mirror of https://github.com/CGAL/cgal
Updated doc
This commit is contained in:
parent
b040a513e9
commit
50b5cc984f
|
|
@ -1,4 +1,7 @@
|
||||||
\begin{ccRefConcept}{PolynomialTraits_d::PolynomialSubresultants}
|
\begin{ccRefConcept}{PolynomialTraits_d::PolynomialSubresultants}
|
||||||
|
|
||||||
|
\textbf{Note:} This functor is optional!
|
||||||
|
|
||||||
\ccDefinition
|
\ccDefinition
|
||||||
|
|
||||||
Computes the polynomial subresultant of two polynomials $p$ and $q$ of
|
Computes the polynomial subresultant of two polynomials $p$ and $q$ of
|
||||||
|
|
|
||||||
|
|
@ -1,4 +1,7 @@
|
||||||
\begin{ccRefConcept}{PolynomialTraits_d::PolynomialSubresultantsWithCofactors}
|
\begin{ccRefConcept}{PolynomialTraits_d::PolynomialSubresultantsWithCofactors}
|
||||||
|
|
||||||
|
\textbf{Note:} This functor is optional!
|
||||||
|
|
||||||
\ccDefinition
|
\ccDefinition
|
||||||
|
|
||||||
Computes the polynomial subresultant of two polynomials $p$ and $q$ of degree
|
Computes the polynomial subresultant of two polynomials $p$ and $q$ of degree
|
||||||
|
|
@ -14,7 +17,7 @@ starting with the $0$th subresultant and the corresponding cofactors.
|
||||||
|
|
||||||
A default implementation for the case that
|
A default implementation for the case that
|
||||||
\ccc{Polynomial_traits_d::Coefficient_type}
|
\ccc{Polynomial_traits_d::Coefficient_type}
|
||||||
is a model of \ccc{CGAL::Integral_division}
|
is a model of \ccc{CGAL::IntegralDomain}
|
||||||
is provided by the function \ccc{CGAL::polynomial_subresultants_with_cofactors}.
|
is provided by the function \ccc{CGAL::polynomial_subresultants_with_cofactors}.
|
||||||
|
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
|
|
|
||||||
|
|
@ -1,4 +1,7 @@
|
||||||
\begin{ccRefConcept}{PolynomialTraits_d::PrincipalSturmHabichtSequence}
|
\begin{ccRefConcept}{PolynomialTraits_d::PrincipalSturmHabichtSequence}
|
||||||
|
|
||||||
|
\textbf{Note:} This functor is optional!
|
||||||
|
|
||||||
\ccDefinition
|
\ccDefinition
|
||||||
|
|
||||||
Computes the principal leading coefficients of the Sturm-Habicht sequence
|
Computes the principal leading coefficients of the Sturm-Habicht sequence
|
||||||
|
|
@ -17,7 +20,7 @@ the polynomial~$f$.
|
||||||
|
|
||||||
A default implementation for the case that
|
A default implementation for the case that
|
||||||
\ccc{Polynomial_traits_d::Coefficient_type}
|
\ccc{Polynomial_traits_d::Coefficient_type}
|
||||||
is a model of \ccc{CGAL::Integral_domain_without_division}
|
is a model of \ccc{CGAL::IntegralDomainWithoutDivision}
|
||||||
is provided by the function \ccc{CGAL::principal_sturm_habicht_sequence}.
|
is provided by the function \ccc{CGAL::principal_sturm_habicht_sequence}.
|
||||||
|
|
||||||
\ccOperations
|
\ccOperations
|
||||||
|
|
|
||||||
|
|
@ -1,4 +1,7 @@
|
||||||
\begin{ccRefConcept}{PolynomialTraits_d::PrincipalSubresultants}
|
\begin{ccRefConcept}{PolynomialTraits_d::PrincipalSubresultants}
|
||||||
|
|
||||||
|
\textbf{Note:} This functor is optional!
|
||||||
|
|
||||||
\ccDefinition
|
\ccDefinition
|
||||||
|
|
||||||
Computes the principal subresultant of two polynomials $p$ and $q$ of
|
Computes the principal subresultant of two polynomials $p$ and $q$ of
|
||||||
|
|
@ -17,7 +20,7 @@ $\mathrm{sres}_0(p,q)$
|
||||||
|
|
||||||
A default implementation for the case that
|
A default implementation for the case that
|
||||||
\ccc{Polynomial_traits_d::Coefficient_type}
|
\ccc{Polynomial_traits_d::Coefficient_type}
|
||||||
is a model of \ccc{CGAL::Integral_domain_without_division}
|
is a model of \ccc{CGAL::IntegralDomainWithoutDivision}
|
||||||
is provided by the function \ccc{CGAL::principal_subresultants}.
|
is provided by the function \ccc{CGAL::principal_subresultants}.
