Merge pull request #6919 from albert-github/feature/bug_Polynomial_formula_2

Polynomial: replace images with formulas
This commit is contained in:
Laurent Rineau 2022-10-07 15:46:40 +02:00
commit 532675a007
6 changed files with 32 additions and 6 deletions

View File

@ -11,8 +11,17 @@ Let
is the outermost variable.
The \f$ i\f$-th subresultant (with \f$ i=0,\ldots,\min\{n,m\}\f$) is defined by
\image html subresultant_def.png
\image latex subresultant_def.png
\f[
\mathrm{Sres}_{i}(p,q) = \det
\begin{pmatrix}
p_{n} & \dots & & \dots & p_{2i-m+2} & x^{m-i-1}p \\
& \ddots & & & \vdots & \vdots\\
& & p_{n} & \dots & p_{i+1} & p \\
q_{m} & \dots & & \dots & q_{2i-n+2} & x^{n-i-1}q \\
& \ddots & & & \vdots & \vdots\\
& & q_{m} & \dots & q_{i+1} & q
\end{pmatrix}
\f]
where \f$ p_i\f$ and \f$ q_i\f$ are set to zero if \f$ i<0\f$.
In the case that \f$ n=m\f$, \f$ \mathrm{Sres_n}\f$ is set to \f$ q\f$.

View File

@ -17,8 +17,18 @@ where
\f[ g = g_nx^n + \dots + g_0. \f]
The resultant of \f$ f\f$ and \f$ g\f$ is defined as the determinant of the <I>Sylvester matrix</I>:
\image html sylvester_matrix.png
\image latex sylvester_matrix.png
\f[
\begin{pmatrix}
f_{m} & \dots & f_{0} \\
& f_{m} & \dots & f_{0} \\
& & \ddots & & \ddots \\
& & & f_{m} & \dots & f_{0} \\
g_{n} & \dots & g_{0} \\
& g_{n} & \dots & g_{0} \\
& & \ddots & & \ddots \\
& & & g_{n} & \dots & g_{0}
\end{pmatrix}
\f]
Note that this is a \f$ (n+m)\times(n+m)\f$ matrix as there are \f$ n\f$ rows for \f$ f\f$
and \f$ m\f$ rows that are used for \f$ g\f$. The blank spaces are supposed to be

View File

@ -15,8 +15,15 @@ Let \f$ n:=\deg f\f$ and \f$ \delta_k:=(-1)^{k(k+1)/2}\f$.
For \f$ k\in\{0,\ldots,n\}\f$, the <I>\f$ k\f$-th Sturm-Habicht polynomial</I>
of \f$ f\f$ is defined as:
\image html sturm_habicht_def.png
\image latex sturm_habicht_def.png
\f[
\mathrm{Stha}_{k}(f) = \left \{
\begin{array}{cll}
f & \text{if} & k = n \\
f' & \text{if} & k = n - 1 \\
\delta_{n - k - 1}\mathrm{Sres}_{k}(f,f') & \text{if} & 0 \leq k \leq n - 2
\end{array}
\right .
\f]
where \f$ \mathrm{Sres}_k(f,f')\f$ is defined
as in the concept `PolynomialTraits_d::PolynomialSubresultants`.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.0 KiB