mirror of https://github.com/CGAL/cgal
Separate training in another class
This commit is contained in:
parent
b79d8092f3
commit
5154cd5e29
Binary file not shown.
|
|
@ -0,0 +1,507 @@
|
|||
// Copyright (c) 2017 GeometryFactory Sarl (France).
|
||||
// All rights reserved.
|
||||
//
|
||||
// This file is part of CGAL (www.cgal.org).
|
||||
// You can redistribute it and/or modify it under the terms of the GNU
|
||||
// General Public License as published by the Free Software Foundation,
|
||||
// either version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Licensees holding a valid commercial license may use this file in
|
||||
// accordance with the commercial license agreement provided with the software.
|
||||
//
|
||||
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||||
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||||
//
|
||||
// $URL$
|
||||
// $Id$
|
||||
//
|
||||
// Author(s) : Simon Giraudot
|
||||
|
||||
#ifndef CGAL_CLASSIFICATION_TRAINER_H
|
||||
#define CGAL_CLASSIFICATION_TRAINER_H
|
||||
|
||||
#include <CGAL/Classification/Attribute_base.h>
|
||||
#include <CGAL/Classification/Type.h>
|
||||
#include <CGAL/Classifier.h>
|
||||
|
||||
//#define CGAL_CLASSTRAINING_VERBOSE
|
||||
#if defined(CGAL_CLASSTRAINING_VERBOSE)
|
||||
#define CGAL_CLASSTRAINING_CERR std::cerr
|
||||
#else
|
||||
#define CGAL_CLASSTRAINING_CERR std::ostream(0)
|
||||
#endif
|
||||
|
||||
namespace CGAL {
|
||||
|
||||
namespace Classification {
|
||||
|
||||
template <typename ItemRange, typename ItemMap>
|
||||
class Trainer
|
||||
{
|
||||
|
||||
public:
|
||||
typedef CGAL::Classifier<ItemRange, ItemMap> Classifier;
|
||||
typedef typename Classification::Type_handle Type_handle;
|
||||
typedef typename Classification::Attribute_handle Attribute_handle;
|
||||
|
||||
private:
|
||||
Classifier* m_classifier;
|
||||
std::vector<std::vector<std::size_t> > m_training_sets;
|
||||
|
||||
public:
|
||||
|
||||
Trainer (Classifier& classifier)
|
||||
: m_classifier (&classifier)
|
||||
, m_training_sets (classifier.number_of_classification_types())
|
||||
{
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief Adds the item at position `index` as an inlier of
|
||||
`class_type` for the training algorithm.
|
||||
|
||||
\note This inlier is only used for training. There is no guarantee
|
||||
that the item at position `index` will be classified as `class_type`
|
||||
after calling `run()`, `run_with_local_smoothing()` or
|
||||
`run_with_graphcut()`.
|
||||
|
||||
\return `true` if the inlier was correctly added, `false`
|
||||
otherwise (if `class_type` was not found).
|
||||
*/
|
||||
bool set_inlier (Type_handle class_type, std::size_t index)
|
||||
{
|
||||
std::size_t type_idx = (std::size_t)(-1);
|
||||
for (std::size_t i = 0; i < m_classifier->number_of_classification_types(); ++ i)
|
||||
if (m_classifier->classification_type(i) == class_type)
|
||||
{
|
||||
type_idx = i;
|
||||
break;
|
||||
}
|
||||
if (type_idx == (std::size_t)(-1))
|
||||
return false;
|
||||
|
||||
if (type_idx >= m_training_sets.size())
|
||||
m_training_sets.resize (type_idx - 1);
|
||||
|
||||
m_training_sets[type_idx].push_back (index);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*!
|
||||
|
||||
\brief Adds the items at positions `indices` as inliers of
|
||||
`class_type` for the training algorithm.
|
||||
|
||||
\note These inliers are only used for training. There is no
|
||||
guarantee that the items at positions `indices` will be classified
|
||||
as `class_type` after calling `run()`,
|
||||
`run_with_local_smoothing()` or `run_with_graphcut()`.
|
||||
|
||||
\tparam IndexRange range of `std::size_t`, model of `ConstRange`.
|
||||
*/
|
||||
template <class IndexRange>
|
||||
bool set_inliers (Type_handle class_type,
|
||||
IndexRange indices)
|
||||
{
|
||||
std::size_t type_idx = (std::size_t)(-1);
|
||||
for (std::size_t i = 0; i < m_classifier->number_of_classification_types(); ++ i)
|
||||
if (m_classifier->classification_type(i) == class_type)
|
||||
{
|
||||
type_idx = i;
|
||||
break;
|
||||
}
|
||||
if (type_idx == (std::size_t)(-1))
|
||||
return false;
|
||||
|
||||
if (type_idx >= m_training_sets.size())
|
||||
m_training_sets.resize (type_idx - 1);
|
||||
|
||||
std::copy (indices.begin(), indices.end(), std::back_inserter (m_training_sets[type_idx]));
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief Resets inlier sets used for training.
|
||||
*/
|
||||
void reset_inlier_sets()
|
||||
{
|
||||
std::vector<std::vector<std::size_t > >().swap (m_training_sets);
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief Runs the training algorithm.
|
||||
|
||||
All the `Classification::Type` and `Classification::Attribute`
|
||||
necessary for classification should have been added before running
|
||||
this function. Each classification type must have ben given a small set
|
||||
of user-defined inliers to provide the training algorithm with a
|
||||
ground truth (see `set_inlier()` and `set_inliers()`).