|
||||||
|
|
||||||
\ccOperations
|
\ccOperations
|
||||||
|
|
|
||||||
|
|
@ -1,4 +1,7 @@
|
||||||
\begin{ccRefConcept}{PolynomialTraits_d::SturmHabichtSequence}
|
\begin{ccRefConcept}{PolynomialTraits_d::SturmHabichtSequence}
|
||||||
|
|
||||||
|
\textbf{Note:} This functor is optional!
|
||||||
|
|
||||||
\ccDefinition
|
\ccDefinition
|
||||||
|
|
||||||
Computes the Sturm-Habicht sequence
|
Computes the Sturm-Habicht sequence
|
||||||
|
|
@ -26,7 +29,7 @@ the discriminant of $f$ up to a multiple of the leading coefficient)
|
||||||
|
|
||||||
A default implementation for the case that
|
A default implementation for the case that
|
||||||
\ccc{Polynomial_traits_d::Coefficient_type}
|
\ccc{Polynomial_traits_d::Coefficient_type}
|
||||||
is a model of \ccc{CGAL::Integral_domain_without_division}
|
is a model of \ccc{CGAL::IntegralDomainWithoutDivision}
|
||||||
is provided by the function \ccc{CGAL::sturm_habicht_sequence}.
|
is provided by the function \ccc{CGAL::sturm_habicht_sequence}.
|
||||||
|
|
||||||
\ccCreationVariable{fo}
|
\ccCreationVariable{fo}
|
||||||
|
|
|
||||||
|
|
@ -1,4 +1,7 @@
|
||||||
\begin{ccRefConcept}{PolynomialTraits_d::SturmHabichtSequenceWithCofactors}
|
\begin{ccRefConcept}{PolynomialTraits_d::SturmHabichtSequenceWithCofactors}
|
||||||
|
|
||||||
|
\textbf{Note:} This functor is optional!
|
||||||
|
|
||||||
\ccDefinition
|
\ccDefinition
|
||||||
|
|
||||||
Computes the Sturm-Habicht polynomials of a polynomial $f$ of degree $n$,
|
Computes the Sturm-Habicht polynomials of a polynomial $f$ of degree $n$,
|
||||||
|
|
@ -14,7 +17,7 @@ and the corresponding cofactors.
|
||||||
|
|
||||||
A default implementation for the case that
|
A default implementation for the case that
|
||||||
\ccc{Polynomial_traits_d::Coefficient_type}
|
\ccc{Polynomial_traits_d::Coefficient_type}
|
||||||
is a model of \ccc{CGAL::Integral_division}
|
is a model of \ccc{CGAL::IntegralDomain}
|
||||||
is provided by the function \ccc{CGAL::sturm_habicht_sequence_with_cofactors}.
|
is provided by the function \ccc{CGAL::sturm_habicht_sequence_with_cofactors}.
|
||||||
|
|
||||||
Computes the Sturm-Habicht sequence of a polynomials $f$ of type
|
Computes the Sturm-Habicht sequence of a polynomials $f$ of type
|
||||||
|
|
|
||||||
|
|
@ -811,15 +811,15 @@ Computes the polynomial subresultants
|
||||||
of two polynomials, defined as in the concept
|
of two polynomials, defined as in the concept
|
||||||
\ccc{Polynomial_traits_d::PolynomialSubresultants},
|
\ccc{Polynomial_traits_d::PolynomialSubresultants},
|
||||||
if \ccc{PolynomialTraits_d::Coefficient_type}
|
if \ccc{PolynomialTraits_d::Coefficient_type}
|
||||||
is at least a model of \ccc{CGAL::Integral_domain_without_division}.
|
is at least a model of \ccc{CGAL::IntegralDomainWithoutDivision}.
|
||||||
|
|
||||||
The computation method depends on the algebraic category of
|
The computation method depends on the algebraic category of
|
||||||
\ccc{PolynomialTraits_d::Coefficient_type}.
|
\ccc{PolynomialTraits_d::Coefficient_type}.
|
||||||
if it models \ccc{CGAL::Integral_division},
|
if it models \ccc{CGAL::IntegralDomain},
|
||||||
the subresultants are computed
|
the subresultants are computed
|
||||||
by a pseudo-division approach~\cite{ducos-optimizations}.
|
by a pseudo-division approach~\cite{ducos-optimizations}.
|
||||||
If they only model a
|
If they only model a
|
||||||
\ccc{CGAL::Integral_domain_without_division}, the subresultants
|
\ccc{CGAL::IntegralDomainWithoutDivision}, the subresultants
|
||||||
are computed by evaluating the determinants directly, avoiding divisions
|
are computed by evaluating the determinants directly, avoiding divisions
|
||||||
completely~\cite{kerber-division}.
