@
// ============================================================================
//
// Copyright (c) 2001-2006 Max-Planck-Institut Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of EXACUS (http://www.mpi-inf.mpg.de/projects/EXACUS/);
// you may redistribute it under the terms of the Q Public License version 1.0.
// See the file LICENSE.QPL distributed with EXACUS.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// ----------------------------------------------------------------------------
//
// Library : CGAL
// File : include/CGAL/wang.h
// CGAL_release : $Name: $
// Revision : $Revision$
// Revision_date : $Date$
//
// Author(s) : Dominik Huelse <dominik.huelse@gmx.de>
// Michael Hemmer <hemmer@mpi-inf.mpg.de>
//
//
// ============================================================================
/*! \file CGAL/wang.h
* \brief Wang's algorithm for Rational Reconstruction.
*/
#ifndef CGAL_WANG_H
#define CGAL_WANG_H 1
#include <cmath>
#include <CGAL/basic.h>
//#include <CGAL/number_type_utils.h>
#include <cstdlib>
namespace CGAL {
namespace CGALi{
template<typename Integer>
inline
bool wang_general(const Integer& u, const Integer& m,
Integer& n, Integer& d,
const Integer& N, const Integer& D) {
Integer r0,r1,t0,t1,q,hilf;
// std::cout<<" wang general "<<std::endl;
Integer u1 = u;
if(u1<0){
u1=u1+m;
}
CGAL_precondition(u1>=0);
CGAL_precondition((m>u) && (2*N*D<m));
r0=m;
t0=0;
r1=u1;
t1=1;
while(r1>N){
q = CGAL::div(r0,r1);
hilf=r0;
r0=r1;
r1=hilf-q*r1;
hilf=t0;
t0=t1;
t1=hilf-q*t1;
}
n=r1;
d=t1;
if(d<0){
n=-n;
d=-d;
}
if(d<=D && (CGAL::gcd(n,d))==1)
return true;
else{
return false;
}
} // wang_general
} // namespace CGALi
/*!
* \brief Wang's algorithm for Rational Reconstruction
*/
template<typename Integer>
bool wang( const Integer& u, const Integer& m,
Integer& n, Integer& d ){
typename CGAL::Algebraic_structure_traits<Integer>::Sqrt sqrt;
// set N and D to wang's default values
Integer N = sqrt(CGAL::div(m,Integer(2)));
Integer D = N-Integer(1);
return CGALi::wang_general(u, m, n, d, N, D);
}// wang
} // namespace CGAL
#endif // CGAL_WANG_H
// EOF