|
||||
|
||||
This methods estimates the set of attribute weights and of
|
||||
[effects](@ref Classification::Attribute::Effect) that make the
|
||||
classifier succeed in correctly classifying the sets of inliers
|
||||
given by the user. These parameters are directly modified within
|
||||
the `Classification::Attribute_base` and `Classification::Type`
|
||||
objects. After training, the user can call `run()`,
|
||||
`run_with_local_smoothing()` or `run_with_graphcut()` to compute
|
||||
the classification using the estimated parameters.
|
||||
|
||||
\param nb_tests number of tests to perform. Higher values may
|
||||
provide the user with better results at the cost of a higher
|
||||
computation time. Using a value of at least 10 times the number of
|
||||
attributes is advised.
|
||||
|
||||
\return minimum ratio (over all classification types) of provided
|
||||
ground truth items correctly classified using the best
|
||||
configuration found.
|
||||
*/
|
||||
|
||||
double train (std::size_t nb_tests = 300)
|
||||
{
|
||||
if (m_training_sets.empty())
|
||||
return 0.;
|
||||
|
||||
for (std::size_t i = 0; i < m_classifier->number_of_classification_types(); ++ i)
|
||||
if (m_training_sets.size() <= i || m_training_sets[i].empty())
|
||||
std::cerr << "WARNING: \"" << m_classifier->classification_type(i)->name() << "\" doesn't have a training set." << std::endl;
|
||||
|
||||
std::vector<double> best_weights (m_classifier->number_of_attributes(), 1.);
|
||||
|
||||
struct Attribute_training
|
||||
{
|
||||
bool skipped;
|
||||
double wmin;
|
||||
double wmax;
|
||||
double factor;
|
||||
};
|
||||
std::vector<Attribute_training> att_train;
|
||||
std::size_t nb_trials = 100;
|
||||
double wmin = 1e-5, wmax = 1e5;
|
||||
double factor = std::pow (wmax/wmin, 1. / (double)nb_trials);
|
||||
std::size_t att_used = 0;
|
||||
for (std::size_t j = 0; j < m_classifier->number_of_attributes(); ++ j)
|
||||
{
|
||||
Attribute_handle att = m_classifier->attribute(j);
|
||||
best_weights[j] = att->weight();
|
||||
|
||||
std::size_t nb_useful = 0;
|
||||
double min = (std::numeric_limits<double>::max)();
|
||||
double max = -(std::numeric_limits<double>::max)();
|
||||
|
||||
att->set_weight(wmin);
|
||||
for (std::size_t i = 0; i < 100; ++ i)
|
||||
{
|
||||
estimate_attribute_effect(att);
|
||||
if (attribute_useful(att))
|
||||
{
|
||||
CGAL_CLASSTRAINING_CERR << "#";
|
||||
nb_useful ++;
|
||||
min = (std::min) (min, att->weight());
|
||||
max = (std::max) (max, att->weight());
|
||||
}
|
||||
else
|
||||
CGAL_CLASSTRAINING_CERR << "-";
|
||||
att->set_weight(factor * att->weight());
|
||||
}
|
||||
CGAL_CLASSTRAINING_CERR << std::endl;
|
||||
CGAL_CLASSTRAINING_CERR << att->name() << " useful in "
|
||||
<< nb_useful << "% of the cases, in interval [ "
|
||||
<< min << " ; " << max << " ]" << std::endl;
|
||||
att_train.push_back (Attribute_training());
|
||||
att_train.back().skipped = false;
|
||||
att_train.back().wmin = min / factor;
|
||||
att_train.back().wmax = max * factor;
|
||||
if (nb_useful < 2)
|
||||
{
|
||||
att_train.back().skipped = true;
|
||||
att->set_weight(0.);
|
||||
best_weights[j] = att->weight();
|
||||
}
|
||||
else if (best_weights[j] == 1.)
|
||||
{
|
||||
att->set_weight(0.5 * (att_train.back().wmin + att_train.back().wmax));
|
||||
best_weights[j] = att->weight();
|
||||
++ att_used;
|
||||
}
|
||||
else
|
||||
{
|
||||
att->set_weight(best_weights[j]);
|
||||
++ att_used;
|
||||
}
|
||||
estimate_attribute_effect(att);
|
||||
}
|
||||
|
||||
std::size_t nb_trials_per_attribute = 1 + (std::size_t)(nb_tests / (double)(att_used));
|
||||
CGAL_CLASSIFICATION_CERR << "Trials = " << nb_tests << ", attributes = " << att_used
|
||||
<< ", trials per att = " << nb_trials_per_attribute << std::endl;
|
||||
for (std::size_t i = 0; i < att_train.size(); ++ i)
|
||||
if (!(att_train[i].skipped))
|
||||
att_train[i].factor = std::pow (att_train[i].wmax / att_train[i].wmin,
|
||||
1. / (double)nb_trials_per_attribute);
|
||||
|
||||
|
||||
double best_score = compute_worst_score(0.);
|
||||
double best_confidence = compute_worst_confidence(0.);
|
||||
|
||||
CGAL_CLASSIFICATION_CERR << "TRAINING GLOBALLY: Best score evolution: " << std::endl;
|
||||
|
||||
CGAL_CLASSIFICATION_CERR << 100. * best_score << "% (found at initialization)" << std::endl;
|
||||
|
||||
std::size_t current_att_changed = 0;
|
||||
for (std::size_t i = 0; i < att_used; ++ i)
|
||||
{
|
||||
while (att_train[current_att_changed].skipped)
|
||||
{
|
||||
++ current_att_changed;
|
||||
if (current_att_changed == m_classifier->number_of_attributes())
|
||||
current_att_changed = 0;
|
||||
}
|
||||
|
||||
std::size_t nb_used = 0;
|
||||
for (std::size_t j = 0; j < m_classifier->number_of_attributes(); ++ j)
|
||||
{
|
||||
if (j == current_att_changed)
|
||||
continue;
|
||||
|
||||
m_classifier->attribute(j)->set_weight(best_weights[j]);
|
||||
estimate_attribute_effect(m_classifier->attribute(j));
|
||||
if (attribute_useful(m_classifier->attribute(j)))
|
||||
nb_used ++;
|
||||
}
|
||||
Attribute_handle current_att = m_classifier->attribute(current_att_changed);
|
||||
const Attribute_training& tr = att_train[current_att_changed];
|
||||
|
||||
current_att->set_weight(tr.wmin);
|
||||
for (std::size_t j = 0; j < nb_trials_per_attribute; ++ j)
|
||||
{
|
||||
estimate_attribute_effect(current_att);
|
||||
|
||||
double worst_confidence = compute_worst_confidence(best_confidence);
|
||||
|
||||
double worst_score = compute_worst_score(best_score);
|
||||
|
||||
if (worst_score > best_score
|
||||
&& worst_confidence > best_confidence)
|
||||
{
|
||||
best_score = worst_score;
|
||||
best_confidence = worst_confidence;
|
||||
CGAL_CLASSIFICATION_CERR << 100. * best_score << "% (found at iteration "
|
||||
<< (i * nb_trials_per_attribute) + j << "/" << nb_tests << ", "
|
||||
<< nb_used + (attribute_useful(current_att) ? 1 : 0)
|
||||
<< "/" << m_classifier->number_of_attributes() << " attribute(s) used)" << std::endl;
|
||||
for (std::size_t k = 0; k < m_classifier->number_of_attributes(); ++ k)
|
||||
{
|
||||
Attribute_handle att = m_classifier->attribute(k);
|
||||
best_weights[k] = att->weight();
|
||||
}
|
||||
}
|
||||
|
||||
current_att->set_weight(current_att->weight() * tr.factor);
|
||||
}
|
||||
|
||||
++ current_att_changed;
|
||||
}
|
||||
|
||||
for (std::size_t i = 0; i < best_weights.size(); ++ i)
|
||||
{
|
||||
Attribute_handle att = m_classifier->attribute(i);
|
||||
att->set_weight(best_weights[i]);
|
||||
}
|
||||
|
||||
estimate_attributes_effects();
|
||||
|
||||
CGAL_CLASSIFICATION_CERR << std::endl << "Best score found is at least " << 100. * best_score
|
||||
<< "% of correct classification" << std::endl;
|
||||
|
||||
std::size_t nb_removed = 0;
|
||||
for (std::size_t i = 0; i < best_weights.size(); ++ i)
|
||||
{
|
||||
Attribute_handle att = m_classifier->attribute(i);
|
||||
CGAL_CLASSTRAINING_CERR << "ATTRIBUTE " << att->name() << ": " << best_weights[i] << std::endl;
|
||||
att->set_weight(best_weights[i]);
|
||||
|
||||
Classification::Attribute::Effect side = m_classifier->classification_type(0)->attribute_effect(att);
|
||||
bool to_remove = true;
|
||||
for (std::size_t j = 0; j < m_classifier->number_of_classification_types(); ++ j)
|
||||
{
|
||||
Type_handle ctype = m_classifier->classification_type(j);
|
||||
if (ctype->attribute_effect(att) == Classification::Attribute::FAVORING)
|
||||
CGAL_CLASSTRAINING_CERR << " * Favored for ";
|
||||
else if (ctype->attribute_effect(att) == Classification::Attribute::PENALIZING)
|
||||
CGAL_CLASSTRAINING_CERR << " * Penalized for ";
|
||||
else
|
||||
CGAL_CLASSTRAINING_CERR << " * Neutral for ";
|
||||
if (ctype->attribute_effect(att) != side)
|
||||
to_remove = false;
|
||||
CGAL_CLASSTRAINING_CERR << ctype->name() << std::endl;
|
||||
}
|
||||
if (to_remove)
|
||||
{
|
||||
CGAL_CLASSTRAINING_CERR << " -> Useless! Should be removed" << std::endl;
|
||||
++ nb_removed;
|
||||
}
|
||||
}
|
||||
CGAL_CLASSIFICATION_CERR << nb_removed
|
||||
<< " attribute(s) out of " << m_classifier->number_of_attributes() << " are useless" << std::endl;
|
||||
|
||||
return best_score;
|
||||
}
|
||||
|
||||
|
||||
/// @}
|
||||
|
||||
|
||||
/// \cond SKIP_IN_MANUAL
|
||||
Type_handle training_type_of (std::size_t index) const
|
||||
{
|
||||
// if (m_training_type.size() <= index
|
||||
// || m_training_type[index] == (std::size_t)(-1))
|
||||
return Type_handle();
|
||||
// return m_classifier->classification_type(m_training_type[index]);
|
||||
}
|
||||
|
||||
/// \endcond
|
||||
|
||||
private:
|
||||
|
||||
void estimate_attributes_effects()
|
||||
{
|
||||
for (std::size_t i = 0; i < m_classifier->number_of_attributes(); ++ i)
|
||||
estimate_attribute_effect (m_classifier->attribute(i));
|
||||
}
|
||||
|
||||
void estimate_attribute_effect (Attribute_handle att)
|
||||
{
|
||||
std::vector<double> mean (m_classifier->number_of_classification_types(), 0.);
|
||||
|
||||
for (std::size_t j = 0; j < m_classifier->number_of_classification_types(); ++ j)
|
||||
{
|
||||
for (std::size_t k = 0; k < m_training_sets[j].size(); ++ k)
|
||||
{
|
||||
double val = att->normalized(m_training_sets[j][k]);
|
||||
mean[j] += val;
|
||||
}
|
||||
mean[j] /= m_training_sets[j].size();
|
||||
}
|
||||
|
||||
std::vector<double> sd (m_classifier->number_of_classification_types(), 0.);
|
||||
|
||||
for (std::size_t j = 0; j < m_classifier->number_of_classification_types(); ++ j)
|
||||
{
|
||||
Type_handle ctype = m_classifier->classification_type(j);
|
||||
|
||||
for (std::size_t k = 0; k < m_training_sets[j].size(); ++ k)
|
||||
{
|
||||
double val = att->normalized(m_training_sets[j][k]);
|
||||
sd[j] += (val - mean[j]) * (val - mean[j]);
|
||||
}
|
||||
sd[j] = std::sqrt (sd[j] / m_training_sets[j].size());
|
||||
if (mean[j] - sd[j] > 0.5)
|
||||
ctype->set_attribute_effect (att, Classification::Attribute::FAVORING);
|
||||
else if (mean[j] + sd[j] < 0.5)
|
||||
ctype->set_attribute_effect (att, Classification::Attribute::PENALIZING);
|
||||
else
|
||||
ctype->set_attribute_effect (att, Classification::Attribute::NEUTRAL);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
double compute_worst_score (double lower_bound)
|
||||
{
|
||||
double worst_score = 1.;
|
||||
for (std::size_t j = 0; j < m_classifier->number_of_classification_types(); ++ j)
|
||||
{
|
||||
std::size_t nb_okay = 0;
|
||||
for (std::size_t k = 0; k < m_training_sets[j].size(); ++ k)
|
||||
{
|
||||
std::size_t nb_class_best=0;
|
||||
double val_class_best = (std::numeric_limits<double>::max)();
|
||||
|
||||
for(std::size_t l = 0; l < m_classifier->number_of_classification_types(); ++ l)
|
||||
{
|
||||
double value = m_classifier->classification_value (m_classifier->classification_type(l),
|
||||
m_training_sets[j][k]);
|
||||
|
||||
if(val_class_best > value)
|
||||
{
|
||||
val_class_best = value;
|
||||
nb_class_best = l;
|
||||
}
|
||||
}
|
||||
|
||||
if (nb_class_best == j)
|
||||
nb_okay ++;
|
||||
|
||||
}
|
||||
|
||||
double score = nb_okay / (double)(m_training_sets[j].size());
|
||||
if (score < worst_score)
|
||||
worst_score = score;
|
||||
if (worst_score < lower_bound)
|
||||
return worst_score;
|
||||
}
|
||||
return worst_score;
|
||||
}
|
||||
|
||||
double compute_worst_confidence (double lower_bound)
|
||||
{
|
||||
double worst_confidence = (std::numeric_limits<double>::max)();
|
||||
for (std::size_t j = 0; j < m_classifier->number_of_classification_types(); ++ j)
|
||||
{
|
||||
double confidence = 0.;
|
||||
|
||||
for (std::size_t k = 0; k < m_training_sets[j].size(); ++ k)
|
||||
{
|
||||
std::vector<std::pair<double, std::size_t> > values;
|
||||
|
||||
for(std::size_t l = 0; l < m_classifier->number_of_classification_types(); ++ l)
|
||||
values.push_back (std::make_pair (m_classifier->classification_value (m_classifier->classification_type(l),
|
||||
m_training_sets[j][k]),
|
||||
l));
|
||||
std::sort (values.begin(), values.end());
|
||||
|
||||
if (values[0].second == j)
|
||||
confidence += values[1].first - values[0].first;
|
||||
else
|
||||
{
|
||||
// for(std::size_t l = 0; l < values.size(); ++ l)
|
||||
// if (values[l].second == j)
|
||||
// {
|
||||
// confidence += values[0].first - values[l].first;
|
||||
// break;
|
||||
// }
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
confidence /= (double)(m_training_sets[j].size() * m_classifier->number_of_attributes());
|
||||
|
||||
if (confidence < worst_confidence)
|
||||
worst_confidence = confidence;
|
||||
if (worst_confidence < lower_bound)
|
||||
return worst_confidence;
|
||||
}
|
||||
return worst_confidence;
|
||||
}
|
||||
|
||||
bool attribute_useful (Attribute_handle att)
|
||||
{
|
||||
Classification::Attribute::Effect side = m_classifier->classification_type(0)->attribute_effect(att);
|
||||
for (std::size_t k = 1; k < m_classifier->number_of_classification_types(); ++ k)
|
||||
if (m_classifier->classification_type(k)->attribute_effect(att) != side)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
||||
} // namespace Classification
|
||||
|
||||
} // namespace CGAL
|
||||
|
||||
#endif // CGAL_CLASSIFICATION_TRAINER_H
|
||||
|
|
@ -50,13 +50,6 @@
|
|||
#define CGAL_CLASSIFICATION_CERR std::ostream(0)
|
||||
#endif
|
||||
|
||||
//#define CGAL_CLASSTRAINING_VERBOSE
|
||||
#if defined(CGAL_CLASSTRAINING_VERBOSE)
|
||||
#define CGAL_CLASSTRAINING_CERR std::cerr
|
||||
#else
|
||||
#define CGAL_CLASSTRAINING_CERR std::ostream(0)
|
||||
#endif
|
||||
|
||||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
|
|
@ -113,7 +106,6 @@ protected:
|
|||
ItemMap m_item_map;
|
||||
|
||||
std::vector<std::size_t> m_assigned_type;
|
||||
std::vector<std::size_t> m_training_type;
|
||||
std::vector<double> m_confidence;
|
||||
|
||||
std::vector<Type_handle> m_types;
|
||||
|
|
@ -241,6 +233,15 @@ public:
|
|||
return m_attributes.size();
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
\brief Returns the i^{th} attribute.
|
||||
*/
|
||||
Attribute_handle attribute(std::size_t i)
|
||||
{
|
||||
return m_attributes[i];
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief Removes all attributes.
|
||||
*/
|
||||
|
|
@ -249,11 +250,6 @@ public:
|
|||
m_attributes.clear();
|
||||
}
|
||||
|
||||
/// \cond SKIP_IN_MANUAL
|
||||
Attribute_handle get_attribute(std::size_t index)
|
||||
{
|
||||
return m_attributes[index];
|
||||
}
|
||||
/// \endcond
|
||||
|
||||
/// @}
|
||||
|
|
@ -306,14 +302,6 @@ public:
|
|||
else if (m_assigned_type[i] == idx)
|
||||
m_assigned_type[i] = (std::size_t)(-1);
|
||||
|
||||
for (std::size_t i = 0; i < m_training_type.size(); ++ i)
|
||||
if (m_assigned_type[i] == (std::size_t)(-1))
|
||||
continue;
|
||||
else if (m_training_type[i] > idx)
|
||||
m_training_type[i] --;
|
||||
else if (m_training_type[i] == idx)
|
||||
m_training_type[i] = (std::size_t)(-1);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
|
@ -325,12 +313,14 @@ public:
|
|||
return m_types.size();
|
||||
}
|
||||
|
||||
/// \cond SKIP_IN_MANUAL
|
||||
Type_handle get_classification_type (std::size_t index)
|
||||
/*!
|
||||
\brief Returns the i^{th} classification type.
|
||||
*/
|
||||
Type_handle classification_type (std::size_t i) const
|
||||
{
|
||||
return m_types[index];
|
||||
return m_types[i];
|
||||
}
|
||||
/// \endcond
|
||||
|
||||
|
||||
/*!
|
||||
\brief Removes all classification types.
|
||||
|
|
@ -584,326 +574,30 @@ public:
|
|||
/// @}
|
||||
|
||||
|
||||
/// \name Training
|
||||
/// @{
|
||||
|
||||
/*!
|
||||
\brief Adds the item at position `index` as an inlier of
|
||||
`class_type` for the training algorithm.
|
||||
|
||||
\note This inlier is only used for training. There is no guarantee
|
||||
that the item at position `index` will be classified as `class_type`
|
||||
after calling `run()`, `run_with_local_smoothing()` or
|
||||
`run_with_graphcut()`.
|
||||
|
||||
\return `true` if the inlier was correctly added, `false`
|
||||
otherwise (if `class_type` was not found).
|
||||
*/
|
||||
bool set_inlier (Type_handle class_type, std::size_t index)
|
||||
double classification_value (Type_handle class_type, std::size_t pt_index)
|
||||
{
|
||||
std::size_t type_idx = (std::size_t)(-1);
|
||||
for (std::size_t i = 0; i < m_types.size(); ++ i)
|
||||
if (m_types[i] == class_type)
|
||||
{
|
||||
type_idx = i;
|
||||
break;
|
||||
}
|
||||
if (type_idx == (std::size_t)(-1))
|
||||
return false;
|
||||
|
||||
if (m_training_type.empty())
|
||||
reset_inlier_sets();
|
||||
|
||||
m_training_type[index] = type_idx;
|
||||
return true;
|
||||
}
|
||||
|
||||
/*!
|
||||
|
||||
\brief Adds the items at positions `indices` as inliers of
|
||||
`class_type` for the training algorithm.
|
||||
|
||||
\note These inliers are only used for training. There is no
|
||||
guarantee that the items at positions `indices` will be classified
|
||||
as `class_type` after calling `run()`,
|
||||
`run_with_local_smoothing()` or `run_with_graphcut()`.
|
||||
|
||||
\tparam IndexRange range of `std::size_t`, model of `ConstRange`.
|
||||
*/
|
||||
template <class IndexRange>
|
||||
bool set_inliers (Type_handle class_type,
|
||||
IndexRange indices)
|
||||
{
|
||||
std::size_t type_idx = (std::size_t)(-1);
|
||||
for (std::size_t i = 0; i < m_types.size(); ++ i)
|
||||
if (m_types[i] == class_type)
|
||||
{
|
||||
type_idx = i;
|
||||
break;
|
||||
}
|
||||
if (type_idx == (std::size_t)(-1))
|
||||
return false;
|
||||
|
||||
if (m_training_type.empty())
|
||||
reset_inlier_sets();
|
||||
|
||||
for (typename IndexRange::const_iterator it = indices.begin();
|
||||
it != indices.end(); ++ it)
|
||||
m_training_type[*it] = type_idx;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief Resets inlier sets used for training.
|
||||
*/
|
||||
void reset_inlier_sets()
|
||||
{
|
||||
std::vector<std::size_t>(m_input.size(), (std::size_t)(-1)).swap (m_training_type);
|
||||
}
|
||||
|
||||
/*!
|
||||
\brief Runs the training algorithm.
|
||||
|
||||
All the `Classification::Type` and `Classification::Attribute`
|
||||
necessary for classification should have been added before running
|
||||
this function. Each classification type must have ben given a small set
|
||||
of user-defined inliers to provide the training algorithm with a
|
||||
ground truth (see `set_inlier()` and `set_inliers()`).
|
||||
|
||||
This methods estimates the set of attribute weights and of
|
||||
[effects](@ref Classification::Attribute::Effect) that make the
|
||||
classifier succeed in correctly classifying the sets of inliers
|
||||
given by the user. These parameters are directly modified within
|
||||
the `Classification::Attribute_base` and `Classification::Type`
|
||||
objects. After training, the user can call `run()`,
|
||||
`run_with_local_smoothing()` or `run_with_graphcut()` to compute
|
||||
the classification using the estimated parameters.
|
||||
|
||||
\param nb_tests number of tests to perform. Higher values may
|
||||
provide the user with better results at the cost of a higher
|
||||
computation time. Using a value of at least 10 times the number of
|
||||
attributes is advised.
|
||||
|
||||
\return minimum ratio (over all classification types) of provided
|
||||
ground truth items correctly classified using the best
|
||||
configuration found.
|
||||
*/
|
||||
|
||||
double train (std::size_t nb_tests = 300)
|
||||
{
|
||||
if (m_training_type.empty())
|
||||
return 0.;
|
||||
|
||||
std::vector<std::vector<std::size_t> > training_sets (m_types.size());
|
||||
for (std::size_t i = 0; i < m_training_type.size(); ++ i)
|
||||
if (m_training_type[i] != (std::size_t)(-1))
|
||||
training_sets[m_training_type[i]].push_back (i);
|
||||
|
||||
for (std::size_t i = 0; i < training_sets.size(); ++ i)
|
||||
if (training_sets[i].empty())
|
||||
std::cerr << "WARNING: \"" << m_types[i]->name() << "\" doesn't have a training set." << std::endl;
|
||||
|
||||
std::vector<double> best_weights (m_attributes.size(), 1.);
|
||||
|
||||
struct Attribute_training
|
||||
{
|
||||
bool skipped;
|
||||
double wmin;
|
||||
double wmax;
|
||||
double factor;
|
||||
};
|
||||
std::vector<Attribute_training> att_train;
|
||||
std::size_t nb_trials = 100;
|
||||
double wmin = 1e-5, wmax = 1e5;
|
||||
double factor = std::pow (wmax/wmin, 1. / (double)nb_trials);
|
||||
std::size_t att_used = 0;
|
||||
for (std::size_t j = 0; j < m_attributes.size(); ++ j)
|
||||
double out = 0.;
|
||||
for (std::size_t i = 0; i < m_attributes.size(); ++ i)
|
||||
{
|
||||
Attribute_handle att = m_attributes[j];
|
||||
best_weights[j] = att->weight();
|
||||
if (m_attributes[i]->weight() == 0.)
|
||||
continue;
|
||||
|
||||
std::size_t nb_useful = 0;
|
||||
double min = (std::numeric_limits<double>::max)();
|
||||
double max = -(std::numeric_limits<double>::max)();
|
||||
Attribute_effect eff = class_type->attribute_effect (m_attributes[i]);
|
||||
|
||||
att->set_weight(wmin);
|
||||
for (std::size_t i = 0; i < 100; ++ i)
|
||||
{
|
||||
estimate_attribute_effect(training_sets, att);
|
||||
if (attribute_useful(att))
|
||||
{
|
||||
CGAL_CLASSTRAINING_CERR << "#";
|
||||
nb_useful ++;
|
||||
min = (std::min) (min, att->weight());
|
||||
max = (std::max) (max, att->weight());
|
||||
}
|
||||
else
|
||||
CGAL_CLASSTRAINING_CERR << "-";
|
||||
att->set_weight(factor * att->weight());
|
||||
}
|
||||
CGAL_CLASSTRAINING_CERR << std::endl;
|
||||
CGAL_CLASSTRAINING_CERR << att->name() << " useful in "
|
||||
<< nb_useful << "% of the cases, in interval [ "
|
||||
<< min << " ; " << max << " ]" << std::endl;
|
||||
att_train.push_back (Attribute_training());
|
||||
att_train.back().skipped = false;
|
||||
att_train.back().wmin = min / factor;
|
||||
att_train.back().wmax = max * factor;
|
||||
if (nb_useful < 2)
|
||||
{
|
||||
att_train.back().skipped = true;
|
||||
att->set_weight(0.);
|
||||
best_weights[j] = att->weight();
|
||||
}
|
||||
else if (best_weights[j] == 1.)
|
||||
{
|
||||
att->set_weight(0.5 * (att_train.back().wmin + att_train.back().wmax));
|
||||
best_weights[j] = att->weight();
|
||||
++ att_used;
|
||||
}
|
||||
else
|
||||
{
|
||||
att->set_weight(best_weights[j]);
|
||||
++ att_used;
|
||||
}
|
||||
estimate_attribute_effect(training_sets, att);
|
||||
if (eff == Classification::Attribute::FAVORING)
|
||||
out += m_attributes[i]->favored (pt_index);
|
||||
else if (eff == Classification::Attribute::PENALIZING)
|
||||
out += m_attributes[i]->penalized (pt_index);
|
||||
else if (eff == Classification::Attribute::NEUTRAL)
|
||||
out += m_attributes[i]->ignored (pt_index);
|
||||
}
|
||||
|
||||
std::size_t nb_trials_per_attribute = 1 + (std::size_t)(nb_tests / (double)(att_used));
|
||||
std::cerr << "Trials = " << nb_tests << ", attributes = " << att_used
|
||||
<< ", trials per att = " << nb_trials_per_attribute << std::endl;
|
||||
for (std::size_t i = 0; i < att_train.size(); ++ i)
|
||||
if (!(att_train[i].skipped))
|
||||
att_train[i].factor = std::pow (att_train[i].wmax / att_train[i].wmin,
|
||||
1. / (double)nb_trials_per_attribute);
|
||||
|
||||
|
||||
prepare_classification();
|
||||
|
||||
double best_score = training_compute_worst_score(training_sets, 0.);
|
||||
double best_confidence = training_compute_worst_confidence(training_sets, 0.);
|
||||
|
||||
std::cerr << "TRAINING GLOBALLY: Best score evolution: " << std::endl;
|
||||
|
||||
std::cerr << 100. * best_score << "% (found at initialization)" << std::endl;
|
||||
|
||||
std::size_t current_att_changed = 0;
|
||||
for (std::size_t i = 0; i < att_used; ++ i)
|
||||
{
|
||||
while (att_train[current_att_changed].skipped)
|
||||
{
|
||||
++ current_att_changed;
|
||||
if (current_att_changed == m_attributes.size())
|
||||
current_att_changed = 0;
|
||||
}
|
||||
|
||||
std::size_t nb_used = 0;
|
||||
for (std::size_t j = 0; j < m_attributes.size(); ++ j)
|
||||
{
|
||||
if (j == current_att_changed)
|
||||
continue;
|
||||
|
||||
m_attributes[j]->set_weight(best_weights[j]);
|
||||
estimate_attribute_effect(training_sets, m_attributes[j]);
|
||||
if (attribute_useful(m_attributes[j]))
|
||||
nb_used ++;
|
||||
}
|
||||
Attribute_handle current_att = m_attributes[current_att_changed];
|
||||
const Attribute_training& tr = att_train[current_att_changed];
|
||||
|
||||
current_att->set_weight(tr.wmin);
|
||||
for (std::size_t j = 0; j < nb_trials_per_attribute; ++ j)
|
||||
{
|
||||
estimate_attribute_effect(training_sets, current_att);
|
||||
|
||||
prepare_classification();
|
||||
double worst_confidence = training_compute_worst_confidence(training_sets,
|
||||
best_confidence);
|
||||
|
||||
double worst_score = training_compute_worst_score(training_sets,
|
||||
best_score);
|
||||
|
||||
if (worst_score > best_score
|
||||
&& worst_confidence > best_confidence)
|
||||
{
|
||||
best_score = worst_score;
|
||||
best_confidence = worst_confidence;
|
||||
std::cerr << 100. * best_score << "% (found at iteration "
|
||||
<< (i * nb_trials_per_attribute) + j << "/" << nb_tests << ", "
|
||||
<< nb_used + (attribute_useful(current_att) ? 1 : 0)
|
||||
<< "/" << m_attributes.size() << " attribute(s) used)" << std::endl;
|
||||
for (std::size_t k = 0; k < m_attributes.size(); ++ k)
|
||||
{
|
||||
Attribute_handle att = m_attributes[k];
|
||||
best_weights[k] = att->weight();
|
||||
}
|
||||
}
|
||||
|
||||
current_att->set_weight(current_att->weight() * tr.factor);
|
||||
}
|
||||
|
||||
++ current_att_changed;
|
||||
}
|
||||
|
||||
for (std::size_t i = 0; i < best_weights.size(); ++ i)
|
||||
{
|
||||
Attribute_handle att = m_attributes[i];
|
||||
att->set_weight(best_weights[i]);
|
||||
}
|
||||
|
||||
estimate_attributes_effects(training_sets);
|
||||
|
||||
std::cerr << std::endl << "Best score found is at least " << 100. * best_score
|
||||
<< "% of correct classification" << std::endl;
|
||||
|
||||
std::size_t nb_removed = 0;
|
||||
for (std::size_t i = 0; i < best_weights.size(); ++ i)
|
||||
{
|
||||
Attribute_handle att = m_attributes[i];
|
||||
CGAL_CLASSTRAINING_CERR << "ATTRIBUTE " << att->name() << ": " << best_weights[i] << std::endl;
|
||||
att->set_weight(best_weights[i]);
|
||||
|
||||
Classification::Attribute::Effect side = m_types[0]->attribute_effect(att);
|
||||
bool to_remove = true;
|
||||
for (std::size_t j = 0; j < m_types.size(); ++ j)
|
||||
{
|
||||
Type_handle ctype = m_types[j];
|
||||
if (ctype->attribute_effect(att) == Classification::Attribute::FAVORING)
|
||||
CGAL_CLASSTRAINING_CERR << " * Favored for ";
|
||||
else if (ctype->attribute_effect(att) == Classification::Attribute::PENALIZING)
|
||||
CGAL_CLASSTRAINING_CERR << " * Penalized for ";
|
||||
else
|
||||
CGAL_CLASSTRAINING_CERR << " * Neutral for ";
|
||||
if (ctype->attribute_effect(att) != side)
|
||||
to_remove = false;
|
||||
CGAL_CLASSTRAINING_CERR << ctype->name() << std::endl;
|
||||
}
|
||||
if (to_remove)
|
||||
{
|
||||
CGAL_CLASSTRAINING_CERR << " -> Useless! Should be removed" << std::endl;
|
||||
++ nb_removed;
|
||||
}
|
||||
}
|
||||
std::cerr << nb_removed
|
||||
<< " attribute(s) out of " << m_attributes.size() << " are useless" << std::endl;
|
||||
|
||||