|
completely~\cite{kerber-division}.
|
||||||
|
|
||||||
|
|
@ -846,7 +846,7 @@ Computes the polynomial subresultants
|
||||||
of two polynomials and their cofactors, defined as in the concept
|
of two polynomials and their cofactors, defined as in the concept
|
||||||
\ccc{Polynomial_traits_d::PolynomialSubresultantsWithCofactors},
|
\ccc{Polynomial_traits_d::PolynomialSubresultantsWithCofactors},
|
||||||
if \ccc{PolynomialTraits_d::Coefficient_type}
|
if \ccc{PolynomialTraits_d::Coefficient_type}
|
||||||
is at least a model of \ccc{CGAL::Integral_division}.
|
is at least a model of \ccc{CGAL::IntegralDomain}.
|
||||||
|
|
||||||
\ccOperations
|
\ccOperations
|
||||||
\ccFunction{template<typename Polynomial_traits_d,
|
\ccFunction{template<typename Polynomial_traits_d,
|
||||||
|
|
@ -879,7 +879,7 @@ Computes the principal subresultants
|
||||||
of two polynomials, defined as in the concept
|
of two polynomials, defined as in the concept
|
||||||
\ccc{Polynomial_traits_d::PrincipalSubresultants},
|
\ccc{Polynomial_traits_d::PrincipalSubresultants},
|
||||||
if \ccc{PolynomialTraits_d::Coefficient_type}
|
if \ccc{PolynomialTraits_d::Coefficient_type}
|
||||||
is at least a model of \ccc{CGAL::Integral_domain_without_division}.
|
is at least a model of \ccc{CGAL::IntegralDomainWithoutDivision}.
|
||||||
|
|
||||||
\ccOperations
|
\ccOperations
|
||||||
\ccFunction{template<typename Polynomial_traits_d,typename OutputIterator>
|
\ccFunction{template<typename Polynomial_traits_d,typename OutputIterator>
|
||||||
|
|
@ -904,7 +904,7 @@ Computes the Sturm-Habicht-polynomials
|
||||||
of a polynomial, defined as in the concept
|
of a polynomial, defined as in the concept
|
||||||
\ccc{Polynomial_traits_d::SturmHabichtSequence},
|
\ccc{Polynomial_traits_d::SturmHabichtSequence},
|
||||||
if \ccc{PolynomialTraits_d::Coefficient_type}
|
if \ccc{PolynomialTraits_d::Coefficient_type}
|
||||||
is at least a model of \ccc{CGAL::Integral_domain_without_division}.
|
is at least a model of \ccc{CGAL::IntegralDomainWithoutDivision}.
|
||||||
|
|
||||||
The computation works simply by calling \ccc{CGAL::polynomial_subresultants},
|
The computation works simply by calling \ccc{CGAL::polynomial_subresultants},
|
||||||
and adjusting the signs.
|
and adjusting the signs.
|
||||||
|
|
@ -931,7 +931,7 @@ Computes the Sturm-Habicht-sequence of a polynomial
|
||||||
and its cofactors, defined as in the concept
|
and its cofactors, defined as in the concept
|
||||||
\ccc{Polynomial_traits_d::SturmHabichtSequenceWithCofactors},
|
\ccc{Polynomial_traits_d::SturmHabichtSequenceWithCofactors},
|
||||||
if \ccc{PolynomialTraits_d::Coefficient_type}
|
if \ccc{PolynomialTraits_d::Coefficient_type}
|
||||||
is at least a model of \ccc{CGAL::Integral_division}.
|
is at least a model of \ccc{CGAL::IntegralDomain}.
|
||||||
|
|
||||||
\ccOperations
|
\ccOperations
|
||||||
\ccFunction{template<typename Polynomial_traits_d,
|
\ccFunction{template<typename Polynomial_traits_d,
|
||||||
|
|
@ -964,7 +964,7 @@ Computes the principal Sturm-Habicht coefficients
|
||||||
of a polynomial, defined as in the concept
|
of a polynomial, defined as in the concept
|
||||||
\ccc{Polynomial_traits_d::PrincipalSturmHabichtSequence},
|
\ccc{Polynomial_traits_d::PrincipalSturmHabichtSequence},
|
||||||
if \ccc{PolynomialTraits_d::Coefficient_type}
|
if \ccc{PolynomialTraits_d::Coefficient_type}
|
||||||
is at least a model of \ccc{CGAL::Integral_domain_without_division}.
|
is at least a model of \ccc{CGAL::IntegralDomainWithoutDivision}.
|
||||||
|
|
||||||
\ccOperations
|
\ccOperations
|
||||||
\ccFunction{ template <typename Polynomial_traits_d,typename OutputIterator> inline
|
\ccFunction{ template <typename Polynomial_traits_d,typename OutputIterator> inline
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue