mirror of https://github.com/CGAL/cgal
trying some things to make the user manual work
This commit is contained in:
parent
674b763363
commit
551058d19a
|
|
@ -51,7 +51,7 @@ described.
|
|||
\end{center}
|
||||
\end{ccTexOnly}
|
||||
\caption{The Apollonius diagram (left) and its dual the Apollonius
|
||||
graph (right).\label{fig-apollonius}}
|
||||
graph (right).}\label{fig-apollonius}
|
||||
\begin{ccHtmlOnly}
|
||||
<center>
|
||||
<img border=0 src="./apollonius_diagram.gif" align=center
|
||||
|
|
@ -340,8 +340,8 @@ not.
|
|||
the sign of the distance of the shaded black circle from the gray
|
||||
one. The gray curve is the bisector of the top-most and bottom-most
|
||||
(unshaded) black circles. Left: the predicate returns
|
||||
\ccc{NEGATIVE}. Right: the predicate returns \ccc{POSITIVE}.
|
||||
\label{fig-ag2vertexconflict}}
|
||||
\ccc{NEGATIVE}. Right: the predicate returns \ccc{POSITIVE}.}
|
||||
\label{fig-ag2vertexconflict}
|
||||
\end{ccTexOnly}
|
||||
\begin{ccHtmlOnly}
|
||||
\caption{The \ccc{Vertex_conflict_2} predicate. The red circles define
|
||||
|
|
@ -349,7 +349,7 @@ not.
|
|||
the distance of the green circle from the yellow one. The blue curve
|
||||
is the bisector of the top-most and bottom-most red circles.
|
||||
Left: the predicate returns \ccc{NEGATIVE}. Right: the predicate
|
||||
returns \ccc{POSITIVE}.\label{fig-ag2vertexconflict}}
|
||||
returns \ccc{POSITIVE}.}\label{fig-ag2vertexconflict}
|
||||
\end{ccHtmlOnly}
|
||||
\begin{ccHtmlOnly}
|
||||
<center>
|
||||
|
|
@ -420,7 +420,7 @@ otherwise it is a finite edge.
|
|||
will be destroyed; the regions near the endpoints remain
|
||||
unaffected. Bottom right: The neighborhood around the two endpoints
|
||||
will be destroyed, but an interval in the interior of the edge will
|
||||
remain in the new diagram.\label{fig-ag2edgeconflict}}
|
||||
remain in the new diagram.}\label{fig-ag2edgeconflict}
|
||||
\end{ccTexOnly}
|
||||
\begin{ccHtmlOnly}
|
||||
\caption{The \ccc{Finite_edge_interior_conflict_2} predicate. The red
|
||||
|
|
@ -438,7 +438,7 @@ otherwise it is a finite edge.
|
|||
will be destroyed; the regions near the endpoints remain
|
||||
unaffected. Bottom right: The neighborhood around the two endpoints
|
||||
will be destroyed, but an interval in the interior of the edge will
|
||||
remain in the new diagram.\label{fig-ag2edgeconflict}}
|
||||
remain in the new diagram.}\label{fig-ag2edgeconflict}
|
||||
\end{ccHtmlOnly}
|
||||
\begin{ccHtmlOnly}
|
||||
<center>
|
||||
|
|
|
|||
|
|
@ -51,7 +51,7 @@ described.
|
|||
\end{center}
|
||||
\end{ccTexOnly}
|
||||
\caption{The Apollonius diagram (left) and its dual the Apollonius
|
||||
graph (right).\label{fig-apollonius}}
|
||||
graph (right).}\label{fig-apollonius}
|
||||
\begin{ccHtmlOnly}
|
||||
<center>
|
||||
<img border=0 src="./apollonius_diagram.gif" align=center
|
||||
|
|
@ -340,8 +340,8 @@ not.
|
|||
the sign of the distance of the shaded black circle from the gray
|
||||
one. The gray curve is the bisector of the top-most and bottom-most
|
||||
(unshaded) black circles. Left: the predicate returns
|
||||
\ccc{NEGATIVE}. Right: the predicate returns \ccc{POSITIVE}.
|
||||
\label{fig-ag2vertexconflict}}
|
||||
\ccc{NEGATIVE}. Right: the predicate returns \ccc{POSITIVE}.}
|
||||
\label{fig-ag2vertexconflict}
|
||||
\end{ccTexOnly}
|
||||
\begin{ccHtmlOnly}
|
||||
\caption{The \ccc{Vertex_conflict_2} predicate. The red circles define
|
||||
|
|
@ -349,7 +349,7 @@ not.
|
|||
the distance of the green circle from the yellow one. The blue curve
|
||||
is the bisector of the top-most and bottom-most red circles.
|
||||
Left: the predicate returns \ccc{NEGATIVE}. Right: the predicate
|
||||
returns \ccc{POSITIVE}.\label{fig-ag2vertexconflict}}
|
||||
returns \ccc{POSITIVE}.}\label{fig-ag2vertexconflict}
|
||||
\end{ccHtmlOnly}
|
||||
\begin{ccHtmlOnly}
|
||||
<center>
|
||||
|
|
@ -420,7 +420,7 @@ otherwise it is a finite edge.
|
|||
will be destroyed; the regions near the endpoints remain
|
||||
unaffected. Bottom right: The neighborhood around the two endpoints
|
||||
will be destroyed, but an interval in the interior of the edge will
|
||||
remain in the new diagram.\label{fig-ag2edgeconflict}}
|
||||
remain in the new diagram.}\label{fig-ag2edgeconflict}
|
||||
\end{ccTexOnly}
|
||||
\begin{ccHtmlOnly}
|
||||
\caption{The \ccc{Finite_edge_interior_conflict_2} predicate. The red
|
||||
|
|
@ -438,7 +438,7 @@ otherwise it is a finite edge.
|
|||
will be destroyed; the regions near the endpoints remain
|
||||
unaffected. Bottom right: The neighborhood around the two endpoints
|
||||
will be destroyed, but an interval in the interior of the edge will
|
||||
remain in the new diagram.\label{fig-ag2edgeconflict}}
|
||||
remain in the new diagram.}\label{fig-ag2edgeconflict}
|
||||
\end{ccHtmlOnly}
|
||||
\begin{ccHtmlOnly}
|
||||
<center>
|
||||
|
|
|
|||
Loading…
Reference in New Issue