return best_score;
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
/// @}
|
||||
|
||||
protected:
|
||||
|
||||
/// \cond SKIP_IN_MANUAL
|
||||
Type_handle training_type_of (std::size_t index) const
|
||||
{
|
||||
if (m_training_type.size() <= index
|
||||
|| m_training_type[index] == (std::size_t)(-1))
|
||||
return Type_handle();
|
||||
return m_types[m_training_type[index]];
|
||||
}
|
||||
|
||||
void prepare_classification ()
|
||||
{
|
||||
// Reset data structure
|
||||
|
|
@ -920,13 +614,6 @@ public:
|
|||
|
||||
}
|
||||
|
||||
/// \endcond
|
||||
|
||||
|
||||
protected:
|
||||
|
||||
/// \cond SKIP_IN_MANUAL
|
||||
|
||||
double classification_value (const std::size_t& class_type,
|
||||
const std::size_t& pt_index) const
|
||||
{
|
||||
|
|
@ -944,142 +631,6 @@ protected:
|
|||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
void estimate_attributes_effects
|
||||
(const std::vector<std::vector<std::size_t> >& training_sets)
|
||||
{
|
||||
for (std::size_t i = 0; i < m_attributes.size(); ++ i)
|
||||
estimate_attribute_effect (training_sets, m_attributes[i]);
|
||||
}
|
||||
|
||||
void estimate_attribute_effect
|
||||
(const std::vector<std::vector<std::size_t> >& training_sets,
|
||||
Attribute_handle att)
|
||||
{
|
||||
std::vector<double> mean (m_types.size(), 0.);
|
||||
|
||||
for (std::size_t j = 0; j < m_types.size(); ++ j)
|
||||
{
|
||||
for (std::size_t k = 0; k < training_sets[j].size(); ++ k)
|
||||
{
|
||||
double val = att->normalized(training_sets[j][k]);
|
||||
mean[j] += val;
|
||||
}
|
||||
mean[j] /= training_sets[j].size();
|
||||
}
|
||||
|
||||
std::vector<double> sd (m_types.size(), 0.);
|
||||
|
||||
for (std::size_t j = 0; j < m_types.size(); ++ j)
|
||||
{
|
||||
Type_handle ctype = m_types[j];
|
||||
|
||||
for (std::size_t k = 0; k < training_sets[j].size(); ++ k)
|
||||
{
|
||||
double val = att->normalized(training_sets[j][k]);
|
||||
sd[j] += (val - mean[j]) * (val - mean[j]);
|
||||
}
|
||||
sd[j] = std::sqrt (sd[j] / training_sets[j].size());
|
||||
if (mean[j] - sd[j] > 0.5)
|
||||
ctype->set_attribute_effect (att, Classification::Attribute::FAVORING);
|
||||
else if (mean[j] + sd[j] < 0.5)
|
||||
ctype->set_attribute_effect (att, Classification::Attribute::PENALIZING);
|
||||
else
|
||||
ctype->set_attribute_effect (att, Classification::Attribute::NEUTRAL);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
double training_compute_worst_score
|
||||
(const std::vector<std::vector<std::size_t> >& training_sets,
|
||||
double lower_bound)
|
||||
{
|
||||
double worst_score = 1.;
|
||||
for (std::size_t j = 0; j < m_types.size(); ++ j)
|
||||
{
|
||||
std::size_t nb_okay = 0;
|
||||
for (std::size_t k = 0; k < training_sets[j].size(); ++ k)
|
||||
{
|
||||
std::size_t nb_class_best=0;
|
||||
double val_class_best = (std::numeric_limits<double>::max)();
|
||||
|
||||
for(std::size_t l = 0; l < m_effect_table.size(); ++ l)
|
||||
{
|
||||
double value = classification_value (l, training_sets[j][k]);
|
||||
|
||||
if(val_class_best > value)
|
||||
{
|
||||
val_class_best = value;
|
||||
nb_class_best = l;
|
||||
}
|
||||
}
|
||||
|
||||
if (nb_class_best == j)
|
||||
nb_okay ++;
|
||||
|
||||
}
|
||||
|
||||
double score = nb_okay / (double)(training_sets[j].size());
|
||||
if (score < worst_score)
|
||||
worst_score = score;
|
||||
if (worst_score < lower_bound)
|
||||
return worst_score;
|
||||
}
|
||||
return worst_score;
|
||||
}
|
||||
|
||||
double training_compute_worst_confidence
|
||||
(const std::vector<std::vector<std::size_t> >& training_sets,
|
||||
double lower_bound)
|
||||
{
|
||||
double worst_confidence = (std::numeric_limits<double>::max)();
|
||||
for (std::size_t j = 0; j < m_types.size(); ++ j)
|
||||
{
|
||||
double confidence = 0.;
|
||||
|
||||
for (std::size_t k = 0; k < training_sets[j].size(); ++ k)
|
||||
{
|
||||
std::vector<std::pair<double, std::size_t> > values;
|
||||
|
||||
for(std::size_t l = 0; l < m_effect_table.size(); ++ l)
|
||||
values.push_back (std::make_pair (classification_value (l, training_sets[j][k]),
|
||||
l));
|
||||
std::sort (values.begin(), values.end());
|
||||
|
||||
if (values[0].second == j)
|
||||
confidence += values[1].first - values[0].first;
|
||||
else
|
||||
{
|
||||
// for(std::size_t l = 0; l < values.size(); ++ l)
|
||||
// if (values[l].second == j)
|
||||
// {
|
||||
// confidence += values[0].first - values[l].first;
|
||||
// break;
|
||||
// }
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
confidence /= (double)(training_sets[j].size() * m_attributes.size());
|
||||
|
||||
if (confidence < worst_confidence)
|
||||
worst_confidence = confidence;
|
||||
if (worst_confidence < lower_bound)
|
||||
return worst_confidence;
|
||||
}
|
||||
return worst_confidence;
|
||||
}
|
||||
|
||||
bool attribute_useful (Attribute_handle att)
|
||||
{
|
||||
Classification::Attribute::Effect side = m_types[0]->attribute_effect(att);
|
||||
for (std::size_t k = 1; k < m_types.size(); ++ k)
|
||||
if (m_types[k]->attribute_effect(att) != side)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
/// \endcond
|
||||
};
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue