Remove trailing whitespace / tabs

This commit is contained in:
Mael Rouxel-Labbé 2020-05-22 15:31:50 +02:00
parent fb8463f470
commit 580a1efd5c
53 changed files with 1342 additions and 1342 deletions

View File

@ -2,13 +2,13 @@
namespace CGAL {
/*!
\mainpage User Manual
\mainpage User Manual
\anchor Chapter_3D_Alpha_Shapes
\cgalAutoToc
\authors Tran Kai Frank Da, Sébastien Loriot, and Mariette Yvinec
\image html alphashape.png
\image latex alphashape.png
\image html alphashape.png
\image latex alphashape.png
Assume we are given a set \f$ S\f$ of points in 2D or 3D and we would like to
have something like "the shape formed by these points". This is
@ -56,8 +56,8 @@ are based on its generalization, the regular triangulation
replacing the euclidean distance by the power to weighted points.
Let us consider the basic case with a Delaunay triangulation.
We first define the alpha complex of the set of points \f$ S\f$.
The alpha complex is a subcomplex
We first define the alpha complex of the set of points \f$ S\f$.
The alpha complex is a subcomplex
of the Delaunay triangulation.
For a given value of \f$ \alpha\f$, the alpha complex includes
all the simplices in the Delaunay triangulation which have
@ -75,17 +75,17 @@ singular if it is not a facet of a \f$ (k+1)\f$-simplex of the complex.
the alpha shapes correspond strictly to the above definition.
The regularized mode provides a regularized version of the alpha shapes.
It corresponds to the domain covered by a regularized version
of the alpha complex where singular faces are removed
of the alpha complex where singular faces are removed
(See \cgalFigureRef{figgenregex} for an example).
\cgalFigureBegin{figgenregex,gen-reg-ex.png}
\cgalFigureBegin{figgenregex,gen-reg-ex.png}
Comparison of general and regularized alpha-shape. <B>Left:</B> Some points are taken on the surface of a torus, three points being taken relatively far from the surface of the torus; <B>Middle:</B> The general alpha-shape (for a large enough alpha value) contains the singular triangle facet of the three isolated points; <B>Right:</B> The regularized version (for the same value of alpha) does not contains any singular facet.
\cgalFigureEnd
The alpha shapes of a set of points
The alpha shapes of a set of points
\f$ S\f$ form a discrete family, even though they
are defined for all real numbers \f$ \alpha\f$.
The entire family of alpha shapes can be represented
The entire family of alpha shapes can be represented
through the underlying triangulation of \f$ S\f$. In this representation
each \f$ k\f$-simplex of the underlying triangulation is associated with an
interval that specifies for which values of \f$ \alpha\f$ the \f$ k\f$-simplex
@ -95,23 +95,23 @@ easily. Furthermore, we can select the optimal value
of \f$ \alpha\f$ to get an alpha shape including all data points
and having less than a given number of connected components.
Also, the alpha-values allows to define a filtration on the
faces of the triangulation of a set of points.
faces of the triangulation of a set of points.
In this filtration, the faces of the triangulation are output
in increasing order of the alpha value
for which they appear
in increasing order of the alpha value
for which they appear
in the alpha complex. In case of equal alpha values,
lower dimensional faces are output first.
The definition is analog in the case of weighted alpha shapes.
The input set is now a set of weighted points (which can be regarded
as spheres) and the underlying triangulation
as spheres) and the underlying triangulation
is the regular triangulation of this set.
Two spheres, or two weighted points, with centers \f$ C_1, C_2\f$
and radii \f$ r_1, r_2 \f$ are said to be orthogonal iff
and radii \f$ r_1, r_2 \f$ are said to be orthogonal iff
\f$ C_1C_2 ^2 = r_1^2 + r_2^2\f$ and suborthogonal
iff \f$ C_1C_2 ^2 < r_1^2 + r_2^2\f$.
For a given value of \f$ \alpha\f$,
the weighted alpha complex is formed with the simplices of the
the weighted alpha complex is formed with the simplices of the
regular triangulation triangulation
such that there is a sphere orthogonal to the weighted points associated
with the vertices of the simplex and suborthogonal to all the other
@ -127,7 +127,7 @@ The class `Alpha_shape_3<Dt,ExactAlphaComparisonTag>` represents the whole
family of alpha shapes for a given set of points.
The class includes the underlying triangulation `Dt`
of the set, and associates to each \f$ k\f$-face of this triangulation
an interval specifying
an interval specifying
for which values of \f$ \alpha\f$ the face belongs to the
alpha complex.
The second template parameter, `ExactAlphaComparisonTag`, is a tag that,
@ -139,11 +139,11 @@ the \f$ \alpha\f$ values where the alpha shape changes.
Additionally, the class has a filtration member function that, given
an output iterator with `Object`
as value type, outputs the faces of the triangulation
according to the
as value type, outputs the faces of the triangulation
according to the
order of apparition in the alpha complex when alpha increases.
Finally, it provides a function to determine
Finally, it provides a function to determine
the smallest value \f$ \alpha\f$
such that the alpha shape satisfies the following two properties: <br>
<ol>
@ -157,7 +157,7 @@ points cannot be inserted or removed.
\subsection AlphaShape_3DAlphaShapeForAFixedAlpha Alpha Shape for a Fixed Alpha
Given a value of alpha, the class `Fixed_alpha_shape_3<Dt>` represents one
Given a value of alpha, the class `Fixed_alpha_shape_3<Dt>` represents one
alpha shape for a given set of points.
The class includes the underlying triangulation `Dt`
of the set, and associates to each \f$ k\f$-face of this triangulation
@ -168,7 +168,7 @@ points can be inserted or removed.
Both classes provide member functions to classify for a (given) value
of \f$ \alpha\f$ the different faces of the triangulation as
`EXTERIOR`, `SINGULAR`, `REGULAR` or
`EXTERIOR`, `SINGULAR`, `REGULAR` or
`INTERIOR` with respect
to the alpha shape. A \f$ k\f$-face on the boundary of the alpha complex
is said to be: `REGULAR` if it is a subface of the alpha-complex which
@ -189,7 +189,7 @@ of its circumscribed circle is larger than alpha.
The classes provide also output iterators to get for a given `alpha` value
the vertices, edges, facets and cells of the different types
(`EXTERIOR`, `SINGULAR`, `REGULAR` or
(`EXTERIOR`, `SINGULAR`, `REGULAR` or
`INTERIOR`).
\subsection AlphaShape3DIO Input/Output
@ -237,7 +237,7 @@ The triangulation data structure of the triangulation
has to be a model of the concept `TriangulationDataStructure_3`,
and it must be parameterized with vertex and cell classes, which are model of the concepts
`FixedAlphaShapeVertex_3` and `FixedAlphaShapeCell_3`.
The package provides models `Fixed_alpha_shape_vertex_base_3<Gt>`
The package provides models `Fixed_alpha_shape_vertex_base_3<Gt>`
and `Fixed_alpha_shape_cell_base_3<Gt>`, respectively.
\subsection AlphaShape3D_ConceptAndModelsTDS Triangulation data structure
@ -266,7 +266,7 @@ represents only one alpha shape (for a fixed alpha). When using the same kernel,
`Fixed_alpha_shape_3<Dt>` is a lighter version. It is thus naturally much more efficient
when the alpha-shape is needed for a single given value of alpha.
In addition, note that the class `Alpha_shape_3<Dt,ExactAlphaComparisonTag>`
requires constructions (squared radius of simplices) while the
requires constructions (squared radius of simplices) while the
class `Fixed_alpha_shape_3<Dt>` uses only predicates.
This implies that a certified construction of one (several)
alpha-shape, using the `Alpha_shape_3<Dt,ExactAlphaComparisonTag>` requires a kernel
@ -278,13 +278,13 @@ two that supports incremental insertion and removal of points.
We give the time spent while computing the alpha shape of a protein (considered
as a set of weighted points) featuring 4251 atoms (using `gcc 4.3` under Linux with `-O3`
and `-DNDEBUG` flags, on a 2.27GHz Intel(R) Xeon(R) E5520 CPU):
and `-DNDEBUG` flags, on a 2.27GHz Intel(R) Xeon(R) E5520 CPU):
Using `Exact_predicates_inexact_constructions_kernel`, building
the regular triangulation requires 0.09s, then the class `Fixed_alpha_shape_3<Dt>`
required 0.05s while the class `Alpha_shape_3<Dt,ExactAlphaComparisonTag>` requires 0.35s
if `ExactAlphaComparisonTag` is `Tag_false` (and 0.70s with `Tag_true`).
Using `Exact_predicates_exact_constructions_kernel`, building
the regular triangulation requires 0.19s and then the class `Alpha_shape_3<Dt,ExactAlphaComparisonTag>`
the regular triangulation requires 0.19s and then the class `Alpha_shape_3<Dt,ExactAlphaComparisonTag>`
requires 0.90s.
\section Alpha_shapes_3Examples Examples
@ -350,6 +350,6 @@ results will suffer from round-off problems.
\cgalExample{Alpha_shapes_3/ex_periodic_alpha_shapes_3.cpp}
*/
*/
} /* namespace CGAL */

View File

@ -1,9 +1,9 @@
// Copyright (c) 1997
// Copyright (c) 1997
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org);
//
@ -74,7 +74,7 @@ operator<<(VRML_2_ostream& os,
os << Indent << " ";
for (int i=0; i<4; i++)
if (i != (*Flist_it).second){
os << V[(*Flist_it).first->vertex(i)];
os << V[(*Flist_it).first->vertex(i)];
os << ", ";
}
if (Flist_it != Flist_end)

View File

@ -34,12 +34,12 @@ digraph example {
\cgalHeading{Notations}
<dl>
<dt>`G`</dt> <dd>A type that is a model of a graph concept.</dd>
<dt>`g`</dt> <dd>An object of type `G`.</dd>
<dt>`u`, `v`</dt> <dd>Objects of type `boost::graph_traits<G>::%vertex_descriptor`.</dd>
<dt>`h`</dt> <dd>An object of type `boost::graph_traits<G>::%halfedge_descriptor`.</dd>
<dt>`e`</dt> <dd>An object of type `boost::graph_traits<G>::%edge_descriptor`.</dd>
<dt>`f`</dt> <dd>An object of type `boost::graph_traits<G>::%face_descriptor`.</dd>
<dt>`G`</dt> <dd>A type that is a model of a graph concept.</dd>
<dt>`g`</dt> <dd>An object of type `G`.</dd>
<dt>`u`, `v`</dt> <dd>Objects of type `boost::graph_traits<G>::%vertex_descriptor`.</dd>
<dt>`h`</dt> <dd>An object of type `boost::graph_traits<G>::%halfedge_descriptor`.</dd>
<dt>`e`</dt> <dd>An object of type `boost::graph_traits<G>::%edge_descriptor`.</dd>
<dt>`f`</dt> <dd>An object of type `boost::graph_traits<G>::%face_descriptor`.</dd>
</dl>
\cgalHeading{%VertexListGraph}

View File

@ -5,7 +5,7 @@
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
//
// Author(s) : Andreas Fabri, Fernando Cacciola
@ -90,7 +90,7 @@ using boost::face_external_index;
namespace CGAL {
namespace internal {
template<typename Polyhedron, typename Handle>
struct Index_accessor
: boost::put_get_helper< std::size_t&, Index_accessor<Polyhedron,Handle> >

View File

@ -174,7 +174,7 @@ bool read_a_mesh(Polyhedron& p, const std::string& str)
}
template <typename T>
std::vector<T> t_data()
std::vector<T> t_data()
{
std::vector<T> vs;
for(unsigned int i = 0; i < sizeof(data) / sizeof(data[0]); ++i) {
@ -258,7 +258,7 @@ struct Surface_fixture_1 {
f1 = CGAL::is_border(halfedge(u, m),m) ? face(opposite(halfedge(u, m), m), m) : face(halfedge(u, m), m);
assert(f1 != boost::graph_traits<Graph>::null_face());
CGAL::Halfedge_around_face_iterator<Graph> hafib, hafie;
for(boost::tie(hafib, hafie) = CGAL::halfedges_around_face(halfedge(f1, m), m); hafib != hafie; ++hafib)
for(boost::tie(hafib, hafie) = CGAL::halfedges_around_face(halfedge(f1, m), m); hafib != hafie; ++hafib)
{
if(! CGAL::is_border(opposite(*hafib, m), m))
f2 = face(opposite(*hafib, m), m);
@ -408,7 +408,7 @@ struct Surface_fixture_4 {
h2 = *hb;
++found;
}
}
}
}
}
assert(found == 2);
@ -442,7 +442,7 @@ struct Surface_fixture_5 {
} else if(get(pm, target(*hb,m)) == Point_3(2,-1,0)){
h2 = *hb;
found++;
}
}
}
}
assert(found == 2);
@ -461,9 +461,9 @@ struct Surface_fixture_6 {
assert(CGAL::is_valid_polygon_mesh(m));
typename boost::graph_traits<Graph>::halfedge_descriptor h;
h1 = halfedge(*faces(m).first, m);
h2 = next(next(h1,m),m);
}
@ -480,7 +480,7 @@ struct Surface_fixture_7 {
assert(is_reading_successful);
assert(CGAL::is_valid_polygon_mesh(m));
h = *(halfedges(m).first);
h = *(halfedges(m).first);
}
Graph m;
@ -512,9 +512,9 @@ struct Surface_fixture_8 {
get(pm, target(*hb,m)) == Point_3(0,0,0)){
h3 = *hb;
found++;
}
}
}
assert(found == 3);
}

View File

@ -1,16 +1,16 @@
// Copyright (c) 1997,1998,1999,2000,2001
// Copyright (c) 1997,1998,1999,2000,2001
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
//
// Author(s) : Andreas Fabri, Sylvain Pion
@ -40,8 +40,8 @@ namespace CGAL {
class CGAL_EXPORT Geomview_stream {
public:
Geomview_stream(const Bbox_3 &bbox = Bbox_3(0,0,0, 1,1,1),
const char *machine = nullptr,
const char *login = nullptr);
const char *machine = nullptr,
const char *login = nullptr);
bool fail() const { return false; }
bool good() const { return true; }
@ -90,62 +90,62 @@ public:
double get_vertex_radius() const
{
return radius;
return radius;
}
double set_vertex_radius(double r)
{
std::swap(r, radius);
return r;
std::swap(r, radius);
return r;
}
int get_line_width() const
{
return line_width;
return line_width;
}
int set_line_width(int w)
{
std::swap(w, line_width);
std::swap(w, line_width);
return w;
}
bool set_wired(bool b)
{
std::swap(b, wired_flag);
return b;
std::swap(b, wired_flag);
return b;
}
bool get_wired() const
{
return wired_flag;
return wired_flag;
}
bool set_echo(bool b)
{
std::swap(b, echo_flag);
return b;
std::swap(b, echo_flag);
return b;
}
bool get_echo() const
{
return echo_flag;
return echo_flag;
}
bool set_raw(bool b)
{
std::swap(b, raw_flag);
return b;
std::swap(b, raw_flag);
return b;
}
bool get_raw() const
{
return raw_flag;
return raw_flag;
}
bool set_trace(bool b)
{
std::swap(b, trace_flag);
return b;
std::swap(b, trace_flag);
return b;
}
bool get_trace() const
{
return trace_flag;
return trace_flag;
}
void trace(const std::string s) const
@ -171,27 +171,27 @@ public:
bool set_binary_mode(bool b = true)
{
std::swap(b, binary_flag);
return b;
std::swap(b, binary_flag);
return b;
}
bool set_ascii_mode(bool b = true)
{
return !set_binary_mode(!b);
return !set_binary_mode(!b);
}
bool get_binary_mode() const
{
return binary_flag;
return binary_flag;
}
bool get_ascii_mode() const
{
return !binary_flag;
return !binary_flag;
}
std::string get_new_id(const std::string & s);
const Bbox_3 & get_bbox()
{
return bb;
return bb;
}
void pickplane()
@ -201,7 +201,7 @@ public:
static char* nth(char* s, int count);
static void parse_point(const char* pickpoint,
double &x, double &y, double &z, double &w);
double &x, double &y, double &z, double &w);
private:
void setup_geomview(const char *machine, const char *login);
void frame(const Bbox_3 &bbox);
@ -228,9 +228,9 @@ output_point(Geomview_stream &gv, const FT &x, const FT &y, const FT &z)
{
bool ascii_bak = true; // the initialization value shuts up the compiler.
if (!gv.get_raw()) {
ascii_bak = gv.set_ascii_mode();
gv << "(geometry " << gv.get_new_id("P")
<< " {appearance {linewidth 5 material {edgecolor "
ascii_bak = gv.set_ascii_mode();
gv << "(geometry " << gv.get_new_id("P")
<< " {appearance {linewidth 5 material {edgecolor "
<< gv.vcr() << gv.vcg() << gv.vcb() << "}}{SKEL 1 1 ";
}
@ -238,7 +238,7 @@ output_point(Geomview_stream &gv, const FT &x, const FT &y, const FT &z)
if (!gv.get_raw()) {
gv << "1 0\n}})";
gv.set_ascii_mode(ascii_bak);
gv.set_ascii_mode(ascii_bak);
}
}
@ -363,8 +363,8 @@ Geomview_stream::draw_triangles(InputIterator begin, InputIterator end)
std::vector<Point> points;
for (Tit i = triangles.begin(); i != triangles.end(); ++i)
for (int j = 0; j < 3; ++j)
if (point_map.insert(typename Point_map::value_type(i->vertex(j),
points.size())).second)
if (point_map.insert(typename Point_map::value_type(i->vertex(j),
points.size())).second)
points.push_back(i->vertex(j));
bool ascii_bak = get_ascii_mode();
@ -383,8 +383,8 @@ Geomview_stream::draw_triangles(InputIterator begin, InputIterator end)
// Triangles vertices indices.
for (Tit tit = triangles.begin(); tit != triangles.end(); ++tit) {
(*this) << 3;
for (int j = 0; j < 3; ++j)
(*this) << point_map[tit->vertex(j)];
for (int j = 0; j < 3; ++j)
(*this) << point_map[tit->vertex(j)];
(*this) << 0; // without color.
}
// Footer.
@ -487,14 +487,14 @@ operator<<(Geomview_stream &gv, const Ray_2<R> &r)
// Note: it won't work if double is not convertible to an RT...
const Bbox_3 & bb = gv.get_bbox();
Object result = intersection(Iso_rectangle_2<R>(
Point_2<R>(bb.xmin(), bb.ymin()),
Point_2<R>(bb.xmax(), bb.ymax())), r);
Point_2<R>(bb.xmin(), bb.ymin()),
Point_2<R>(bb.xmax(), bb.ymax())), r);
Point_2<R> ipoint;
Segment_2<R> iseg;
if (assign(ipoint, result))
gv << ipoint;
gv << ipoint;
else if (assign(iseg, result))
gv << iseg;
gv << iseg;
return gv;
}
#endif
@ -509,14 +509,14 @@ operator<<(Geomview_stream &gv, const Line_2<R> &r)
// Note: it won't work if double is not convertible to an RT...
const Bbox_3 & bb = gv.get_bbox();
Object result = intersection(Iso_rectangle_2<R>(
Point_2<R>(bb.xmin(), bb.ymin()),
Point_2<R>(bb.xmax(), bb.ymax())), r);
Point_2<R>(bb.xmin(), bb.ymin()),
Point_2<R>(bb.xmax(), bb.ymax())), r);
Point_2<R> ipoint;
Segment_2<R> iseg;
if (assign(ipoint, result))
gv << ipoint;
gv << ipoint;
else if (assign(iseg, result))
gv << iseg;
gv << iseg;
return gv;
}
#endif
@ -563,7 +563,7 @@ Geomview_stream&
operator>>(Geomview_stream &gv, Point_3<R> &point)
{
const char *gclpick =
"(pick world pickplane * nil nil nil nil nil nil nil)";
"(pick world pickplane * nil nil nil nil nil nil nil)";
bool ascii_bak = gv.set_ascii_mode();
gv << "(pickable pickplane yes) (ui-target pickplane yes)"
@ -580,7 +580,7 @@ operator>>(Geomview_stream &gv, Point_3<R> &point)
// we echo the input
if (gv.get_echo())
gv << point;
gv << point;
// we are done and tell geomview to stop sending pick events
gv << "(uninterest " << gclpick << ") (pickable pickplane no)";

View File

@ -340,7 +340,7 @@ namespace CGAL {
std::ofstream output(filename);
if (!output.is_open())
{ return false; }
return write_off(alcc, output);
}

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\mainpage User Manual
\mainpage User Manual
\anchor Chapter_2D_Conforming_Triangulations_and_Meshes
\anchor userchapter2DMeshes
\cgalAutoToc
@ -12,9 +12,9 @@ conforming triangulations and 2D meshes. Conforming triangulations will be
described in Section \ref secMesh_2_conforming_triangulation and
meshes in Section \ref secMesh_2_meshes.
\section secMesh_2_conforming_triangulation Conforming Triangulations
\section secMesh_2_conforming_triangulation Conforming Triangulations
\subsection secMesh_2_conforming_definitions Definitions
\subsection secMesh_2_conforming_definitions Definitions
A triangulation is a <I>Delaunay triangulation</I> if the circumscribing
circle of any facet of the triangulation contains no vertex in its
@ -46,18 +46,18 @@ triangulation by adding vertices, called <I>Steiner vertices</I>, on
constrained edges until they are decomposed into subconstraints small enough
to be Delaunay or Gabriel edges.
\subsection secMesh_2_building_conforming Building Conforming Triangulations
\subsection secMesh_2_building_conforming Building Conforming Triangulations
Constrained Delaunay triangulations can be refined into
conforming triangulations by the two following global functions:
conforming triangulations by the two following global functions:
\code{.cpp}
template<class CDT>
template<class CDT>
void make_conforming_Delaunay_2 (CDT& t)
\endcode
\code{.cpp}
template<class CDT>
template<class CDT>
void make_conforming_Gabriel_2 (CDT& t)
\endcode
@ -86,7 +86,7 @@ triangulation and then into a conforming Gabriel triangulation. For
additional control of the refinement algorithm, this class also provides
separate functions to insert one Steiner point at a time.
\subsection secMesh_2_example_making_conforming Example: Making a Triangulation Conforming Delaunay and Then Conforming Gabriel
\subsection secMesh_2_example_making_conforming Example: Making a Triangulation Conforming Delaunay and Then Conforming Gabriel
This example inserts several segments into a constrained Delaunay
triangulation, makes it conforming Delaunay, and then conforming
@ -101,9 +101,9 @@ See \cgalFigureRef{Conformexampleconform}
From left to right: Initial Delaunay triangulation, the corresponding conforming Delaunay, and the corresponding Gabriel triangulation.
\cgalFigureEnd
\section secMesh_2_meshes Meshes
\section secMesh_2_meshes Meshes
\subsection secMesh_2_meshes_definition Definitions
\subsection secMesh_2_meshes_definition Definitions
A mesh is a partition of a given region into simplices whose shapes
and sizes satisfy several criteria.
@ -121,10 +121,10 @@ boundary or internals constraints. The segments of the <span class="textsc">Pslg
cover the boundary of the domain.
The <span class="textsc">Pslg</span> divides the plane into several connected components. By
default, the domain is the union of the bounded connected components.
default, the domain is the union of the bounded connected components.
See \cgalFigureRef{Domain} for an example of a domain
defined without using seed points, and a possible mesh of it.
defined without using seed points, and a possible mesh of it.
\cgalFigureBegin{Domain,domain-domain-mesh.png}
A domain defined without seed points and the generated mesh.
@ -137,7 +137,7 @@ seed points mark components to be meshed or they mark components not to be
meshed (holes).
See
\cgalFigureRef{Domainseeds} for another domain defined with the same <span class="textsc">Pslg</span> and two seed points used to define holes.
\cgalFigureRef{Domainseeds} for another domain defined with the same <span class="textsc">Pslg</span> and two seed points used to define holes.
In the corresponding mesh these
two holes are triangulated but not meshed.
@ -146,7 +146,7 @@ two holes are triangulated but not meshed.
A domain with two seeds points defining holes and the generated mesh.
\cgalFigureEnd
\subsection secMesh_2_criteria Shape and Size Criteria
\subsection secMesh_2_criteria Shape and Size Criteria
The shape criterion for triangles is a lower bound \f$ B\f$ on the ratio
between the circumradius and the shortest edge length. Such a bound
@ -193,7 +193,7 @@ satisfy size and shape criteria except for the small input angles.
In addition, the algorithm may succeed in producing meshes with a lower
angle bound greater than \f$ 20.7\f$ degrees, but there is no such guarantee.
\subsection secMesh_2_building_meshes Building Meshes
\subsection secMesh_2_building_meshes Building Meshes
Meshes are obtained from
constrained Delaunay triangulations by calling the global function :
@ -217,14 +217,14 @@ defines criteria that the triangles have to satisfy.
\cgal provides two models for this concept:
<UL>
<LI>`Delaunay_mesh_criteria_2<CDT>`, that defines a shape criterion
that bounds the minimum angle of triangles,
that bounds the minimum angle of triangles,
<LI>`Delaunay_mesh_size_criteria_2<CDT>`, that adds to the previous
criterion a bound on the maximum edge length.
</UL>
If the function `refine_Delaunay_mesh_2()` is called several times on the
same triangulation with different criteria, the algorithm rebuilds the
internal data structure used for meshing at every call. In order to avoid
same triangulation with different criteria, the algorithm rebuilds the
internal data structure used for meshing at every call. In order to avoid
rebuild the data structure at every call, the advanced user can
use the class `Delaunay_mesher_2<CDT>`. This class provides also step
by step functions. Those functions insert one vertex at a time.
@ -243,8 +243,8 @@ function of the face type (see the concept `DelaunayMeshFaceBase_2`).
\subsection secMesh_2_optimization Optimization of Meshes with Lloyd
The package also provides a global function that runs Lloyd optimization iterations on the
mesh generated by Delaunay refinement. The goal of this mesh optimization is to
The package also provides a global function that runs Lloyd optimization iterations on the
mesh generated by Delaunay refinement. The goal of this mesh optimization is to
improve the angles inside the mesh, and make them as close as possible to 60 degrees.
\code{.cpp}
@ -257,7 +257,7 @@ Note that this global function has more parameters (see details in reference pag
This optimization process alternates relocating vertices to the center of mass
of their Voronoi cells, and updating the Delaunay connectivity of the triangulation.
The center of mass is computed with respect to a sizing function that was designed to
The center of mass is computed with respect to a sizing function that was designed to
preserve the local density of points in the mesh generated by Delaunay refinement.
See Figure \cgalFigureRef{Lloydfigure} for a mesh generated by `refine_Delaunay_mesh_2()` and optimized
@ -270,7 +270,7 @@ shows the histogram of angles inside these meshes.
\cgalFigureEnd
\cgalFigureBegin{LloydHistogramfigure,lloyd-histograms.png}
Histograms of angles inside the mesh after Delaunay refinement, and after 10 and 100 iterations
Histograms of angles inside the mesh after Delaunay refinement, and after 10 and 100 iterations
of Lloyd optimization.
After Delaunay refinement, angles are in the interval [28.5; 121.9] degrees.
After 10 iterations of Lloyd optimization, they are in [29.1; 110.8]. 100 iterations take them to [29.3; 109.9].
@ -316,11 +316,11 @@ faces is used to count them.
\subsubsection Mesh_2ExampleLloyd Example Using the Lloyd optimizer
This example uses the global function `lloyd_optimize_mesh_2()`.
This example uses the global function `lloyd_optimize_mesh_2()`.
The mesh is generated using the function `refine_Delaunay_mesh_2()` of `CGAL::Delaunay_mesher_2`,
and is then optimized using `lloyd_optimize_mesh_2()`. The optimization will stop
and is then optimized using `lloyd_optimize_mesh_2()`. The optimization will stop
after 10 (set by `max_iteration_number`) iterations of alternating vertex relocations
and Delaunay connectivity updates. More termination conditions can be used and are detailed
and Delaunay connectivity updates. More termination conditions can be used and are detailed
in the Reference Manual.
@ -330,6 +330,6 @@ in the Reference Manual.
\section secMesh_2_IO Input/Output
It is possible to export the result of a meshing in VTU, using the function `write_vtu()`.
For more information about this format, see \ref IOStreamVTK.
*/
*/
} /* namespace CGAL */

View File

@ -27,14 +27,14 @@
//todo try to factorize with functors
namespace CGAL{
// writes the appended data into the .vtu file
template <class FT>
template <class FT>
void
write_vector(std::ostream& os,
const std::vector<FT>& vect)
write_vector(std::ostream& os,
const std::vector<FT>& vect)
{
const char* buffer = reinterpret_cast<const char*>(&(vect[0]));
std::size_t size = vect.size()*sizeof(FT);
os.write(reinterpret_cast<const char *>(&size), sizeof(std::size_t)); // number of bytes encoded
os.write(buffer, vect.size()*sizeof(FT)); // encoded data
}
@ -42,7 +42,7 @@ write_vector(std::ostream& os,
// writes the cells tags before binary data is appended
template <class CDT>
void
void
write_cells_tag_2(std::ostream& os,
const CDT & tr,
std::size_t number_of_triangles,
@ -64,18 +64,18 @@ write_cells_tag_2(std::ostream& os,
os << " <Cells>\n"
<< " <DataArray Name=\"connectivity\""
<< formatattribute << typeattribute;
if (binary) { // if binary output, just write the xml tag
os << " offset=\"" << offset << "\"/>\n";
// 3 indices (size_t) per triangle + length of the encoded data (size_t)
offset += (3 * number_of_triangles + 1) * sizeof(std::size_t);
offset += (3 * number_of_triangles + 1) * sizeof(std::size_t);
// 2 indices (size_t) per edge (size_t)
offset += (2 * std::distance(tr.constrained_edges_begin(),
tr.constrained_edges_end())) * sizeof(std::size_t);
tr.constrained_edges_end())) * sizeof(std::size_t);
}
else {
os << "\">\n";
for(typename CDT::Finite_faces_iterator
os << "\">\n";
for(typename CDT::Finite_faces_iterator
fit = tr.finite_faces_begin(),
end = tr.finite_faces_end();
fit != end; ++fit)
@ -89,11 +89,11 @@ write_cells_tag_2(std::ostream& os,
}
os << " </DataArray>\n";
}
// Write offsets
os << " <DataArray Name=\"offsets\""
<< formatattribute << typeattribute;
if (binary) { // if binary output, just write the xml tag
os << " offset=\"" << offset << "\"/>\n";
offset += (number_of_triangles +std::distance(tr.constrained_edges_begin(),
@ -102,9 +102,9 @@ write_cells_tag_2(std::ostream& os,
// 1 offset (size_t) per cell + length of the encoded data (size_t)
}
else {
os << "\">\n";
os << "\">\n";
std::size_t cells_offset = 0;
for(typename CDT::Finite_faces_iterator fit =
for(typename CDT::Finite_faces_iterator fit =
tr.finite_faces_begin() ;
fit != tr.finite_faces_end() ;
++fit )
@ -114,7 +114,7 @@ write_cells_tag_2(std::ostream& os,
cells_offset += 3;
os << cells_offset << " ";
}
}
}
os << " </DataArray>\n";
}
@ -126,13 +126,13 @@ write_cells_tag_2(std::ostream& os,
os << " offset=\"" << offset << "\"/>\n";
offset += number_of_triangles
+ std::distance(tr.constrained_edges_begin(),
tr.constrained_edges_end())
tr.constrained_edges_end())
+ sizeof(std::size_t);
// 1 unsigned char per cell + length of the encoded data (size_t)
}
else {
os << "\">\n";
for(typename CDT::Finite_faces_iterator fit =
os << "\">\n";
for(typename CDT::Finite_faces_iterator fit =
tr.finite_faces_begin() ;
fit != tr.finite_faces_end() ;
++fit )
@ -147,7 +147,7 @@ write_cells_tag_2(std::ostream& os,
os << " </Cells>\n";
}
// writes the cells appended data at the end of the .vtu file
// writes the cells appended data at the end of the .vtu file
template <class CDT>
void
write_cells_2(std::ostream& os,
@ -160,9 +160,9 @@ write_cells_2(std::ostream& os,
std::vector<unsigned char> cell_type(number_of_triangles,5); // triangles == 5
cell_type.resize(cell_type.size() + std::distance(tr.constrained_edges_begin(),
tr.constrained_edges_end()), 3); // line == 3
std::size_t off = 0;
for(typename CDT::Finite_faces_iterator
for(typename CDT::Finite_faces_iterator
fit = tr.finite_faces_begin(),
end = tr.finite_faces_end();
fit != end; ++fit)
@ -197,7 +197,7 @@ write_cells_2(std::ostream& os,
// writes the points tags before binary data is appended
template <class Tr>
void
void
write_cdt_points_tag(std::ostream& os,
const Tr & tr,
std::map<typename Tr::Vertex_handle, std::size_t> & V,
@ -218,12 +218,12 @@ write_cdt_points_tag(std::ostream& os,
<< format;
if (binary) {
os << "\" offset=\"" << offset << "\"/>\n";
os << "\" offset=\"" << offset << "\"/>\n";
offset += 3 * tr.number_of_vertices() * sizeof(FT) + sizeof(std::size_t);
// dim coords per points + length of the encoded data (size_t)
}
else {
os << "\">\n";
os << "\">\n";
for( Finite_vertices_iterator vit = tr.finite_vertices_begin();
vit != tr.finite_vertices_end();
++vit)
@ -231,7 +231,7 @@ write_cdt_points_tag(std::ostream& os,
V[vit] = inum++;
os << vit->point()[0] << " ";
os << vit->point()[1] << " ";
if(dim == 3)
if(dim == 3)
os << vit->point()[2] << " ";
else
os << 0.0 << " ";
@ -241,7 +241,7 @@ write_cdt_points_tag(std::ostream& os,
os << " </Points>\n";
}
// writes the points appended data at the end of the .vtu file
// writes the points appended data at the end of the .vtu file
template <class Tr>
void
write_cdt_points(std::ostream& os,
@ -270,37 +270,37 @@ write_cdt_points(std::ostream& os,
// writes the attribute tags before binary data is appended
template <class T>
void
void
write_attribute_tag_2 (std::ostream& os,
const std::string& attr_name,
const std::vector<T>& attribute,
bool binary,
std::size_t& offset)
const std::string& attr_name,
const std::vector<T>& attribute,
bool binary,
std::size_t& offset)
{
std::string format = binary ? "appended" : "ascii";
std::string type = (sizeof(T) == 8) ? "Float64" : "Float32";
os << " <DataArray type=\"" << type << "\" Name=\"" << attr_name << "\" format=\"" << format;
os << " <DataArray type=\"" << type << "\" Name=\"" << attr_name << "\" format=\"" << format;
if (binary) {
os << "\" offset=\"" << offset << "\"/>\n";
os << "\" offset=\"" << offset << "\"/>\n";
offset += attribute.size() * sizeof(T) + sizeof(std::size_t);
}
else {
typedef typename std::vector<T>::const_iterator Iterator;
os << "\">\n";
os << "\">\n";
for (Iterator it = attribute.begin();
it != attribute.end();
++it )
it != attribute.end();
++it )
os << *it << " ";
os << " </DataArray>\n";
}
}
// writes the attributes appended data at the end of the .vtu file
// writes the attributes appended data at the end of the .vtu file
template <typename FT>
void
write_attributes_2(std::ostream& os,
const std::vector<FT>& att)
const std::vector<FT>& att)
{
IO::internal::write_vector(os,att);
}
@ -321,7 +321,7 @@ void write_vtu_with_attributes(std::ostream& os,
#else // CGAL_BIG_ENDIAN
os << " byte_order=\"BigEndian\"";
#endif
switch(sizeof(std::size_t)) {
case 4: os << " header_type=\"UInt32\""; break;
case 8: os << " header_type=\"UInt64\""; break;
@ -329,16 +329,16 @@ void write_vtu_with_attributes(std::ostream& os,
}
os << ">\n"
<< " <UnstructuredGrid>" << "\n";
int number_of_triangles = 0;
for(typename CDT::Finite_faces_iterator
for(typename CDT::Finite_faces_iterator
fit = tr.finite_faces_begin(),
end = tr.finite_faces_end();
fit != end; ++fit)
{
if(fit->is_in_domain()) ++number_of_triangles;
}
os << " <Piece NumberOfPoints=\"" << tr.number_of_vertices()
os << " <Piece NumberOfPoints=\"" << tr.number_of_vertices()
<< "\" NumberOfCells=\"" << number_of_triangles + std::distance(tr.constrained_edges_begin(), tr.constrained_edges_end()) << "\">\n";
std::size_t offset = 0;
const bool binary = (mode == IO::BINARY);
@ -356,7 +356,7 @@ void write_vtu_with_attributes(std::ostream& os,
os << " </Piece>\n"
<< " </UnstructuredGrid>\n";
if (binary) {
os << "<AppendedData encoding=\"raw\">\n_";
os << "<AppendedData encoding=\"raw\">\n_";
write_cdt_points(os,tr,V); // write points before cells to fill the std::map V
write_cells_2(os,tr, number_of_triangles, V);
for(std::size_t i = 0; i< attributes.size(); ++i)

View File

@ -27,8 +27,8 @@
namespace CGAL {
template <class C3T3>
void
output_to_maya(std::ostream& os,
const C3T3& c3t3,
output_to_maya(std::ostream& os,
const C3T3& c3t3,
bool surfaceOnly = true)
{
typedef typename C3T3::Triangulation Tr;
@ -44,7 +44,7 @@ output_to_maya(std::ostream& os,
#ifdef CGAL_MESH_3_IO_VERBOSE
std::cerr << "Output to maya:\n";
#endif
const Tr& tr = c3t3.triangulation();
//-------------------------------------------------------
@ -75,13 +75,13 @@ output_to_maya(std::ostream& os,
os << " setAttr \".cuvs\" -type \"string\" \"map1\";" << std::endl;
os << " setAttr \".dcol\" yes;" << std::endl;
os << " setAttr \".dcc\" -type \"string\" \"Ambient+Diffuse\";" << std::endl;
os << " connectAttr \"" << name << "Shape.iog\" \":initialShadingGroup.dsm\" -na;\n\n";
//-------------------------------------------------------
// Colors
//------------------------------------------------------
/*os << " setAttr \".ccls\" -type \"string\" \"colorSet\";\n";
os << " setAttr \".clst[0].clsn\" -type \"string\" \"colorSet\";\n";
os << " setAttr \".clst[0].rprt\" 3;\n";
@ -90,11 +90,11 @@ output_to_maya(std::ostream& os,
os << " 100 250 50" << std::endl;
os << " 0 200 200" << std::endl;
os << " ;\n";*/
//-------------------------------------------------------
// Vertices
//------------------------------------------------------
boost::unordered_map<Vertex_handle, int, Hash_fct> V;
std::stringstream vertices_sstr;
int num_vertices = 0;
@ -110,7 +110,7 @@ output_to_maya(std::ostream& os,
vertices_sstr << " " << CGAL::to_double(p.x()) << " " << CGAL::to_double(p.y()) << " " << CGAL::to_double(p.z()) << std::endl;
}
}
os << " setAttr -s " << num_vertices << " \".vt[0:" << num_vertices-1 << "]\"" << std::endl;
os << vertices_sstr.str();
os << ";\n";
@ -134,7 +134,7 @@ output_to_maya(std::ostream& os,
//-------------------------------------------------------
typename C3T3::size_type number_of_triangles = c3t3.number_of_facets_in_complex();
std::stringstream facets_sstr;
//std::stringstream normals_sstr;
@ -147,7 +147,7 @@ output_to_maya(std::ostream& os,
// Surface only
if (surfaceOnly)
{
facets_sstr << " setAttr -s " << number_of_triangles
facets_sstr << " setAttr -s " << number_of_triangles
<< " \".fc[0:" << number_of_triangles-1 << "]\" -type \"polyFaces\" \n";
int c = 0;
for( Facet_iterator fit = c3t3.facets_in_complex_begin();
@ -163,9 +163,9 @@ output_to_maya(std::ostream& os,
indices[j] = V[vh];
//points[j] = tr.point(fit->first, i);
}
// Reverse triangle orientation?
bool reverse_triangle =
bool reverse_triangle =
(fit->second % 2 == 0 && !c3t3.is_in_complex(fit->first))
|| (fit->second % 2 != 0 && c3t3.is_in_complex(fit->first));
if (reverse_triangle)
@ -194,7 +194,7 @@ output_to_maya(std::ostream& os,
// ith edge of triangle
facets_sstr << pos << " ";
}
// 1 triangles
facets_sstr << std::endl;
// Colors
@ -204,7 +204,7 @@ output_to_maya(std::ostream& os,
// Tetrahedra = 4 facets for each
else
{
facets_sstr << " setAttr -s " << 4*c3t3.number_of_cells_in_complex()
facets_sstr << " setAttr -s " << 4*c3t3.number_of_cells_in_complex()
<< " \".fc[0:" << 4*c3t3.number_of_cells_in_complex()-1 << "]\" -type \"polyFaces\" \n";
int c = 0;
for( Cell_iterator cit = c3t3.cells_in_complex_begin();
@ -222,7 +222,7 @@ output_to_maya(std::ostream& os,
indices[j] = V[vh];
//points[j] = tr.point(cit, i);
}
// Reverse triangle orientation?
bool reverse_triangle = (facet_i % 2 != 0 && c3t3.is_in_complex(cit, facet_i));
if (reverse_triangle)
@ -251,7 +251,7 @@ output_to_maya(std::ostream& os,
// ith edge of triangle
facets_sstr << pos << " ";
}
// 1 triangles
facets_sstr << std::endl;
// Colors
@ -261,30 +261,30 @@ output_to_maya(std::ostream& os,
}
facets_sstr << ";\n\n";
//normals_sstr << ";\n\n";
//-------------------------------------------------------
// Edges
//-------------------------------------------------------
os << " setAttr -s " << edges.size() << " \".ed[0:"
os << " setAttr -s " << edges.size() << " \".ed[0:"
<< edges.size() - 1 << "]\"" << std::endl;
for (EdgeList::const_iterator it = edges.begin(), it_end = edges.end() ; it != it_end ; ++it)
os << " " << it->first << " " << it->second << " " << 0 << std::endl;
os << ";\n";
//-------------------------------------------------------
// Normals
//-------------------------------------------------------
//os << normals_sstr.str();
//-------------------------------------------------------
// Facets
//-------------------------------------------------------
os << facets_sstr.str();
//-------------------------------------------------------
// Tetrahedra
//-------------------------------------------------------

View File

@ -126,13 +126,13 @@ private:
else
return -1;
}
private:
const C3T3& r_c3t3_;
Subdomain_map subdomain_map_;
};
// Accessor
// Accessor
template <typename C3T3>
int
get(const Rebind_cell_pmap<C3T3>& cmap,
@ -146,7 +146,7 @@ unsigned int get_size(const Rebind_cell_pmap<C3T3>& cmap)
{
return cmap.subdomain_number();
}
// -----------------------------------
// No_rebind_cell_pmap
@ -157,21 +157,21 @@ class No_rebind_cell_pmap
typedef typename C3T3::Subdomain_index Subdomain_index;
typedef typename C3T3::Cell_handle Cell_handle;
typedef unsigned int size_type;
public:
No_rebind_cell_pmap(const C3T3& c3t3)
: r_c3t3_(c3t3) {}
int subdomain_index(const Cell_handle& ch) const
{
return static_cast<int>(r_c3t3_.subdomain_index(ch));
}
size_type subdomain_number() const
{
typedef typename C3T3::Cells_in_complex_iterator Cell_iterator;
std::set<Subdomain_index> subdomain_set;
for( Cell_iterator cell_it = r_c3t3_.cells_in_complex_begin();
cell_it != r_c3t3_.cells_in_complex_end();
++cell_it)
@ -179,15 +179,15 @@ public:
// Add subdomain index in set
subdomain_set.insert(subdomain_index(cell_it));
}
return subdomain_set.size();
}
private:
const C3T3& r_c3t3_;
};
// Accessor
// Accessor
template <typename C3T3>
int
get(const No_rebind_cell_pmap<C3T3>& cmap,
@ -195,8 +195,8 @@ get(const No_rebind_cell_pmap<C3T3>& cmap,
{
return cmap.subdomain_index(ch);
}
// -----------------------------------
// Rebind_facet_pmap
// -----------------------------------
@ -207,17 +207,17 @@ class Rebind_facet_pmap
typedef std::map<Surface_patch_index,int> Surface_map;
typedef typename C3T3::Facet Facet;
typedef unsigned int size_type;
public:
Rebind_facet_pmap(const C3T3& c3t3, const Cell_pmap& cell_pmap)
: r_c3t3_(c3t3)
, cell_pmap_(cell_pmap)
{
typedef typename C3T3::Facets_in_complex_iterator Facet_iterator;
int first_index = 1;
int index_counter = first_index;
for( Facet_iterator facet_it = r_c3t3_.facets_in_complex_begin();
facet_it != r_c3t3_.facets_in_complex_end();
++facet_it)
@ -229,11 +229,11 @@ public:
if(is_insert_successful.second)
++index_counter;
}
// Find cell_pmap_ unused indices
typedef typename C3T3::Cells_in_complex_iterator Cell_iterator;
std::set<int> cell_label_set;
for( Cell_iterator cell_it = r_c3t3_.cells_in_complex_begin();
cell_it != r_c3t3_.cells_in_complex_end();
++cell_it)
@ -241,7 +241,7 @@ public:
// Add subdomain index in set
cell_label_set.insert(get(cell_pmap_, cell_it));
}
// Rebind indices
index_counter = get_first_unused_label(cell_label_set,first_index);
for ( typename Surface_map::iterator mit = surface_map_.begin() ;
@ -251,11 +251,11 @@ public:
mit->second = index_counter++;
index_counter = get_first_unused_label(cell_label_set,index_counter);
}
#ifdef CGAL_MESH_3_IO_VERBOSE
std::cerr << "Nb of surface patches: " << surface_map_.size() << "\n";
std::cerr << "Surface mapping:\n\t" ;
typedef typename Surface_map::iterator Surface_map_iterator;
for ( Surface_map_iterator surf_it = surface_map_.begin() ;
surf_it != surface_map_.end() ;
@ -267,17 +267,17 @@ public:
std::cerr << "\n";
#endif
}
int surface_index(const Facet& f) const
{
return surface_index(r_c3t3_.surface_patch_index(f));
}
size_type surface_number() const
{
return surface_map_.size();
}
private:
int surface_index(const Surface_patch_index& index) const
{
@ -288,23 +288,23 @@ private:
else
return -1;
}
int get_first_unused_label(const std::set<int>& label_set,
int search_start) const
{
while ( label_set.end() != label_set.find(search_start) )
++search_start;
return search_start;
}
private:
const C3T3& r_c3t3_;
const Cell_pmap& cell_pmap_;
Surface_map surface_map_;
};
// Accessors
template <typename C3T3, typename Cell_pmap>
int
@ -313,7 +313,7 @@ get(const Rebind_facet_pmap<C3T3,Cell_pmap>& fmap,
{
return fmap.surface_index(f);
}
template <typename C3T3, typename Cell_pmap>
unsigned int
get_size(const Rebind_facet_pmap<C3T3,Cell_pmap>& fmap,
@ -322,7 +322,7 @@ get_size(const Rebind_facet_pmap<C3T3,Cell_pmap>& fmap,
return fmap.surface_number(f);
}
// -----------------------------------
// No_rebind_facet_pmap
// -----------------------------------
@ -332,7 +332,7 @@ class No_rebind_facet_pmap
typedef typename C3T3::Surface_patch_index Surface_patch_index;
typedef typename C3T3::Facet Facet;
typedef unsigned int size_type;
public:
No_rebind_facet_pmap(const C3T3& c3t3, const Cell_pmap& /*cell_pmap*/)
: r_c3t3_(c3t3) {}
@ -341,7 +341,7 @@ public:
{
return static_cast<int>(r_c3t3_.surface_patch_index(f));
}
private:
const C3T3& r_c3t3_;
};
@ -365,16 +365,16 @@ class No_rebind_facet_pmap_first
typedef typename C3T3::Surface_patch_index Surface_patch_index;
typedef typename C3T3::Facet Facet;
typedef unsigned int size_type;
public:
No_rebind_facet_pmap_first(const C3T3& c3t3, const Cell_pmap& /*cell_pmap*/)
: r_c3t3_(c3t3) {}
int surface_index(const Facet& f) const
{
return static_cast<int>(r_c3t3_.surface_patch_index(f).first);
}
private:
const C3T3& r_c3t3_;
};
@ -388,8 +388,8 @@ get(const No_rebind_facet_pmap_first<C3T3,Cell_pmap>& fmap,
{
return fmap.surface_index(f);
}
// -----------------------------------
// No_rebind_facet_pmap_second
// -----------------------------------
@ -399,16 +399,16 @@ class No_rebind_facet_pmap_second
typedef typename C3T3::Surface_patch_index Surface_patch_index;
typedef typename C3T3::Facet Facet;
typedef unsigned int size_type;
public:
No_rebind_facet_pmap_second(const C3T3& c3t3, const Cell_pmap& /*cell_pmap*/)
: r_c3t3_(c3t3) {}
int surface_index(const Facet& f) const
{
return static_cast<int>(r_c3t3_.surface_patch_index(f).second);
}
private:
const C3T3& r_c3t3_;
};
@ -422,9 +422,9 @@ get(const No_rebind_facet_pmap_second<C3T3,Cell_pmap>& fmap,
{
return fmap.surface_index(f);
}
// -----------------------------------
// No_patch_facet_pmap_first
// -----------------------------------
@ -434,32 +434,32 @@ class No_patch_facet_pmap_first
typedef typename C3T3::Surface_patch_index Surface_patch_index;
typedef typename C3T3::Facet Facet;
typedef typename C3T3::Cell_handle Cell_handle;
public:
No_patch_facet_pmap_first(const C3T3&, const Cell_pmap& cell_pmap)
: cell_pmap_(cell_pmap) { }
int surface_index(const Facet& f) const
{
Cell_handle c1 = f.first;
Cell_handle c2 = c1->neighbor(f.second);
int label1 = get(cell_pmap_,c1);
int label2 = get(cell_pmap_,c2);
if ( 0 == label1 || -1 == label1 )
label1 = label2;
if ( 0 == label2 || -1 == label2 )
label2 = label1;
return (std::min)(label1,label2);
}
private:
const Cell_pmap& cell_pmap_;
};
// Accessors
// Accessors
template <typename C3T3, typename Cell_pmap>
int
get(const No_patch_facet_pmap_first<C3T3,Cell_pmap>& fmap,
@ -477,32 +477,32 @@ class No_patch_facet_pmap_second
typedef typename C3T3::Surface_patch_index Surface_patch_index;
typedef typename C3T3::Facet Facet;
typedef typename C3T3::Cell_handle Cell_handle;
public:
No_patch_facet_pmap_second(const C3T3&, const Cell_pmap& cell_pmap)
: cell_pmap_(cell_pmap) { }
int surface_index(const Facet& f) const
{
Cell_handle c1 = f.first;
Cell_handle c2 = c1->neighbor(f.second);
int label1 = get(cell_pmap_,c1);
int label2 = get(cell_pmap_,c2);
if ( 0 == label1 || -1 == label1 )
label1 = label2;
if ( 0 == label2 || -1 == label2 )
label2 = label1;
return (std::max)(label1,label2);
}
private:
const Cell_pmap& cell_pmap_;
};
// Accessors
// Accessors
template <typename C3T3, typename Cell_pmap>
int
get(const No_patch_facet_pmap_second<C3T3,Cell_pmap>& fmap,
@ -510,11 +510,11 @@ get(const No_patch_facet_pmap_second<C3T3,Cell_pmap>& fmap,
{
return fmap.surface_index(f);
}
// -----------------------------------
// Default_vertex_index_pmap
// -----------------------------------
// -----------------------------------
template <typename C3T3, typename Cell_pmap, typename Facet_pmap>
class Default_vertex_pmap
{
@ -611,26 +611,26 @@ get(const Default_vertex_pmap<C3T3,Cell_pmap,Facet_pmap>& vmap,
// -----------------------------------
// Null pmap
// -----------------------------------
// -----------------------------------
template <typename C3T3, typename Cell_pmap>
struct Null_facet_pmap
{
Null_facet_pmap(const C3T3&, const Cell_pmap&) {}
};
template <typename C3T3, typename Cell_pmap>
int get(const Null_facet_pmap<C3T3,Cell_pmap>&,
const typename C3T3::Facet&)
{
return 0;
}
template <typename C3T3, typename Cell_pmap, typename Facet_pmap>
struct Null_vertex_pmap
{
Null_vertex_pmap(const C3T3&, const Cell_pmap&, const Facet_pmap&) {}
};
template <typename C3T3, typename Cell_pmap, typename Facet_pmap>
int get(const Null_vertex_pmap<C3T3, Cell_pmap, Facet_pmap>&,
const typename C3T3::Vertex_handle&)
@ -645,7 +645,7 @@ int get(const Null_vertex_pmap<C3T3, Cell_pmap, Facet_pmap>&,
template <typename C3T3, bool rebind, bool no_patch>
struct Medit_pmap_generator{};
template <typename C3T3>
struct Medit_pmap_generator<C3T3, true, false>
{
@ -653,11 +653,11 @@ struct Medit_pmap_generator<C3T3, true, false>
typedef Rebind_facet_pmap<C3T3, Cell_pmap> Facet_pmap;
typedef Null_facet_pmap<C3T3, Cell_pmap> Facet_pmap_twice;
typedef Default_vertex_pmap<C3T3, Cell_pmap, Facet_pmap> Vertex_pmap;
bool print_twice() { return false; }
};
template <typename C3T3>
struct Medit_pmap_generator<C3T3, true, true>
{
@ -665,7 +665,7 @@ struct Medit_pmap_generator<C3T3, true, true>
typedef No_patch_facet_pmap_first<C3T3,Cell_pmap> Facet_pmap;
typedef No_patch_facet_pmap_second<C3T3,Cell_pmap> Facet_pmap_twice;
typedef Default_vertex_pmap<C3T3, Cell_pmap, Facet_pmap> Vertex_pmap;
bool print_twice() { return true; }
};
@ -677,10 +677,10 @@ struct Medit_pmap_generator<C3T3, false, true>
typedef No_patch_facet_pmap_first<C3T3,Cell_pmap> Facet_pmap;
typedef No_patch_facet_pmap_second<C3T3,Cell_pmap> Facet_pmap_twice;
typedef Default_vertex_pmap<C3T3, Cell_pmap, Facet_pmap> Vertex_pmap;
bool print_twice() { return true; }
};
template <typename C3T3>
struct Medit_pmap_generator<C3T3, false, false>
{
@ -688,17 +688,17 @@ struct Medit_pmap_generator<C3T3, false, false>
typedef Rebind_facet_pmap<C3T3,Cell_pmap> Facet_pmap;
typedef Null_facet_pmap<C3T3, Cell_pmap> Facet_pmap_twice;
typedef Null_vertex_pmap<C3T3, Cell_pmap, Facet_pmap> Vertex_pmap;
bool print_twice() { return false; }
};
//-------------------------------------------------------
// IO functions
//-------------------------------------------------------
template <class C3T3, bool rebind, bool no_patch>
void
output_to_medit(std::ostream& os,
@ -707,18 +707,18 @@ output_to_medit(std::ostream& os,
#ifdef CGAL_MESH_3_IO_VERBOSE
std::cerr << "Output to medit:\n";
#endif
typedef Medit_pmap_generator<C3T3,rebind,no_patch> Generator;
typedef typename Generator::Cell_pmap Cell_pmap;
typedef typename Generator::Facet_pmap Facet_pmap;
typedef typename Generator::Facet_pmap_twice Facet_pmap_twice;
typedef typename Generator::Vertex_pmap Vertex_pmap;
Cell_pmap cell_pmap(c3t3);
Facet_pmap facet_pmap(c3t3,cell_pmap);
Facet_pmap_twice facet_pmap_twice(c3t3,cell_pmap);
Vertex_pmap vertex_pmap(c3t3,cell_pmap,facet_pmap);
output_to_medit(os,
c3t3,
vertex_pmap,
@ -726,14 +726,14 @@ output_to_medit(std::ostream& os,
cell_pmap,
facet_pmap_twice,
Generator().print_twice());
#ifdef CGAL_MESH_3_IO_VERBOSE
std::cerr << "done.\n";
#endif
}
template <class C3T3,
class Vertex_index_property_map,
class Facet_index_property_map,
@ -795,11 +795,11 @@ output_to_medit(std::ostream& os,
// Facets
//-------------------------------------------------------
typename C3T3::size_type number_of_triangles = c3t3.number_of_facets_in_complex();
if ( print_each_facet_twice )
number_of_triangles += number_of_triangles;
os << "Triangles\n"
os << "Triangles\n"
<< number_of_triangles << '\n';
for( Facet_iterator fit = c3t3.facets_in_complex_begin();
@ -807,7 +807,7 @@ output_to_medit(std::ostream& os,
++fit)
{
typename C3T3::Facet f = (*fit);
// Apply priority among subdomains, to get consistent facet orientation per subdomain-pair interface.
if ( print_each_facet_twice )
{
@ -815,23 +815,23 @@ output_to_medit(std::ostream& os,
if (f.first->subdomain_index() > f.first->neighbor(f.second)->subdomain_index())
f = tr.mirror_facet(f);
}
// Get facet vertices in CCW order.
Vertex_handle vh1 = f.first->vertex((f.second + 1) % 4);
Vertex_handle vh2 = f.first->vertex((f.second + 2) % 4);
Vertex_handle vh3 = f.first->vertex((f.second + 3) % 4);
// Facet orientation also depends on parity.
if (f.second % 2 != 0)
std::swap(vh2, vh3);
os << V[vh1] << ' ' << V[vh2] << ' ' << V[vh3] << ' ';
os << V[vh1] << ' ' << V[vh2] << ' ' << V[vh3] << ' ';
os << get(facet_pmap, *fit) << '\n';
// Print triangle again if needed, with opposite orientation
if ( print_each_facet_twice )
{
os << V[vh3] << ' ' << V[vh2] << ' ' << V[vh1] << ' ';
os << V[vh3] << ' ' << V[vh2] << ' ' << V[vh1] << ' ';
os << get(facet_twice_pmap, *fit) << '\n';
}
}

View File

@ -30,7 +30,7 @@
namespace CGAL{
template <class C3T3>
void
void
write_cells_tag(std::ostream& os,
const C3T3 & c3t3,
std::map<typename C3T3::Triangulation::Vertex_handle, std::size_t> & V,
@ -52,7 +52,7 @@ write_cells_tag(std::ostream& os,
os << " <Cells>\n"
<< " <DataArray Name=\"connectivity\""
<< formatattribute << typeattribute;
if (binary) { // if binary output, just write the xml tag
os << " offset=\"" << offset << "\"/>\n";
offset += (4 * c3t3.number_of_cells() + 1) * sizeof(std::size_t);
@ -69,11 +69,11 @@ write_cells_tag(std::ostream& os,
}
os << "\n </DataArray>\n";
}
// Write offsets
os << " <DataArray Name=\"offsets\""
<< formatattribute << typeattribute;
if (binary) { // if binary output, just write the xml tag
os << " offset=\"" << offset << "\"/>\n";
offset += (c3t3.number_of_cells() + 1) * sizeof(std::size_t);
@ -83,12 +83,12 @@ write_cells_tag(std::ostream& os,
os << ">\n";
std::size_t cells_offset = 0;
for( Cell_iterator cit = c3t3.cells_in_complex_begin() ;
cit != c3t3.cells_in_complex_end() ;
++cit )
cit != c3t3.cells_in_complex_end() ;
++cit )
{
cells_offset += 4;
os << cells_offset << " ";
}
cells_offset += 4;
os << cells_offset << " ";
}
os << "\n </DataArray>\n";
}
@ -104,8 +104,8 @@ write_cells_tag(std::ostream& os,
else {
os << ">\n";
for( Cell_iterator cit = c3t3.cells_in_complex_begin() ;
cit != c3t3.cells_in_complex_end() ;
++cit )
cit != c3t3.cells_in_complex_end() ;
++cit )
os << "10 ";
os << "\n </DataArray>\n";
}
@ -131,7 +131,7 @@ write_cells(std::ostream& os,
off += 4;
offsets.push_back(off);
for (int i=0; i<4; i++)
connectivity_table.push_back(V[cit->vertex(i)]);
connectivity_table.push_back(V[cit->vertex(i)]);
}
IO::internal::write_vector<std::size_t>(os,connectivity_table);
@ -141,7 +141,7 @@ write_cells(std::ostream& os,
template <class Tr>
void
void
write_c3t3_points_tag(std::ostream& os,
const Tr & tr,
std::size_t size_of_vertices,
@ -163,12 +163,12 @@ write_c3t3_points_tag(std::ostream& os,
<< format;
if (binary) {
os << "\" offset=\"" << offset << "\"/>\n";
os << "\" offset=\"" << offset << "\"/>\n";
offset += 3 * size_of_vertices * sizeof(FT) + sizeof(std::size_t);
// dim coords per points + length of the encoded data (size_t)
}
else {
os << "\">\n";
os << "\">\n";
for( Finite_vertices_iterator vit = tr.finite_vertices_begin();
vit != tr.finite_vertices_end();
++vit)
@ -187,7 +187,7 @@ write_c3t3_points_tag(std::ostream& os,
os << " </Points>\n";
}
// writes the points appended data at the end of the .vtu file
// writes the points appended data at the end of the .vtu file
template <class Tr>
void
write_c3t3_points(std::ostream& os,
@ -217,12 +217,12 @@ write_c3t3_points(std::ostream& os,
// writes the attribute tags before binary data is appended
template <class T>
void
void
write_attribute_tag(std::ostream& os,
const std::string& attr_name,
const std::vector<T>& attribute,
bool binary,
std::size_t& offset)
const std::string& attr_name,
const std::vector<T>& attribute,
bool binary,
std::size_t& offset)
{
std::string format = binary ? "appended" : "ascii";
std::string type = "";
@ -239,28 +239,28 @@ write_attribute_tag(std::ostream& os,
else
type = "UInt64";
}
os << " <DataArray type=\"" << type << "\" Name=\"" << attr_name << "\" format=\"" << format;
os << " <DataArray type=\"" << type << "\" Name=\"" << attr_name << "\" format=\"" << format;
if (binary) {
os << "\" offset=\"" << offset << "\"/>\n";
os << "\" offset=\"" << offset << "\"/>\n";
offset += attribute.size() * sizeof(T) + sizeof(std::size_t);
}
else {
typedef typename std::vector<T>::const_iterator Iterator;
os << "\">\n";
os << "\">\n";
for (Iterator it = attribute.begin();
it != attribute.end();
++it )
it != attribute.end();
++it )
os << *it << " ";
os << "\n </DataArray>\n";
}
}
// writes the attributes appended data at the end of the .vtu file
// writes the attributes appended data at the end of the .vtu file
template <typename FT>
void
write_attributes(std::ostream& os,
const std::vector<FT>& att)
const std::vector<FT>& att)
{
IO::internal::write_vector(os,att);
}
@ -292,7 +292,7 @@ void output_to_vtu_with_attributes(std::ostream& os,
#else // CGAL_BIG_ENDIAN
os << " byte_order=\"BigEndian\"";
#endif
switch(sizeof(std::size_t)) {
case 4: os << " header_type=\"UInt32\""; break;
case 8: os << " header_type=\"UInt64\""; break;
@ -328,7 +328,7 @@ void output_to_vtu_with_attributes(std::ostream& os,
os << " </Piece>\n"
<< " </UnstructuredGrid>\n";
if (binary) {
os << "<AppendedData encoding=\"raw\">\n_";
os << "<AppendedData encoding=\"raw\">\n_";
write_c3t3_points(os,tr,V); // fills V if the mode is BINARY
write_cells(os,c3t3,V);
for(std::size_t i = 0; i< attributes.size(); ++i)
@ -364,7 +364,7 @@ void output_to_vtu(std::ostream& os,
double v = cit->subdomain_index();
mids.push_back(v);
}
std::vector<std::pair<const char*, Vtu_attributes > > atts;
Vtu_attributes v = &mids;
atts.push_back(std::make_pair("MeshDomain", v));

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\mainpage User Manual
\mainpage User Manual
\anchor Chapter_Point_Set_Processing
\anchor chappoint_set_processing_3
@ -22,12 +22,12 @@ Point set processing. Left: 275K points sampled on the statue of an elephant wit
In the context of surface reconstruction we can position the elements
of this component along the common surface reconstruction pipeline
(\cgalFigureRef{Point_set_processing_3figpipeline}) which involves the
following steps:
following steps:
-# Scanning and scan registration to produce a set of
points or points with normals;
-# Outlier removal;
-# Simplification to reduce the number of input points;
-# Smoothing to reduce noise in the input data;
-# Simplification to reduce the number of input points;
-# Smoothing to reduce noise in the input data;
-# Normal estimation and orientation when the normals are not already provided
by the acquisition device; and
-# Surface reconstruction. Chapter \ref Chapter_Poisson_Surface_Reconstruction "Poisson Surface Reconstruction"
@ -84,9 +84,9 @@ The following classes described in Chapter \ref PkgPropertyMap
provide property maps for the implementations of points with normals
listed above:
- `Identity_property_map<T>`
- `First_of_pair_property_map<Pair>` and `Second_of_pair_property_map<Pair>`
- `Nth_of_tuple_property_map<N, Tuple>`
- `Identity_property_map<T>`
- `First_of_pair_property_map<Pair>` and `Second_of_pair_property_map<Pair>`
- `Nth_of_tuple_property_map<N, Tuple>`
`Identity_property_map<Point_3>` is the default value of the
position property map expected by all functions in this component.
@ -96,7 +96,7 @@ See below examples using pair and tuple property maps.
Users of this package may use other types to represent positions and
normals if they implement the corresponding property maps.
Points and normals can even be stored in separate containers
Points and normals can even be stored in separate containers
and accessed by their index, as any built-in vector is also
a property map.
@ -128,7 +128,7 @@ parameters (than can be deduced automatically in simple cases) are
moved to the end of the function in a single named parameter object
(see \ref BGLNamedParameters). The code translated to the current API
becomes:
\code
std::vector<PointVectorPair> points;
@ -297,7 +297,7 @@ The 4 functions presented here work both with 2D points and 3D points
and they shouldn't be used if the point sets do not sample a curve in
2D or a surface in 3D.
\subsection Point_set_processing_3Example_scale_estimation_global Global Scale Example
\subsection Point_set_processing_3Example_scale_estimation_global Global Scale Example
The following example reads a 3D point set in the `xyz` format and:
@ -340,7 +340,7 @@ one point set w.r.t. another and directly aligns it to it.
\subsection Point_set_processing_3Examples_registration_OpenGR OpenGR Example
The following example reads two point sets and aligns them using the
The following example reads two point sets and aligns them using the
\ref thirdpartyOpenGR library, using the Super4PCS algorithm:
\cgalExample{Point_set_processing_3/registration_with_OpenGR.cpp}
@ -389,7 +389,7 @@ defined by the parameter delta (accuracy).
Using too wide values will slow down the algorithm by increasing the size of the congruent set,
while using to small values prevents to find a solution. This parameter impacts other steps of
the algorithm, see the paper \cgalCite{cgal:mam-sffgp-14} for more details.
the algorithm, see the paper \cgalCite{cgal:mam-sffgp-14} for more details.
\subsubsection Point_set_processing_3Examples_registration_OpenGR_parameter_normal Parameter: maximum normal deviation
@ -402,7 +402,7 @@ candidates that should indeed have been matched and may thus result in a quality
\subsubsection Point_set_processing_3Examples_registration_OpenGR_parameter_overlap Parameter: overlap
Ratio of expected overlap between the two point sets: it is ranging between 0 (no overlap) to 1 (100% overlap).
Ratio of expected overlap between the two point sets: it is ranging between 0 (no overlap) to 1 (100% overlap).
The overlap parameter controls the size of the basis used for registration, as shown below:
@ -411,7 +411,7 @@ The effect of varying overlap parameter on the size of the basis used for regist
\cgalFigureEnd
Usually, the larger the overlap, the faster the algorithm.
When the overlap is unknown, a simple way to set this parameter is to start from
When the overlap is unknown, a simple way to set this parameter is to start from
100% overlap, and decrease the value until obtaining a good result.
Using too small values will slow down the algorithm, and
reduce the accuracy of the result.
@ -424,7 +424,7 @@ randomly, it is recommended to use a large time value to explore the whole space
\subsection Point_set_processing_3Examples_registration_PointMatcher PointMatcher Example
The following example reads two point sets and aligns them using the
The following example reads two point sets and aligns them using the
\ref thirdpartylibpointmatcher library, using the ICP algorithm. It also shows how
to customize ICP algorithm by using possible configurations:
\cgalExample{Point_set_processing_3/registration_with_pointmatcher.cpp}
@ -463,7 +463,7 @@ The method used for matching (linking) the points from to the points in the refe
Corresponds to `matcher` configuration module of \ref thirdpartylibpointmatcher
library. The matcher should be chosen and set from possible components of
the `matcher` configuration module.
the `matcher` configuration module.
See <a href="https://libpointmatcher.readthedocs.io/en/latest/Configuration/#configuration-of-an-icp-chain">libpointmatcher documentation</a>
for possible configurations.
@ -478,7 +478,7 @@ range.
Corresponds to `outlierFilters` configuration module of \ref thirdpartylibpointmatcher
library. The filters should be chosen and set from possible components of
the `outlierFilters` configuration module.
the `outlierFilters` configuration module.
See <a href="https://libpointmatcher.readthedocs.io/en/latest/Configuration/#configuration-of-an-icp-chain">libpointmatcher documentation</a>
for possible configurations.
@ -489,7 +489,7 @@ the error between the point sets.
Corresponds to `errorMinimizer` configuration module of \ref thirdpartylibpointmatcher
library. The error minimizer should be chosen and set from possible components of
the `errorMinimizer` configuration module.
the `errorMinimizer` configuration module.
See <a href="https://libpointmatcher.readthedocs.io/en/latest/Configuration/#configuration-of-an-icp-chain">libpointmatcher documentation</a>
for possible configurations.
@ -500,7 +500,7 @@ typically provide deeper scrutiny than the logger.
Corresponds to `inspector` configuration module of \ref thirdpartylibpointmatcher
library. The inspector should be chosen and set from possible components of
the `inspector` configuration module.
the `inspector` configuration module.
See <a href="https://libpointmatcher.readthedocs.io/en/latest/Configuration/#configuration-of-an-icp-chain">libpointmatcher documentation</a>
for possible configurations.
@ -512,7 +512,7 @@ does not get effected by this configuration.
Corresponds to `logger` configuration module of \ref thirdpartylibpointmatcher
library. The logger should be chosen and set from possible components of
the `logger` configuration module.
the `logger` configuration module.
See <a href="https://libpointmatcher.readthedocs.io/en/latest/Configuration/#configuration-of-an-icp-chain">libpointmatcher documentation</a>
for possible configurations.
@ -526,7 +526,7 @@ The following example reads two point sets and aligns them by using both
\ref thirdpartyOpenGR and \ref thirdpartylibpointmatcher libraries, respectively.
It depicts a use case where a coarse estimation of a registration transformation
is done using the Super4PCS algorithm. Then, a fine registration from this coarse
registration using the ICP algorithm.
registration using the ICP algorithm.
\cgalExample{Point_set_processing_3/registration_with_opengr_pointmatcher_pipeline.cpp}
\cgalFigureRef{Point_set_processing_3tableRegistrationRegistration_visualization_table} demonstrates
@ -603,7 +603,7 @@ above-mentioned example was used.
\cgalFigureCaptionBegin{Point_set_processing_3tableRegistrationRegistration_visualization_table}
Visualization of registered hippo scans with different registration methods.
Two scans are used: red as the reference, green as the one for which the transformation
is computed and applied. To obtain the results, the example code given in
is computed and applied. To obtain the results, the example code given in
\ref Point_set_processing_3Examples_registration_OpenGR ,
\ref Point_set_processing_3Examples_registration_PointMatcher ,
\ref Point_set_processing_3Examples_registration_OpenGR_PointMatcher_Pipeline
@ -681,7 +681,7 @@ simplification of the point set through local clusters
directly selected by the user or it automatically adapts to the local
variation of the point set.
Function `wlop_simplify_and_regularize_point_set()` not only simplifies,
Function `wlop_simplify_and_regularize_point_set()` not only simplifies,
but also regularizes downsampled points. This is an implementation of
the Weighted Locally Optimal Projection (WLOP) algorithm \cgalCite{wlop-2009}.
@ -743,7 +743,7 @@ Computing density weights for each point is an optional preprocessing. For examp
\cgalFigureBegin{Point_set_processing_3figWLOP_parameter_density, WLOP_parameter_density.jpg}
Comparison between with and without density: Left: input. Middle: `require_uniform_sampling = false`. Right: `require_uniform_sampling=true`.
Comparison between with and without density: Left: input. Middle: `require_uniform_sampling = false`. Right: `require_uniform_sampling=true`.
\cgalFigureEnd
\subsubsection Point_set_processing_3WLOP_parameter_neighborhood_size Parameter: neighbor_radius
@ -754,14 +754,14 @@ Comparison between different sizes of neighbor radius.
\cgalFigureEnd
\subsubsection Point_set_processing_3WLOP_parallel_performance Parallel Performance
A parallel version of WLOP is provided and requires the executable to be linked against the
A parallel version of WLOP is provided and requires the executable to be linked against the
<a href="https://www.threadingbuildingblocks.org">Intel TBB library</a>.
To control the number of threads used, the user may use the tbb::task_scheduler_init class.
See the <a href="https://www.threadingbuildingblocks.org/documentation">TBB documentation</a>
See the <a href="https://www.threadingbuildingblocks.org/documentation">TBB documentation</a>
for more details. We provide below a speed-up chart generated using the parallel version of the WLOP algorithm. The machine used is a PC running Windows 7 64-bits with a 4-core i7-4700HQ@2.40GHz CPU with 8GB of RAM.
\cgalFigureBegin{Point_set_processing_3figWLOP_parallel_performance, parallel_WLOP_performance.jpg}
Parallel WLOP speed-up, compared to the sequential version of the algorithm.
Parallel WLOP speed-up, compared to the sequential version of the algorithm.
\cgalFigureEnd
@ -771,11 +771,11 @@ Two smoothing functions are devised to smooth an input point set.
Function `jet_smooth_point_set()` smooths the input point set by
projecting each point onto a smooth parametric surface patch
(so-called jet surface) fitted over its nearest neighbors.
(so-called jet surface) fitted over its nearest neighbors.
Function `bilateral_smooth_point_set()` smooths the input point set by
iteratively projecting each point onto the implicit surface patch fitted over its nearest neighbors.
Bilateral projection preserves sharp features according to the normal (gradient) information.
Bilateral projection preserves sharp features according to the normal (gradient) information.
Normals are thus required as input. For more details, see section 4 of \cgalCite{ear-2013}.
For both functions, the user can either specify a fixed number of
@ -783,7 +783,7 @@ nearest neighbors or a fixed spherical neighborhood radius.
\subsection Point_set_processing_3Example_jet_smoothing Jet Smoothing Example
The following example generates a set of 9 points close to the `xy`
The following example generates a set of 9 points close to the `xy`
plane and smooths them using 8 nearest neighbors:
\cgalExample{Point_set_processing_3/jet_smoothing_example.cpp}
@ -798,14 +798,14 @@ Comparison for two smoothing methods: Left: Input, 250K points, normal-color map
\subsubsection Point_set_processing_3Bilateral_smoothing_parallel_performance Parallel
Performance:
A parallel version of bilateral smoothing is provided and requires the executable to be linked against the
Performance:
A parallel version of bilateral smoothing is provided and requires the executable to be linked against the
<a href="https://www.threadingbuildingblocks.org">Intel TBB library</a>.
The number of threads used is controlled through the tbb::task_scheduler_init class.
See the <a href="https://www.threadingbuildingblocks.org/documentation">TBB documentation</a> for more details. We provide below a speed-up chart generated using the parallel version of the bilateral smoothing algorithm. The machine used is a PC running Windows 7 64-bits with a 4-core i7-4700HQ@2.40GHz CPU with 8GB of RAM.
\cgalFigureBegin{Point_set_processing_3Bilateral_smoothing_parallel_performance, parallel_bilateral_smooth_point_set_performance.jpg}
Parallel bilateral smoothing speed-up, compared to the sequential version of the algorithm.
Parallel bilateral smoothing speed-up, compared to the sequential version of the algorithm.
\cgalFigureEnd
\section Point_set_processing_3NormalEstimation Normal Estimation
@ -837,9 +837,9 @@ of nearest neighbors or a fixed spherical neighborhood radius.
Function `mst_orient_normals()` orients the normals of a set of
points with unoriented normals using the method described by Hoppe et
al. in <I>Surface reconstruction from unorganized points</I> \cgalCite{cgal:hddms-srup-92}.
al. in <I>Surface reconstruction from unorganized points</I> \cgalCite{cgal:hddms-srup-92}.
More specifically, this method constructs a
Riemannian graph over the input points (the graph of the
Riemannian graph over the input points (the graph of the
nearest neighbor points) and propagates a seed normal orientation
within a minimum spanning tree computed over this graph. The result is
an oriented normal vector for each input unoriented normal, except for
@ -873,7 +873,7 @@ The following example reads a point set from a file, upsamples it to get a dense
\subsubsection Point_set_processing_3Upsample_Parameter1 Parameter: edge_sensitivity
This parameter controls where the new points are inserted. Larger values of edge-sensitivity give higher priority to inserting points along the sharp features.
For example, as shown in the following figure, high value is preferable when one wants to insert more points on sharp features, where the local gradient is high, e.g., darts, cusps, creases and corners. In contrast, points are evenly inserted when edge_sensitivity is set to 0. The range of possible value is [0, 1].
For example, as shown in the following figure, high value is preferable when one wants to insert more points on sharp features, where the local gradient is high, e.g., darts, cusps, creases and corners. In contrast, points are evenly inserted when edge_sensitivity is set to 0. The range of possible value is [0, 1].
\cgalFigureBegin{Point_set_processing_3figUpsample_edge_sensitivity, upsample_edge_sensitivity.jpg}
@ -884,14 +884,14 @@ Upsampling for different edge-sensitivity parameter values. The input containing
This parameter controls the preservation of sharp features.
\cgalFigureBegin{Point_set_processing_3figUpsample_sharpness_angle, upsample_sharpness_angle.jpg}
Upsampling for different sharpness_angle parameter values. The input containing 850 points is upsampled to 425K points in all cases depicted.
Upsampling for different sharpness_angle parameter values. The input containing 850 points is upsampled to 425K points in all cases depicted.
\cgalFigureEnd
\subsubsection Point_set_processing_3upsample_neighborhood_size Parameter: neighbor_radius
Usually, the neighborhood of sample points should include at least one ring of neighboring sample points. Using small neighborhood size may not be able to insert new points. Using big neighborhood size can fill small holes, but points inserted on the edges could be irregular. The function will use a neighborhood size estimation if this parameter value is set to default or smaller than zero.
\cgalFigureBegin{Point_set_processing_3figupsample_neighborhood_size, upsample_neighborhood_size.jpg}
Comparison between different sizes of neighbor radius.
Comparison between different sizes of neighbor radius.
\cgalFigureEnd
\section Point_set_processing_3FeaturesEstimation Feature Edges Estimation
@ -915,7 +915,7 @@ points that are on sharp edges:
The function `structure_point_set()` generates a structured version of
the input point set assigned to a set of planes. Such an input can be
produced by a shape detection algorithm (see \ref PkgShapeDetectionRef).
produced by a shape detection algorithm (see \ref PkgShapeDetectionRef).
Point set structuring is based on the article \cgalCite{cgal:la-srpss-13}.
- __Planes__: inliers of each detected plane are replaced by sets of
@ -995,5 +995,5 @@ Started from GSoC'2019, Necip Fazil Yildiran with the help of Nicolas Mellado an
libraries that perform registration on two point sets.
*/
*/
} /* namespace CGAL */

View File

@ -414,7 +414,7 @@ compute_face_face_intersection(const FaceRange& face_range1,
CGAL::Bbox_3 b1 = CGAL::Polygon_mesh_processing::bbox(tm1, np1),
b2 = CGAL::Polygon_mesh_processing::bbox(tm2, np2);
if(!CGAL::do_overlap(b1, b2))
{
return out;
@ -643,7 +643,7 @@ compute_face_polylines_intersection(const FaceRange& face_range,
using parameters::get_parameter;
CGAL_precondition(CGAL::is_triangle_mesh(tm));
CGAL::Bbox_3 b1,b2;
b1 = CGAL::Polygon_mesh_processing::bbox(tm, np);
for(std::size_t i =0; i< polyline_range.size(); ++i)
@ -651,10 +651,10 @@ compute_face_polylines_intersection(const FaceRange& face_range,
b2 += CGAL::bbox_3(polyline_range[i].begin(),
polyline_range[i].end());
}
if(!CGAL::do_overlap(b1,b2))
return out;
typedef TriangleMesh TM;
typedef typename boost::graph_traits<TM>::face_descriptor face_descriptor;
typedef typename GetVertexPointMap<TM, NamedParameters>::const_type VertexPointMap;

View File

@ -6,10 +6,10 @@
#ifdef CGAL_USE_SCIP // defined (or not) by CMake scripts, do not define by hand
#include <CGAL/SCIP_mixed_integer_program_traits.h>
typedef CGAL::SCIP_mixed_integer_program_traits<double> MIP_Solver;
typedef CGAL::SCIP_mixed_integer_program_traits<double> MIP_Solver;
#elif defined(CGAL_USE_GLPK) // defined (or not) by CMake scripts, do not define by hand
#include <CGAL/GLPK_mixed_integer_program_traits.h>
typedef CGAL::GLPK_mixed_integer_program_traits<double> MIP_Solver;
typedef CGAL::GLPK_mixed_integer_program_traits<double> MIP_Solver;
#endif
@ -20,17 +20,17 @@ typedef CGAL::GLPK_mixed_integer_program_traits<double> MIP_Solver;
#include <fstream>
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;
typedef CGAL::Polygonal_surface_reconstruction<Kernel> Polygonal_surface_reconstruction;
typedef CGAL::Surface_mesh<Point> Surface_mesh;
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;
typedef CGAL::Polygonal_surface_reconstruction<Kernel> Polygonal_surface_reconstruction;
typedef CGAL::Surface_mesh<Point> Surface_mesh;
// Point with normal, and plane index
typedef boost::tuple<Point, Vector, int> PNI;
typedef CGAL::Nth_of_tuple_property_map<0, PNI> Point_map;
typedef CGAL::Nth_of_tuple_property_map<1, PNI> Normal_map;
typedef CGAL::Nth_of_tuple_property_map<2, PNI> Plane_index_map;
typedef boost::tuple<Point, Vector, int> PNI;
typedef CGAL::Nth_of_tuple_property_map<0, PNI> Point_map;
typedef CGAL::Nth_of_tuple_property_map<1, PNI> Normal_map;
typedef CGAL::Nth_of_tuple_property_map<2, PNI> Plane_index_map;
/*
* The following example shows how to control the model complexity by

View File

@ -6,10 +6,10 @@
#ifdef CGAL_USE_SCIP // defined (or not) by CMake scripts, do not define by hand
#include <CGAL/SCIP_mixed_integer_program_traits.h>
typedef CGAL::SCIP_mixed_integer_program_traits<double> MIP_Solver;
typedef CGAL::SCIP_mixed_integer_program_traits<double> MIP_Solver;
#elif defined(CGAL_USE_GLPK) // defined (or not) by CMake scripts, do not define by hand
#include <CGAL/GLPK_mixed_integer_program_traits.h>
typedef CGAL::GLPK_mixed_integer_program_traits<double> MIP_Solver;
typedef CGAL::GLPK_mixed_integer_program_traits<double> MIP_Solver;
#endif
@ -20,17 +20,17 @@ typedef CGAL::GLPK_mixed_integer_program_traits<double> MIP_Solver;
#include <fstream>
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;
typedef CGAL::Polygonal_surface_reconstruction<Kernel> Polygonal_surface_reconstruction;
typedef CGAL::Surface_mesh<Point> Surface_mesh;
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;
typedef CGAL::Polygonal_surface_reconstruction<Kernel> Polygonal_surface_reconstruction;
typedef CGAL::Surface_mesh<Point> Surface_mesh;
// Point with normal, and plane index
typedef boost::tuple<Point, Vector, int> PNI;
typedef CGAL::Nth_of_tuple_property_map<0, PNI> Point_map;
typedef CGAL::Nth_of_tuple_property_map<1, PNI> Normal_map;
typedef CGAL::Nth_of_tuple_property_map<2, PNI> Plane_index_map;
typedef boost::tuple<Point, Vector, int> PNI;
typedef CGAL::Nth_of_tuple_property_map<0, PNI> Point_map;
typedef CGAL::Nth_of_tuple_property_map<1, PNI> Normal_map;
typedef CGAL::Nth_of_tuple_property_map<2, PNI> Plane_index_map;
/*
* The following example shows the reconstruction using user-provided

View File

@ -14,7 +14,7 @@ typedef CGAL::SCIP_mixed_integer_program_traits<double> MIP_Solver;
#elif defined(CGAL_USE_GLPK) // defined (or not) by CMake scripts, do not define by hand
#include <CGAL/GLPK_mixed_integer_program_traits.h>
typedef CGAL::GLPK_mixed_integer_program_traits<double> MIP_Solver;
typedef CGAL::GLPK_mixed_integer_program_traits<double> MIP_Solver;
#endif
@ -23,19 +23,19 @@ typedef CGAL::GLPK_mixed_integer_program_traits<double> MIP_Solver;
#include <fstream>
#include <CGAL/Timer.h>
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::FT FT;
typedef Kernel::Point_3 Point;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;
// Point with normal, and plane index.
typedef boost::tuple<Point, Vector, int> PNI;
typedef std::vector<PNI> Point_vector;
typedef CGAL::Nth_of_tuple_property_map<0, PNI> Point_map;
typedef CGAL::Nth_of_tuple_property_map<1, PNI> Normal_map;
typedef CGAL::Nth_of_tuple_property_map<2, PNI> Plane_index_map;
typedef CGAL::Nth_of_tuple_property_map<0, PNI> Point_map;
typedef CGAL::Nth_of_tuple_property_map<1, PNI> Normal_map;
typedef CGAL::Nth_of_tuple_property_map<2, PNI> Plane_index_map;
typedef CGAL::Shape_detection::Point_set::
Sphere_neighbor_query<Kernel, Point_vector, Point_map> Neighbor_query;
@ -44,8 +44,8 @@ Least_squares_plane_fit_region<Kernel, Point_vector, Point_map, Normal_map> Regi
typedef CGAL::Shape_detection::
Region_growing<Point_vector, Neighbor_query, Region_type> Region_growing;
typedef CGAL::Surface_mesh<Point> Surface_mesh;
typedef CGAL::Polygonal_surface_reconstruction<Kernel> Polygonal_surface_reconstruction;
typedef CGAL::Surface_mesh<Point> Surface_mesh;
typedef CGAL::Polygonal_surface_reconstruction<Kernel> Polygonal_surface_reconstruction;
class Index_map {

View File

@ -8,12 +8,12 @@
#ifdef CGAL_USE_SCIP // defined (or not) by CMake scripts, do not define by hand
#include <CGAL/SCIP_mixed_integer_program_traits.h>
typedef CGAL::SCIP_mixed_integer_program_traits<double> MIP_Solver;
typedef CGAL::SCIP_mixed_integer_program_traits<double> MIP_Solver;
#elif defined(CGAL_USE_GLPK) // defined (or not) by CMake scripts, do not define by hand
#include <CGAL/GLPK_mixed_integer_program_traits.h>
typedef CGAL::GLPK_mixed_integer_program_traits<double> MIP_Solver;
typedef CGAL::GLPK_mixed_integer_program_traits<double> MIP_Solver;
#endif
@ -25,26 +25,26 @@ typedef CGAL::GLPK_mixed_integer_program_traits<double> MIP_Solver;
#include <fstream>
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;
typedef Kernel::Point_3 Point;
typedef Kernel::Vector_3 Vector;
// Point with normal, and plane index
typedef boost::tuple<Point, Vector, int> PNI;
typedef std::vector<PNI> Point_vector;
typedef CGAL::Nth_of_tuple_property_map<0, PNI> Point_map;
typedef CGAL::Nth_of_tuple_property_map<1, PNI> Normal_map;
typedef CGAL::Nth_of_tuple_property_map<2, PNI> Plane_index_map;
typedef boost::tuple<Point, Vector, int> PNI;
typedef std::vector<PNI> Point_vector;
typedef CGAL::Nth_of_tuple_property_map<0, PNI> Point_map;
typedef CGAL::Nth_of_tuple_property_map<1, PNI> Normal_map;
typedef CGAL::Nth_of_tuple_property_map<2, PNI> Plane_index_map;
typedef CGAL::Shape_detection::Efficient_RANSAC_traits<Kernel, Point_vector, Point_map, Normal_map> Traits;
typedef CGAL::Shape_detection::Efficient_RANSAC<Traits> Efficient_ransac;
typedef CGAL::Shape_detection::Plane<Traits> Plane;
typedef CGAL::Shape_detection::Plane<Traits> Plane;
typedef CGAL::Shape_detection::Point_to_shape_index_map<Traits> Point_to_shape_index_map;
typedef CGAL::Polygonal_surface_reconstruction<Kernel> Polygonal_surface_reconstruction;
typedef CGAL::Surface_mesh<Point> Surface_mesh;
typedef CGAL::Polygonal_surface_reconstruction<Kernel> Polygonal_surface_reconstruction;
typedef CGAL::Surface_mesh<Point> Surface_mesh;
/*
* This example first extracts planes from the input point cloud

View File

@ -30,9 +30,9 @@ class Polyhedron_demo_ply_plugin :
public:
bool isDefaultLoader(const CGAL::Three::Scene_item *item) const override
{
if(qobject_cast<const Scene_points_with_normal_item*>(item))
return true;
{
if(qobject_cast<const Scene_points_with_normal_item*>(item))
return true;
return false;
}
QString name() const override{ return "ply_plugin"; }
@ -66,7 +66,7 @@ load(QFileInfo fileinfo, bool& ok, bool add_to_scene) {
ok = false;
return QList<Scene_item*>();
}
// Test if input is mesh or point set
bool input_is_mesh = false;
std::string line;
@ -101,7 +101,7 @@ load(QFileInfo fileinfo, bool& ok, bool add_to_scene) {
// First try mesh
SMesh *surface_mesh = new SMesh();
std::string comments;
if (CGAL::read_PLY(in, *surface_mesh, comments))
{
Scene_surface_mesh_item* sm_item = new Scene_surface_mesh_item(surface_mesh);
@ -191,13 +191,13 @@ save(QFileInfo fileinfo,QList<CGAL::Three::Scene_item*>& items)
if (!ok)
return false;
std::ofstream out(fileinfo.filePath().toUtf8().data(), std::ios::binary);
if (choice == tr("Binary"))
CGAL::set_binary_mode(out);
else
out.precision (std::numeric_limits<double>::digits10 + 2);
// This plugin supports point sets
const Scene_points_with_normal_item* point_set_item =
qobject_cast<const Scene_points_with_normal_item*>(item);
@ -233,7 +233,7 @@ save(QFileInfo fileinfo,QList<CGAL::Three::Scene_item*>& items)
items.pop_front();
return res;
}
// This plugin supports textured surface meshes
const Scene_textured_surface_mesh_item* stm_item =
qobject_cast<const Scene_textured_surface_mesh_item*>(item);

View File

@ -71,7 +71,7 @@
#include <CGAL/Polygon_mesh_processing/internal/named_params_helper.h>
typedef Scene_surface_mesh_item Scene_facegraph_item;
typedef Scene_facegraph_item::Face_graph FaceGraph;
typedef boost::property_traits<boost::property_map<FaceGraph,
typedef boost::property_traits<boost::property_map<FaceGraph,
CGAL::vertex_point_t>::type>::value_type Point;
@ -206,8 +206,8 @@ public:
return (qobject_cast<const Scene_facegraph_item*>(item)
|| qobject_cast<const Scene_c3t3_item*>(item));
}
bool save(QFileInfo fileinfo,QList<CGAL::Three::Scene_item*>& items)
{
Scene_item* item = items.front();
@ -219,7 +219,7 @@ public:
const Scene_facegraph_item* poly_item =
qobject_cast<const Scene_facegraph_item*>(item);
if (poly_item)
{
if (extension != "vtp")
@ -250,11 +250,11 @@ public:
qobject_cast<const Scene_c3t3_item*>(item);
if(!c3t3_item || extension != "vtu")
return false;
std::ofstream os(output_filename.data());
os << std::setprecision(16);
const C3t3& c3t3 = c3t3_item->c3t3();
CGAL::output_to_vtu(os, c3t3);
}
items.pop_front();
@ -286,7 +286,7 @@ public:
CGAL::Three::Three::scene()->addItem(item);
return QList<Scene_item*>()<<item;
}
vtkSmartPointer<vtkPointSet> data;
vtkSmartPointer<CGAL::IO::internal::ErrorObserverVtk> obs =
vtkSmartPointer<CGAL::IO::internal::ErrorObserverVtk>::New();
@ -351,7 +351,7 @@ public:
{
group = new Scene_group_item(fileinfo.baseName());
}
if(is_polygon_mesh)
{
FaceGraph* poly = new FaceGraph();
@ -373,7 +373,7 @@ public:
}
}
}
if (is_c3t3)
{
typedef boost::array<int, 3> Facet; // 3 = id
@ -421,7 +421,7 @@ public:
}
}
CGAL::build_triangulation<Tr, true>(c3t3_item->c3t3().triangulation(), points, finite_cells, border_facets);
for( C3t3::Triangulation::Finite_cells_iterator
cit = c3t3_item->c3t3().triangulation().finite_cells_begin();
cit != c3t3_item->c3t3().triangulation().finite_cells_end();
@ -437,7 +437,7 @@ public:
}
}
}
//if there is no facet in the complex, we add the border facets.
if(c3t3_item->c3t3().number_of_facets_in_complex() == 0)
{
@ -447,10 +447,10 @@ public:
++fit)
{
typedef C3t3::Triangulation::Cell_handle Cell_handle;
Cell_handle c = fit->first;
Cell_handle nc = c->neighbor(fit->second);
// By definition, Subdomain_index() is supposed to be the id of the exterior
if(c->subdomain_index() != C3t3::Triangulation::Cell::Subdomain_index() &&
nc->subdomain_index() == C3t3::Triangulation::Cell::Subdomain_index())
@ -476,7 +476,7 @@ public:
return QList<Scene_item*>()<<c3t3_item;
}
}
if(is_polyline)
{
std::vector< std::vector<Point> > segments;
@ -498,14 +498,14 @@ public:
return QList<Scene_item*>()<<polyline_item;
}
}
if(group){
ok = true;
if(add_to_scene)
CGAL::Three::Three::scene()->addItem(group);
return QList<Scene_item*>()<<group;
}
QApplication::restoreOverrideCursor();
QMessageBox::warning(CGAL::Three::Three::mainWindow(),
"Problematic file",

View File

@ -89,7 +89,7 @@ struct Scene_polygon_soup_item_priv{
Edges = 0,
NM_edges
};
Polygon_soup* soup;
bool oriented;
mutable std::vector<float> positions_poly;
@ -104,7 +104,7 @@ struct Scene_polygon_soup_item_priv{
bool is_triangle, is_quad, stats_computed;
double minl, maxl, meanl, midl, mini, maxi, ave;
std::size_t nb_null_edges, nb_degen_faces;
Scene_polygon_soup_item* item;
};
@ -120,7 +120,7 @@ Scene_polygon_soup_item_priv::triangulate_polygon(Polygons_iterator pit, int pol
{
const CGAL::qglviewer::Vec off = static_cast<CGAL::Three::Viewer_interface*>(CGAL::QGLViewer::QGLViewerPool().first())->offset();
EPICK::Vector_3 offset(off.x,off.y,off.z);
//Computes the normal of the facet
Traits::Vector_3 normal = CGAL::NULL_VECTOR;
@ -135,7 +135,7 @@ Scene_polygon_soup_item_priv::triangulate_polygon(Polygons_iterator pit, int pol
}
if (normal == CGAL::NULL_VECTOR) // No normal could be computed, return
return;
typedef FacetTriangulator<SMesh, EPICK, std::size_t> FT;
std::size_t it = 0;
@ -310,7 +310,7 @@ Scene_polygon_soup_item_priv::compute_normals_and_vertices() const{
positions_nm_lines.push_back(b.y()+offset.y);
positions_nm_lines.push_back(b.z()+offset.z);
}
}
@ -333,7 +333,7 @@ Scene_polygon_soup_item::~Scene_polygon_soup_item()
delete d;
}
Scene_polygon_soup_item*
Scene_polygon_soup_item*
Scene_polygon_soup_item::clone() const {
Scene_polygon_soup_item* new_soup = new Scene_polygon_soup_item();
new_soup->d->soup = d->soup->clone();
@ -419,7 +419,7 @@ void Scene_polygon_soup_item::inside_out()
invalidateOpenGLBuffers();
}
bool
bool
Scene_polygon_soup_item::orient()
{
@ -457,7 +457,7 @@ Scene_polygon_soup_item::orient()
}
bool
bool
Scene_polygon_soup_item::save(std::ostream& out) const
{
@ -506,7 +506,7 @@ Scene_polygon_soup_item::exportAsSurfaceMesh(SMesh *out_surface_mesh)
}
return false;
}
QString
QString
Scene_polygon_soup_item::toolTip() const
{
@ -542,10 +542,10 @@ Scene_polygon_soup_item::draw(CGAL::Three::Viewer_interface* viewer) const {
computeElements();
initializeBuffers(viewer);
}
if(renderingMode() == Flat || renderingMode() == FlatPlusEdges)
{
if(d->soup->fcolors.empty())
getTriangleContainer(Priv::Flat_facets)->setColor(this->color());
getTriangleContainer(Priv::Flat_facets)->draw(viewer, d->soup->fcolors.empty());
@ -560,7 +560,7 @@ Scene_polygon_soup_item::draw(CGAL::Three::Viewer_interface* viewer) const {
void
Scene_polygon_soup_item::drawPoints(CGAL::Three::Viewer_interface* viewer) const {
if(d->soup == 0) return;
if(!isInit(viewer))
initGL(viewer);
@ -639,7 +639,7 @@ void Scene_polygon_soup_item::compute_bbox() const {
bbox.xmax(),bbox.ymax(),bbox.zmax()));
}
void
void
Scene_polygon_soup_item::new_vertex(const double& x,
const double& y,
const double& z)
@ -647,8 +647,8 @@ Scene_polygon_soup_item::new_vertex(const double& x,
d->soup->points.push_back(Point_3(x, y, z));
}
void
void
Scene_polygon_soup_item::new_triangle(const std::size_t i,
const std::size_t j,
const std::size_t k)
@ -694,7 +694,7 @@ void Scene_polygon_soup_item::load(const std::vector<Point>& points, const std::
d->soup->fcolors.reserve (fcolors.size());
std::copy (fcolors.begin(), fcolors.end(), std::back_inserter (d->soup->fcolors));
d->soup->vcolors.reserve (vcolors.size());
std::copy (vcolors.begin(), vcolors.end(), std::back_inserter (d->soup->vcolors));
}
@ -732,7 +732,7 @@ void Scene_polygon_soup_item::itemAboutToBeDestroyed(Scene_item *item)
}
}
const Polygon_soup::Edges&
const Polygon_soup::Edges&
Scene_polygon_soup_item::non_manifold_edges() const
{
return d->soup->non_manifold_edges;
@ -742,19 +742,19 @@ void Scene_polygon_soup_item::initializeBuffers(Viewer_interface *v) const
{
getTriangleContainer(Priv::Flat_facets)->initializeBuffers(v);
getTriangleContainer(Priv::Flat_facets)->setFlatDataSize(d->nb_polys);
getTriangleContainer(Priv::Smooth_facets)->initializeBuffers(v);
getTriangleContainer(Priv::Smooth_facets)->setFlatDataSize(d->nb_polys);
getEdgeContainer(Priv::Edges)->initializeBuffers(v);
getEdgeContainer(Priv::Edges)->setFlatDataSize(d->nb_lines);
getEdgeContainer(Priv::NM_edges)->initializeBuffers(v);
getEdgeContainer(Priv::NM_edges)->setFlatDataSize(d->nb_nm_edges);
getPointContainer(0)->initializeBuffers(v);
getPointContainer(0)->setFlatDataSize(d->nb_lines);
d->normals.resize(0);
d->positions_poly.resize(0);
d->normals.shrink_to_fit();
@ -768,15 +768,15 @@ void Scene_polygon_soup_item::initializeBuffers(Viewer_interface *v) const
}
void Scene_polygon_soup_item::computeElements() const
{
{
QApplication::setOverrideCursor(Qt::WaitCursor);
d->compute_normals_and_vertices();
getTriangleContainer(Priv::Flat_facets)->allocate(
Tc::Flat_vertices,
d->positions_poly.data(),
static_cast<int>(d->positions_poly.size()*sizeof(float)));
getTriangleContainer(Priv::Flat_facets)->allocate(
Tc::Flat_normals,
d->normals.data(),
@ -792,12 +792,12 @@ void Scene_polygon_soup_item::computeElements() const
Tc::Flat_vertices,
d->positions_poly.data(),
static_cast<int>(d->positions_poly.size()*sizeof(float)));
getTriangleContainer(Priv::Smooth_facets)->allocate(
Tc::Flat_normals,
d->normals.data(),
static_cast<int>(d->normals.size()*sizeof(float)));
if(!d->v_colors.empty())
{
getTriangleContainer(Priv::Smooth_facets)->allocate(
@ -805,28 +805,28 @@ void Scene_polygon_soup_item::computeElements() const
d->v_colors.data(),
static_cast<int>(d->v_colors.size()*sizeof(float)));
}
d->nb_polys = d->positions_poly.size();
getEdgeContainer(Priv::Edges)->allocate(
Ec::Vertices,
d->positions_lines.data(),
static_cast<int>(d->positions_lines.size()*sizeof(float)));
getPointContainer(0)->allocate(
Pc::Vertices,
d->positions_lines.data(),
static_cast<int>(d->positions_lines.size()*sizeof(float)));
getEdgeContainer(Priv::NM_edges)->allocate(
Ec::Vertices,
d->positions_nm_lines.data(),
static_cast<int>(d->positions_nm_lines.size()*sizeof(float)));
d->nb_nm_edges = d->positions_nm_lines.size();
d->nb_lines = d->positions_lines.size();
setBuffersFilled(true);
QApplication::restoreOverrideCursor();
}
@ -858,19 +858,19 @@ CGAL::Three::Scene_item::Header_data Scene_polygon_soup_item::header() const
//titles
data.titles.append(QString("#Points"));
data.titles.append(QString("#Polygons"));
data.titles.append(QString("Pure Triangle"));
data.titles.append(QString("Pure Quad"));
data.titles.append(QString("#Degenerate Polygons"));
data.titles.append(QString("#Edges"));
data.titles.append(QString("Minimum Length"));
data.titles.append(QString("Maximum Length"));
data.titles.append(QString("Median Length"));
data.titles.append(QString("Mean Length"));
data.titles.append(QString("#Degenerate Edges"));
data.titles.append(QString("Minimum"));
data.titles.append(QString("Maximum"));
data.titles.append(QString("Average"));
@ -881,7 +881,7 @@ QString Scene_polygon_soup_item::computeStats(int type)
{
if(!d->stats_computed)
d->compute_stats();
switch(type)
{
case NB_VERTICES:
@ -890,7 +890,7 @@ QString Scene_polygon_soup_item::computeStats(int type)
return QString::number(d->soup->polygons.size());
case NB_EDGES:
return QString::number(d->nb_lines/6);
case NB_DEGENERATED_FACES:
{
if(d->is_triangle)
@ -900,7 +900,7 @@ QString Scene_polygon_soup_item::computeStats(int type)
else
return QString("n/a");
}
case MIN_LENGTH:
return QString::number(d->minl);
case MAX_LENGTH:
@ -911,14 +911,14 @@ QString Scene_polygon_soup_item::computeStats(int type)
return QString::number(d->meanl);
case NB_NULL_LENGTH:
return QString::number(d->nb_null_edges);
case MIN_ANGLE:
return QString::number(d->mini);
case MAX_ANGLE:
return QString::number(d->maxi);
case MEAN_ANGLE:
return QString::number(d->ave);
case IS_PURE_TRIANGLE:
if(d->is_triangle)
return QString("yes");
@ -961,8 +961,8 @@ Scene_polygon_soup_item_priv::compute_stats()
accumulator_set< double,
features< tag::min, tag::max, tag::mean > > angles_acc;
double rad_to_deg = 180. / CGAL_PI;
for(auto poly : soup->polygons)
{
if(poly.size() != 3)
@ -974,7 +974,7 @@ Scene_polygon_soup_item_priv::compute_stats()
Polygon_soup::Point_3 a(soup->points[poly[i]]),
b(soup->points[poly[(i+1)%poly.size()]]),
c(soup->points[poly[(i+2)%poly.size()]]);
if (a == b)
if (a == b)
++nb_null_edges;
edges_acc(CGAL::sqrt(CGAL::squared_distance(a, b)));
typename Traits::Vector_3 ba(b, a);
@ -994,6 +994,6 @@ Scene_polygon_soup_item_priv::compute_stats()
mini = extract_result< tag::min >(angles_acc);
maxi = extract_result< tag::max >(angles_acc);
ave = extract_result< tag::mean >(angles_acc);
stats_computed = true;
}

View File

@ -151,7 +151,7 @@ struct Scene_surface_mesh_item_priv{
true));
item->setPointContainer(0, new Point_container(VI::PROGRAM_WITHOUT_LIGHT,
false));
has_feature_edges = false;
invalidate_stats();
vertices_displayed = false;
@ -193,7 +193,7 @@ struct Scene_surface_mesh_item_priv{
void* get_aabb_tree();
QList<EPICK::Triangle_3> triangulate_primitive(face_descriptor fit,
EPICK::Vector_3 normal);
//! \brief triangulate_facet Triangulates a facet.
//! \param fd a face_descriptor of the facet that needs to be triangulated.
//! \param fnormals a property_map containing the normals of the mesh.
@ -310,7 +310,7 @@ void Scene_surface_mesh_item::standard_constructor(SMesh* sm)
d->textFItems = new TextListItem(this);
are_buffers_filled = false;
invalidate(ALL);
}
Scene_surface_mesh_item::Scene_surface_mesh_item(SMesh* sm)
{
@ -393,39 +393,39 @@ void Scene_surface_mesh_item_priv::compute_elements(Scene_item_rendering_helper:
v_colors.clear();
idx_data_.clear();
idx_data_.shrink_to_fit();
SMesh::Property_map<vertex_descriptor, EPICK::Vector_3 > vnormals =
smesh_->add_property_map<vertex_descriptor, EPICK::Vector_3 >("v:normal").first;
SMesh::Property_map<face_descriptor, EPICK::Vector_3 > fnormals =
smesh_->add_property_map<face_descriptor, EPICK::Vector_3 >("f:normal").first;
CGAL::Polygon_mesh_processing::compute_face_normals(*smesh_,fnormals);
typedef boost::graph_traits<SMesh>::face_descriptor face_descriptor;
CGAL::Polygon_mesh_processing::compute_vertex_normals(*smesh_,vnormals);
const CGAL::qglviewer::Vec o = static_cast<CGAL::Three::Viewer_interface*>(CGAL::QGLViewer::QGLViewerPool().first())->offset();
EPICK::Vector_3 offset(o.x, o.y, o.z);
SMesh::Property_map<vertex_descriptor, SMesh::Point> positions =
smesh_->points();
SMesh::Property_map<vertex_descriptor, CGAL::Color> vcolors =
smesh_->property_map<vertex_descriptor, CGAL::Color >("v:color").first;
SMesh::Property_map<face_descriptor, CGAL::Color> fcolors =
smesh_->property_map<face_descriptor, CGAL::Color >("f:color").first;
boost::property_map< SMesh, boost::vertex_index_t >::type
im = get(boost::vertex_index, *smesh_);
idx_data_.reserve(num_faces(*smesh_) * 3);
typedef CGAL::Buffer_for_vao<float, unsigned int> CPF;
typedef boost::graph_traits<SMesh>::face_descriptor face_descriptor;
typedef boost::graph_traits<SMesh>::halfedge_descriptor halfedge_descriptor;
typedef boost::graph_traits<SMesh>::edge_descriptor edge_descriptor;
if(name.testFlag(Scene_item_rendering_helper::GEOMETRY))
{
for(face_descriptor fd : faces(*smesh_))
@ -445,7 +445,7 @@ void Scene_surface_mesh_item_priv::compute_elements(Scene_item_rendering_helper:
facet_points.push_back(positions[target(hd, *smesh_)]);
}
bool is_convex = CPF::is_facet_convex(facet_points, fnormals[fd]);
if(is_convex && is_quad(halfedge(fd,*smesh_),*smesh_) )
{
halfedge_descriptor hd = halfedge(fd,*smesh_);
@ -453,12 +453,12 @@ void Scene_surface_mesh_item_priv::compute_elements(Scene_item_rendering_helper:
idx_data_.push_back(source(hd, *smesh_));
idx_data_.push_back(source(next(hd, *smesh_), *smesh_));
idx_data_.push_back(source(next(next(hd, *smesh_), *smesh_), *smesh_));
//2nd half
idx_data_.push_back(source(hd, *smesh_));
idx_data_.push_back(source(next(next(hd, *smesh_), *smesh_), *smesh_));
idx_data_.push_back(source(prev(hd, *smesh_), *smesh_));
}
}
else if(is_convex)
{
triangulate_convex_facet(fd, &fnormals, 0, &im, name, true);
@ -470,10 +470,10 @@ void Scene_surface_mesh_item_priv::compute_elements(Scene_item_rendering_helper:
}
}
}
if(name.testFlag(Scene_item_rendering_helper::COLORS))
{
has_fpatch_id = smesh_->property_map<face_descriptor, int >("f:patch_id").second;
has_fcolors = smesh_->property_map<face_descriptor, CGAL::Color >("f:color").second;
has_vcolors = smesh_->property_map<vertex_descriptor, CGAL::Color >("v:color").second;
@ -496,19 +496,19 @@ void Scene_surface_mesh_item_priv::compute_elements(Scene_item_rendering_helper:
}
idx_edge_data_.shrink_to_fit();
}
if(name.testFlag(Scene_item_rendering_helper::COLORS) &&
has_fpatch_id){
initialize_colors();
}
//compute the Flat data
flat_vertices.clear();
flat_normals.clear();
f_colors.clear();
for(face_descriptor fd : faces(*smesh_))
{
if(is_triangle(halfedge(fd,*smesh_),*smesh_))
@ -531,7 +531,7 @@ void Scene_surface_mesh_item_priv::compute_elements(Scene_item_rendering_helper:
{
//The sharp features detection produces patch ids >=1, this
//is meant to insure the wanted id is in the range [min,max]
QColor c = item->color_vector()[fpatch_id_map[fd] - min_patch_id];
QColor c = item->color_vector()[fpatch_id_map[fd] - min_patch_id];
CGAL::Color color(c.red(),c.green(),c.blue());
CPF::add_color_in_buffer(color, f_colors);
}
@ -560,7 +560,7 @@ void Scene_surface_mesh_item_priv::compute_elements(Scene_item_rendering_helper:
CGAL::Color *c;
if(has_fpatch_id)
{
QColor color = item->color_vector()[fpatch_id_map[fd] - min_patch_id];
QColor color = item->color_vector()[fpatch_id_map[fd] - min_patch_id];
c = new CGAL::Color(color.red(),color.green(),color.blue());
}
else if(has_fcolors)
@ -568,13 +568,13 @@ void Scene_surface_mesh_item_priv::compute_elements(Scene_item_rendering_helper:
else
c = 0;
addFlatData(p,n,c, name);
hd = next(halfedge(fd, *smesh_),*smesh_);
addFlatData(positions[source(hd, *smesh_)]
,fnormals[fd]
,c
,name);
hd = next(next(halfedge(fd, *smesh_),*smesh_), *smesh_);
addFlatData(positions[source(hd, *smesh_)]
,fnormals[fd]
@ -586,13 +586,13 @@ void Scene_surface_mesh_item_priv::compute_elements(Scene_item_rendering_helper:
,fnormals[fd]
,c
,name);
hd = next(next(halfedge(fd, *smesh_),*smesh_), *smesh_);
addFlatData(positions[source(hd, *smesh_)]
,fnormals[fd]
,c
,name);
hd = prev(halfedge(fd, *smesh_), *smesh_);
addFlatData(positions[source(hd, *smesh_)]
,fnormals[fd]
@ -611,7 +611,7 @@ void Scene_surface_mesh_item_priv::compute_elements(Scene_item_rendering_helper:
}
}
}
if(has_vcolors && name.testFlag(Scene_item_rendering_helper::COLORS))
{
for(vertex_descriptor vd : vertices(*smesh_))
@ -622,7 +622,7 @@ void Scene_surface_mesh_item_priv::compute_elements(Scene_item_rendering_helper:
v_colors.push_back((float)c.blue()/255);
}
}
if(floated &&
(name.testFlag(Scene_item_rendering_helper::GEOMETRY)|| name.testFlag(Scene_item_rendering_helper::NORMALS)))
{
@ -646,7 +646,7 @@ void Scene_surface_mesh_item_priv::compute_elements(Scene_item_rendering_helper:
idx_feature_edge_data_size = idx_feature_edge_data_.size();
idx_data_size = idx_data_.size();
flat_vertices_size = flat_vertices.size();
item->getPointContainer(0)->allocate(Pt::Vertices, smooth_vertices.data(),
static_cast<int>(num_vertices(*smesh_)*3*sizeof(cgal_gl_data)));
item->getEdgeContainer(0)->allocate(Ed::Indices, idx_edge_data_.data(),
@ -688,7 +688,7 @@ void Scene_surface_mesh_item_priv::compute_elements(Scene_item_rendering_helper:
else
item->getTriangleContainer(0)->allocate(Tri::VColors, 0, 0);
}
QApplication::restoreOverrideCursor();
}
@ -719,7 +719,7 @@ void Scene_surface_mesh_item_priv::initializeBuffers(CGAL::Three::Viewer_interfa
item->getEdgeContainer(1)->initializeBuffers(viewer);
item->getEdgeContainer(0)->initializeBuffers(viewer);
item->getPointContainer(0)->initializeBuffers(viewer);
////Clean-up
item->getPointContainer(0)->setFlatDataSize(vertices(*smesh_).size()*3);
item->getTriangleContainer(1)->setFlatDataSize(flat_vertices_size);
@ -757,8 +757,8 @@ void Scene_surface_mesh_item::draw(CGAL::Three::Viewer_interface *viewer) const
d->initializeBuffers(viewer);
setBuffersInit(viewer, true);
}
if(renderingMode() == Gouraud ||
renderingMode() == GouraudPlusEdges)
{
@ -872,7 +872,7 @@ void Scene_surface_mesh_item_priv::triangulate_convex_facet(face_descriptor fd,
Point p0,p1,p2;
SMesh::Halfedge_around_face_circulator he(halfedge(fd, *smesh_), *smesh_);
SMesh::Halfedge_around_face_circulator he_end = he;
while(next(*he, *smesh_) != prev(*he_end, *smesh_))
{
++he;
@ -887,7 +887,7 @@ void Scene_surface_mesh_item_priv::triangulate_convex_facet(face_descriptor fd,
CGAL::Color* color;
if(has_fpatch_id)
{
QColor c = item->color_vector()[fpatch_id_map[fd] - min_patch_id];
QColor c = item->color_vector()[fpatch_id_map[fd] - min_patch_id];
color = new CGAL::Color(c.red(),c.green(),c.blue());
}
else if(has_fcolors)
@ -902,7 +902,7 @@ void Scene_surface_mesh_item_priv::triangulate_convex_facet(face_descriptor fd,
(*fnormals)[fd],
color,
name);
addFlatData(p2,
(*fnormals)[fd],
color,
@ -926,7 +926,7 @@ Scene_surface_mesh_item_priv::triangulate_facet(face_descriptor fd,
Scene_item_rendering_helper::Gl_data_names name,
bool index) const
{
//Computes the normal of the facet
EPICK::Vector_3 normal = get(*fnormals, fd);
if(normal == CGAL::NULL_VECTOR)
@ -946,7 +946,7 @@ Scene_surface_mesh_item_priv::triangulate_facet(face_descriptor fd,
}
next_ =next(next_, *smesh_);
}while(next_ != start);
if (normal == CGAL::NULL_VECTOR) // No normal could be computed, return
{
qDebug()<<"Warning : normal is not valid. Facet not displayed";
@ -959,7 +959,7 @@ Scene_surface_mesh_item_priv::triangulate_facet(face_descriptor fd,
qDebug()<<"Warning : normal is not valid. Facet not displayed";
return;
}
typedef FacetTriangulator<SMesh, EPICK, boost::graph_traits<SMesh>::vertex_descriptor> FT;
const CGAL::qglviewer::Vec off = static_cast<CGAL::Three::Viewer_interface*>(CGAL::QGLViewer::QGLViewerPool().first())->offset();
EPICK::Vector_3 offset(off.x,off.y,off.z);
@ -979,14 +979,14 @@ Scene_surface_mesh_item_priv::triangulate_facet(face_descriptor fd,
CGAL::Color* color;
if(has_fpatch_id)
{
QColor c= item->color_vector()[fpatch_id_map[fd] - min_patch_id];
QColor c= item->color_vector()[fpatch_id_map[fd] - min_patch_id];
color = new CGAL::Color(c.red(),c.green(),c.blue());
}
else if(has_fcolors)
color = &(*fcolors)[fd];
else
color = 0;
addFlatData(ffit->vertex(0)->point()-offset,
(*fnormals)[fd],
color,
@ -995,7 +995,7 @@ Scene_surface_mesh_item_priv::triangulate_facet(face_descriptor fd,
(*fnormals)[fd],
color,
name);
addFlatData(ffit->vertex(2)->point()-offset,
(*fnormals)[fd],
color,
@ -1013,7 +1013,7 @@ Scene_surface_mesh_item_priv::triangulate_facet(face_descriptor fd,
idx_data_.push_back((*im)[triangulation.v2v[ffit->vertex(2)]]);
}
}
}
}
void delete_aabb_tree(Scene_surface_mesh_item* item)
@ -1116,7 +1116,7 @@ void* Scene_surface_mesh_item_priv::get_aabb_tree()
for(face_descriptor f : faces(*sm))
{
//if face is degenerate, skip it
if (CGAL::is_triangle(halfedge(f, *sm), *sm)
if (CGAL::is_triangle(halfedge(f, *sm), *sm)
&& CGAL::Polygon_mesh_processing::is_degenerate_triangle_face(f, *sm))
continue;
//if face not triangle, triangulate corresponding primitive before adding it to the tree
@ -1291,7 +1291,7 @@ void Scene_surface_mesh_item::invalidate(Gl_data_names name)
setBuffersInit(viewer, false);
viewer->update();
}
getTriangleContainer(1)->reset_vbos(name);
getTriangleContainer(0)->reset_vbos(name);
getEdgeContainer(1)->reset_vbos(name);
@ -1810,7 +1810,7 @@ void Scene_surface_mesh_item::zoomToPosition(const QPoint &point, CGAL::Three::V
bool found = false;
CGAL::qglviewer::Vec point_under = viewer->camera()->pointUnderPixel(point,found);
EPICK::Point_3 ray_origin;
CGAL::qglviewer::Vec dir;
CGAL::qglviewer::Vec dir;
if(viewer->camera()->type() == CGAL::qglviewer::Camera::PERSPECTIVE)
{
ray_origin = EPICK::Point_3(viewer->camera()->position().x - offset.x,
@ -1821,7 +1821,7 @@ void Scene_surface_mesh_item::zoomToPosition(const QPoint &point, CGAL::Three::V
else
{
dir = viewer->camera()->viewDirection();
ray_origin = EPICK::Point_3(point_under.x - dir.x,
ray_origin = EPICK::Point_3(point_under.x - dir.x,
point_under.y - dir.y,
point_under.z - dir.z);
}
@ -1996,8 +1996,8 @@ QMenu* Scene_surface_mesh_item::contextMenu()
actionZoomToId->setObjectName("actionZoomToId");
connect(actionZoomToId, &QAction::triggered,
this, &Scene_surface_mesh_item::zoomToId);
setProperty("menu_changed", true);
menu->setProperty(prop_name, true);
}
@ -2123,7 +2123,7 @@ bool Scene_surface_mesh_item::testDisplayId(double x, double y, double z, CGAL::
EPICK::Point_3 src(x - offset.x,
y - offset.y,
z - offset.z);
CGAL::qglviewer::Camera* cam = viewer->camera();
EPICK::Point_3 dest( cam->position().x - offset.x,
cam->position().y - offset.y,
@ -2313,7 +2313,7 @@ void Scene_surface_mesh_item::computeElements()const
const_cast<Scene_surface_mesh_item*>(this)->itemChanged();
}
void
void
Scene_surface_mesh_item::initializeBuffers(CGAL::Three::Viewer_interface* viewer)const
{
const_cast<Scene_surface_mesh_item*>(this)->//temporary, until the drawing pipeline is not const anymore.

View File

@ -6,7 +6,7 @@
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
//
// Author(s) : Lutz Kettner <kettner@mpi-sb.mpg.de>

View File

@ -6,7 +6,7 @@
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
//
// Author(s) : Lutz Kettner <kettner@mpi-sb.mpg.de>

View File

@ -6,7 +6,7 @@
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
//
// Author(s) : Lutz Kettner <kettner@mpi-sb.mpg.de>

View File

@ -6,7 +6,7 @@
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
//
// Author(s) : Lutz Kettner <kettner@mpi-sb.mpg.de>

View File

@ -186,7 +186,7 @@ struct Dereference_property_map
/// Free function to create a `Dereference_property_map` property map.
///
/// \relates Dereference_property_map
/// \relates Dereference_property_map
template <class Iter> // Type convertible to `key_type`
Dereference_property_map<typename CGAL::value_type_traits<Iter>::type>
make_dereference_property_map(Iter)
@ -236,7 +236,7 @@ struct Identity_property_map_no_lvalue
/// Free function to create a `Identity_property_map` property map.
///
/// \relates Identity_property_map
/// \relates Identity_property_map
template <class T> // Key and value type
Identity_property_map<T>
make_identity_property_map(T)
@ -246,8 +246,8 @@ Identity_property_map<T>
/// \ingroup PkgPropertyMapRef
/// Property map that accesses the first item of a `std::pair`.
/// \tparam Pair Instance of `std::pair`.
/// Property map that accesses the first item of a `std::pair`.
/// \tparam Pair Instance of `std::pair`.
/// \cgalModels `LvaluePropertyMap`
///
/// \sa `CGAL::Second_of_pair_property_map<Pair>`
@ -271,9 +271,9 @@ struct First_of_pair_property_map
/// @}
};
/// Free function to create a `First_of_pair_property_map` property map.
/// Free function to create a `First_of_pair_property_map` property map.
///
/// \relates First_of_pair_property_map
/// \relates First_of_pair_property_map
template <class Pair> // Pair type
First_of_pair_property_map<Pair>
make_first_of_pair_property_map(Pair)
@ -282,13 +282,13 @@ First_of_pair_property_map<Pair>
}
/// \ingroup PkgPropertyMapRef
///
/// Property map that accesses the second item of a `std::pair`.
///
/// \tparam Pair Instance of `std::pair`.
///
///
/// Property map that accesses the second item of a `std::pair`.
///
/// \tparam Pair Instance of `std::pair`.
///
/// \cgalModels `LvaluePropertyMap`
///
///
/// \sa `CGAL::First_of_pair_property_map<Pair>`
template <typename Pair>
struct Second_of_pair_property_map
@ -312,7 +312,7 @@ struct Second_of_pair_property_map
/// Free function to create a Second_of_pair_property_map property map.
///
/// \relates Second_of_pair_property_map
/// \relates Second_of_pair_property_map
template <class Pair> // Pair type
Second_of_pair_property_map<Pair>
make_second_of_pair_property_map(Pair)
@ -321,12 +321,12 @@ Second_of_pair_property_map<Pair>
}
/// \ingroup PkgPropertyMapRef
///
///
/// Property map that accesses the Nth item of a `boost::tuple` or a `std::tuple`.
///
///
/// \tparam N %Index of the item to access.
/// \tparam Tuple Instance of `boost::tuple` or `std::tuple`.
///
///
/// \cgalModels `LvaluePropertyMap`
template <int N, typename Tuple>
struct Nth_of_tuple_property_map

View File

@ -47,13 +47,13 @@ typedef boost::associative_property_map< Face2Vector_map > Face2Vector_property_
//RIDGES
typedef CGAL::Ridge_line<PolyhedralSurf> Ridge_line;
typedef CGAL::Ridge_approximation < PolyhedralSurf,
VertexFT_property_map,
VertexVector_property_map > Ridge_approximation;
VertexFT_property_map,
VertexVector_property_map > Ridge_approximation;
//UMBILICS
typedef CGAL::Umbilic<PolyhedralSurf> Umbilic;
typedef CGAL::Umbilic_approximation < PolyhedralSurf,
VertexFT_property_map,
VertexVector_property_map > Umbilic_approximation;
VertexFT_property_map,
VertexVector_property_map > Umbilic_approximation;
//create property maps
VertexFT_map vertex_k1_map, vertex_k2_map,
@ -86,8 +86,8 @@ unsigned int min_nb_points = (d_fitting + 1) * (d_fitting + 2) / 2;
*/
template <typename VertexPointMap>
void gather_fitting_points(vertex_descriptor v,
std::vector<Point_3> &in_points,
Poly_rings& poly_rings,
std::vector<Point_3> &in_points,
Poly_rings& poly_rings,
VertexPointMap vpm)
{
//container to collect vertices of v on the PolyhedralSurf
@ -148,7 +148,7 @@ void compute_differential_quantities(PolyhedralSurf& P, Poly_rings& poly_rings)
assert( d_monge >= 3);
// run the main fct : perform the fitting
monge_form = monge_fit(in_points.begin(), in_points.end(),
d_fitting, d_monge);
d_fitting, d_monge);
//switch min-max ppal curv/dir wrt the mesh orientation
const Vector_3 normal_mesh = computeFacetsAverageUnitNormal(P,v, face2normal_pm, Kernel());
@ -164,18 +164,18 @@ void compute_differential_quantities(PolyhedralSurf& P, Poly_rings& poly_rings)
if ( d_monge >= 4) {
//= 3*b1^2+(k1-k2)(c0-3k1^3)
vertex_P1_map[v] =
3*monge_form.coefficients()[3]*monge_form.coefficients()[3]
+(monge_form.coefficients()[0]-monge_form.coefficients()[1])
*(monge_form.coefficients()[6]
-3*monge_form.coefficients()[0]*monge_form.coefficients()[0]
*monge_form.coefficients()[0]);
3*monge_form.coefficients()[3]*monge_form.coefficients()[3]
+(monge_form.coefficients()[0]-monge_form.coefficients()[1])
*(monge_form.coefficients()[6]
-3*monge_form.coefficients()[0]*monge_form.coefficients()[0]
*monge_form.coefficients()[0]);
//= 3*b2^2+(k2-k1)(c4-3k2^3)
vertex_P2_map[v] =
3*monge_form.coefficients()[4]*monge_form.coefficients()[4]
+(-monge_form.coefficients()[0]+monge_form.coefficients()[1])
*(monge_form.coefficients()[10]
-3*monge_form.coefficients()[1]*monge_form.coefficients()[1]
*monge_form.coefficients()[1]);
3*monge_form.coefficients()[4]*monge_form.coefficients()[4]
+(-monge_form.coefficients()[0]+monge_form.coefficients()[1])
*(monge_form.coefficients()[10]
-3*monge_form.coefficients()[1]*monge_form.coefficients()[1]
*monge_form.coefficients()[1]);
}
} //END FOR LOOP
}
@ -228,10 +228,10 @@ int main()
if ( int_tag == 3 ) tag_order = CGAL::Ridge_order_3;
if ( int_tag == 4 ) tag_order = CGAL::Ridge_order_4;
if ( int_tag != 3 && int_tag != 4 )
{std::cerr << "ridge_order must be CGAL::Ridge_order_3 or CGAL::Ridge_order_4";
return 1;}
{std::cerr << "ridge_order must be CGAL::Ridge_order_3 or CGAL::Ridge_order_4";
return 1;}
}
#else
#else
std::cerr << "Command-line options require Boost.ProgramOptions" << std::endl;
if_name = "data/poly2x^2+y^2-0.062500.off";
d_fitting = 3;
@ -261,26 +261,26 @@ int main()
if (of_name[i] == '/') of_name[i]='_';
std::ostringstream str_4ogl;
str_4ogl << "data/"
<< of_name << "RIDGES"
<< "-d" << d_fitting
<< "-m" << d_monge
<< "-t" << tag_order
<< "-a" << nb_rings
<< "-p" << nb_points_to_use
<< ".4ogl.txt";
<< of_name << "RIDGES"
<< "-d" << d_fitting
<< "-m" << d_monge
<< "-t" << tag_order
<< "-a" << nb_rings
<< "-p" << nb_points_to_use
<< ".4ogl.txt";
std::cout << str_4ogl.str() << std::endl ;
std::ofstream out_4ogl(str_4ogl.str().c_str() , std::ios::out);
//if verbose only...
std::ostringstream str_verb;
str_verb << "data/"
<< of_name << "RIDGES"
<< "-d" << d_fitting
<< "-m" << d_monge
<< "-t" << tag_order
<< "-a" << nb_rings
<< "-p" << nb_points_to_use
<< ".verb.txt";
<< of_name << "RIDGES"
<< "-d" << d_fitting
<< "-m" << d_monge
<< "-t" << tag_order
<< "-a" << nb_rings
<< "-p" << nb_points_to_use
<< ".verb.txt";
std::cout << str_verb.str() << std::endl ;
std::ofstream out_verb(str_verb.str().c_str() , std::ios::out);
@ -288,11 +288,11 @@ int main()
PolyhedralSurf P;
CGAL::read_OFF(if_name.c_str(), P);
fprintf(stderr, "loadMesh %d Ves %d Facets\n",
(int)num_vertices(P), (int)num_faces(P));
(int)num_vertices(P), (int)num_faces(P));
if(verbose)
out_verb << "Polysurf with " << num_vertices(P)
<< " vertices and " << num_faces(P)
<< " facets. " << std::endl;
<< " vertices and " << num_faces(P)
<< " facets. " << std::endl;
//exit if not enough points in the model
if (min_nb_points > num_vertices(P))
@ -313,10 +313,10 @@ int main()
//--------------------------------------------------------------------------
std::cout << "Compute ridges..." << std::endl;
Ridge_approximation ridge_approximation(P,
vertex_k1_pm, vertex_k2_pm,
vertex_b0_pm, vertex_b3_pm,
vertex_d1_pm, vertex_d2_pm,
vertex_P1_pm, vertex_P2_pm );
vertex_k1_pm, vertex_k2_pm,
vertex_b0_pm, vertex_b3_pm,
vertex_d1_pm, vertex_d2_pm,
vertex_P1_pm, vertex_P2_pm );
std::vector<Ridge_line*> ridge_lines;
std::back_insert_iterator<std::vector<Ridge_line*> > ii(ridge_lines);
@ -327,11 +327,11 @@ int main()
// or with the global function
CGAL::compute_max_ridges(P,
vertex_k1_pm, vertex_k2_pm,
vertex_b0_pm, vertex_b3_pm,
vertex_d1_pm, vertex_d2_pm,
vertex_P1_pm, vertex_P2_pm,
ii, tag_order);
vertex_k1_pm, vertex_k2_pm,
vertex_b0_pm, vertex_b3_pm,
vertex_d1_pm, vertex_d2_pm,
vertex_P1_pm, vertex_P2_pm,
ii, tag_order);
std::vector<Ridge_line*>::iterator iter_lines = ridge_lines.begin(),
iter_end = ridge_lines.end();
@ -360,14 +360,14 @@ int main()
//explicit construction of the class
// Umbilic_approximation umbilic_approximation(P,
// vertex_k1_pm, vertex_k2_pm,
// vertex_d1_pm, vertex_d2_pm);
// vertex_k1_pm, vertex_k2_pm,
// vertex_d1_pm, vertex_d2_pm);
// umbilic_approximation.compute(umb_it, umb_size);
//or global function call
CGAL::compute_umbilics(P,
vertex_k1_pm, vertex_k2_pm,
vertex_d1_pm, vertex_d2_pm,
umb_it, umb_size);
vertex_k1_pm, vertex_k2_pm,
vertex_d1_pm, vertex_d2_pm,
umb_it, umb_size);
std::vector<Umbilic*>::iterator iter_umb = umbilics.begin(),
iter_umb_end = umbilics.end();

View File

@ -17,7 +17,7 @@ if ( CGAL_FOUND )
message(STATUS "This project requires the Boost library, and will not be compiled.")
return()
return()
endif()
@ -37,10 +37,10 @@ if ( CGAL_FOUND )
create_single_source_cgal_program( "off_bbox.cpp" )
create_single_source_cgal_program( "off_glue.cpp" )
create_single_source_cgal_program( "off_transform.cpp" )
else ()
message(STATUS "This project requires the CGAL library, and will not be compiled.")
return()
return()
endif()

View File

@ -18,7 +18,7 @@ int main(int argc, char* argv[])
{
typedef CGAL::Point_2<Kernel> Point;
typedef std::vector<Point> MultiPoint;
std::ifstream is((argc>1)?argv[1]:"data/multipoint.wkt");
MultiPoint mp;
CGAL::read_multi_point_WKT(is, mp);

View File

@ -34,7 +34,7 @@ int main(int argc, char* argv[])
for(Polygon p : polys)
std::cout<<p<<std::endl;
}
{
std::ifstream is((argc>2)?argv[2]:"data/multipolygon.wkt");
MultiPolygon mp;

View File

@ -258,7 +258,7 @@ int main( int argc, char **argv) {
}
if ( !*p_in) {
cerr << argv[0] << ": error: cannot open file '"<< iname
<< "' for reading." <<endl;
<< "' for reading." <<endl;
exit( 1);
}

View File

@ -19,10 +19,10 @@ int main(int argc, char* argv[])
{
typedef CGAL::Point_2<Kernel> Point;
typedef std::vector<Point> MultiPoint;
typedef std::vector<Point> LineString;
typedef std::vector<LineString> MultiLineString;
typedef CGAL::Polygon_with_holes_2<Kernel> Polygon;
typedef std::vector<Polygon> MultiPolygon;
@ -32,7 +32,7 @@ int main(int argc, char* argv[])
MultiLineString polylines;
MultiPolygon polygons;
CGAL::read_WKT(is, points,polylines,polygons);
for(Point p : points)
std::cout<<p<<std::endl;
for(LineString ls : polylines)
@ -40,7 +40,7 @@ int main(int argc, char* argv[])
std::cout<<p<<std::endl;
for(Polygon p : polygons)
std::cout<<p<<std::endl;
}
return 0;
}

View File

@ -18,11 +18,11 @@ int main(int argc, char* argv[])
std::vector<Point_3> points;
for(boost::property_tree::ptree::value_type& node : tree.get_child("PolySet.Polygon")){
boost::property_tree::ptree subtree = node.second;
boost::property_tree::ptree subtree = node.second;
if( node.first == "Point" ){
for( boost::property_tree::ptree::value_type const& v : subtree.get_child( "" ) ) {
std::string label = v.first;
if ( label == "<xmlattr>" ) {
Point_3 p(subtree.get<double>( label+".X"),
subtree.get<double>( label+".Y"),
@ -31,7 +31,7 @@ int main(int argc, char* argv[])
}
}
}
}
}
std::cout << points.size() << " points read"<< std::endl;
return 0;

View File

@ -1,16 +1,16 @@
// Copyright (c) 1997
// Copyright (c) 1997
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
//
// Author(s) : Lutz Kettner <kettner@inf.ethz.ch>

View File

@ -1,16 +1,16 @@
// Copyright (c) 1997
// Copyright (c) 1997
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org);
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
//
// Author(s) : Lutz Kettner <kettner@mpi-sb.mpg.de>

View File

@ -1,16 +1,16 @@
// Copyright (c) 1997
// Copyright (c) 1997
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
//
// Author(s) : Lutz Kettner <kettner@mpi-sb.mpg.de>

View File

@ -1,16 +1,16 @@
// Copyright (c) 1997,2005
// Copyright (c) 1997,2005
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
//
// Author(s) : Lutz Kettner <kettner@mpi-sb.mpg.de>
// Ralf Osbild <osbild@mpi-sb.mpg.de>
@ -101,7 +101,7 @@ private:
File_scanner_OFF* m_scan;
std::size_t m_cnt;
value_type m_current;
void next() {
CGAL_assertion( m_scan != nullptr);
@ -162,7 +162,7 @@ private:
std::size_t no;
m_scan->scan_facet( no, m_cnt);
m_indices.reserve( no);
std::size_t index = (std::numeric_limits<std::size_t>::max)();
std::size_t index = (std::numeric_limits<std::size_t>::max)();
// A huge value helps to detect a potential
// error in the function scan_facet_vertex_index
for (std::size_t i = 0; i < no; ++i) {
@ -177,7 +177,7 @@ private:
public:
value_type::size_type size_of_indices () const // RO
{ return m_indices.size(); }
typedef value_type::size_type indices_size_type; // RO
typedef value_type::size_type indices_size_type; // RO
public:
typedef File_scanner_OFF Scanner;
typedef I_Scanner_OFF_facet_iterator Self;

View File

@ -1,16 +1,16 @@
// Copyright (c) 1997
// Copyright (c) 1997
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org);
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
//
// Author(s) : Lutz Kettner <kettner@mpi-sb.mpg.de>

View File

@ -1,16 +1,16 @@
// Copyright (c) 1997
// Copyright (c) 1997
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
//
// Author(s) : Lutz Kettner <kettner@mpi-sb.mpg.de>

View File

@ -1,9 +1,9 @@
// Copyright (c) 1997
// Copyright (c) 1997
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org);
//

View File

@ -1,16 +1,16 @@
// Copyright (c) 1997
// Copyright (c) 1997
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
//
// Author(s) : Lutz Kettner <kettner@inf.ethz.ch>

View File

@ -1,16 +1,16 @@
// Copyright (c) 1997
// Copyright (c) 1997
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
//
// Author(s) : Lutz Kettner <kettner@mpi-sb.mpg.de>

View File

@ -1,16 +1,16 @@
// Copyright (c) 1997
// Copyright (c) 1997
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
//
// Author(s) : Lutz Kettner <kettner@mpi-sb.mpg.de>

View File

@ -12,7 +12,7 @@ typedef CGAL::Tetrahedron_3<Kernel> Tetrahedron;
typedef CGAL::Sphere_3<Kernel> Sphere;
int main() {
Point p1(10, 15, 0), p2(0, 0, 0),
Point p1(10, 15, 0), p2(0, 0, 0),
p3(-10, 0, -15), p4(15, 15, 15);
Segment s1(p1, p2);
Triangle t1(p1, p2, p3);

View File

@ -2,7 +2,7 @@ namespace CGAL {
/*!
\mainpage User Manual
\mainpage User Manual
\anchor Chapter_3D_Surface_mesh
\anchor chapterSurface_mesh
@ -11,8 +11,8 @@ namespace CGAL {
\image html clown_fish.jpg
The class `Surface_mesh` is an implementation of a halfedge data structure
and can be used to represent a polyhedral surface.
The class `Surface_mesh` is an implementation of a halfedge data structure
and can be used to represent a polyhedral surface.
It is an alternative to the \cgal packages \ref PkgHalfedgeDS
and \ref PkgPolyhedron.
The main difference is that it is indexed based and not pointer based.
@ -26,12 +26,12 @@ As the indices are contiguous, they can be used as index into vectors
which store properties.
When elements are removed, they are only marked as removed, and a garbage
collection function must be called to really remove them.
collection function must be called to really remove them.
The class `Surface_mesh` can be used through its class member functions
The class `Surface_mesh` can be used through its class member functions
as well as through the BGL API as described in the package \ref PkgBGL,
as it is a model of the concepts `MutableFaceGraph` and `FaceListGraph`.
Therefore it is possible to apply the algorithms of the packages
Therefore it is possible to apply the algorithms of the packages
\ref PkgSurfaceMeshSimplification,
\ref PkgSurfaceMeshSegmentation, and \ref PkgSurfaceMeshDeformation on a surface mesh.
@ -47,7 +47,7 @@ represent the basic elements of the halfedge data structure:
- `Surface_mesh::Edge_index`
These types are just wrappers for an integer and their
main purpose is to guarantee type safety.
main purpose is to guarantee type safety.
They are default constructible, which yields an *invalid* element. New
elements can be added and removed to the `Surface_mesh` through a
set of low-level functions which do not maintain connectivity. One
@ -82,7 +82,7 @@ by adding 2 faces, and how to check that a face is correctly added
to the mesh.
\cgalExample{Surface_mesh/check_orientation.cpp}
\section sectionSurfaceMeshConnectivity Connectivity
\section sectionSurfaceMeshConnectivity Connectivity
A surface mesh is an edge-centered data structure capable of
maintaining incidence information of vertices, edges, and faces. Each
@ -94,9 +94,9 @@ an incident halfedge is stored. Halfedges do not store the index of
the opposite halfedge, as `Surface_mesh` stores opposite halfedges consecutively
in memory.
The following figure illustrates the functions which allow to navigate
in a surface mesh: `Surface_mesh::opposite()`, `Surface_mesh::next()`,
`Surface_mesh::prev()`, `Surface_mesh::target()`, and
The following figure illustrates the functions which allow to navigate
in a surface mesh: `Surface_mesh::opposite()`, `Surface_mesh::next()`,
`Surface_mesh::prev()`, `Surface_mesh::target()`, and
`Surface_mesh::face()`. Additionally, the
functions `Surface_mesh::halfedge()` allows to obtain the halfedge
associated to a vertex and to a face.
@ -106,7 +106,7 @@ defined in the package \ref PkgBGL.
\cgalFigureBegin{FigSurfaceMeshConnectivity,connectivity.svg}
Connectivity of halfedges and vertices in a surface mesh seen from outside.
\cgalFigureEnd
\anchor SurfaceMeshOrientation
The halfedges incident to a face form a cycle. Depending on from
which side we look at the surface, the sequence of
@ -124,11 +124,11 @@ The connectivity does not allow to represent faces with holes.
halfedges, edges, and faces. It provides member functions
returning ranges of elements which are compatible with the
<a href="https://www.boost.org/libs/range/doc/html/index.html">Boost.Range</a>
library.
library.
\subsection iterators_example Example
The following example shows how to obtain the iterator type from
The following example shows how to obtain the iterator type from
a range, alternatives for obtaining the begin and end iterator,
and alternatives for range-based loops.
@ -137,11 +137,11 @@ and alternatives for range-based loops.
\section sectionSurfaceMesh_circulators Circulators
Circulators around faces and around vertices are provided as class templates
Circulators around faces and around vertices are provided as class templates
in the package \ref PkgBGL.
Circulators around faces basically call `Surface_mesh::next()`
in order to go from halfedge to halfedge counterclockwise around the face, and
in order to go from halfedge to halfedge counterclockwise around the face, and
when dereferenced return the halfedge or the incident vertex or the opposite face.
- `CGAL::Halfedge_around_face_circulator<Mesh>`
@ -164,7 +164,7 @@ of emptiness.
\subsection circulators_example Example
The following example shows how to enumerate the vertices around the
target of a given halfedge. The second loop shows that each of
target of a given halfedge. The second loop shows that each of
these circulator types comes with an equivalent iterator and a free
function to create an iterator range.
@ -191,42 +191,42 @@ directly accessed using `Surface_mesh::points()` or
When an element is removed, it is only marked as removed, and
it gets really removed when `Surface_mesh::collect_garbage()` is called.
Garbage collection will also really remove the properties
of these elements.
of these elements.
The connectivity is also stored in properties, namely the properties named
The connectivity is also stored in properties, namely the properties named
"v:connectivity", "h:connectivity", and "f:connectivity".
It is quite similar for the marker of deleted element, where we have
"v:removed", "e:removed", and "f:removed".
"v:removed", "e:removed", and "f:removed".
\subsection properties_example Example
This example shows how to use the most common features of the property system.
This example shows how to use the most common features of the property system.
\cgalExample{Surface_mesh/sm_properties.cpp}
\section sectionSurfaceMesh_borders Borders
A halfedge stores a reference to a face, its incident face.
A halfedge stores a reference to a face, its incident face.
A halfedge `h` is on the border, if it has no incident face, that is if
`sm.face(h) == Surface_mesh::null_face()`. An edge is on the border,
if any of its halfedges is on the border. A vertex is on the border,
if any of its incident halfedges is on the border.
if any of its incident halfedges is on the border.
A vertex has only one associated halfedge. If the user takes care that the
associated halfedge is a border halfedge, in case the vertex is on the
border, there is no need to look at all incident halfedges in the
`is_border()` function for vertices.
`is_border()` function for vertices.
In order to only check if the associated halfedge is on the border
the function
`Surface_mesh::is_border(Vertex_index v, bool check_all_incident_halfedges = true)`
must be called with `check_all_incident_halfedges = false`.
must be called with `check_all_incident_halfedges = false`.
The user is in charge to correctly set the halfedge
associated to a vertex after having applied an operation that might invalidate
associated to a vertex after having applied an operation that might invalidate
this property.
The functions `Surface_mesh::set_vertex_halfedge_to_border_halfedge(Vertex_index v)`,
`Surface_mesh::set_vertex_halfedge_to_border_halfedge(Halfedge_index h)`, and
`Surface_mesh::set_vertex_halfedge_to_border_halfedge()` enable to set the border
`Surface_mesh::set_vertex_halfedge_to_border_halfedge(Halfedge_index h)`, and
`Surface_mesh::set_vertex_halfedge_to_border_halfedge()` enable to set the border
halfedge for a single vertex `v`, for all vertices on the boundary of the
face of `h`, and for all vertices of the surface mesh, respectively.
@ -235,7 +235,7 @@ face of `h`, and for all vertices of the surface mesh, respectively.
The class `Surface_mesh` is a model of the concept `IncidenceGraph`
defined in the Boost Graph Library. This enables to apply algorithms such
as
as
[Dijkstra shortest path](https://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html), or
[Kruskal minimum spanning tree](https://www.boost.org/libs/graph/doc/kruskal_min_spanning_tree.html)
directly on a surface mesh.
@ -254,7 +254,7 @@ for example
It would be nicer to return the number of vertices without
taking removed vertices into account, but this would interact badly with
the underlying vertex/edge index mappings. The index mapping would no longer
the underlying vertex/edge index mappings. The index mapping would no longer
fall in the range `[0,num_vertices(g))` which is assumed in many
of the algorithms.
@ -267,9 +267,9 @@ Again, there are similar types and functions, for example:
| BGL | %Surface_mesh |
| :---- | :---- |
| `boost::graph_traits<G>::%halfedge_descriptor` | `Surface_mesh::Halfedge_index` |
| `boost::graph_traits<G>::%face_descriptor` | `Surface_mesh::Face_index` |
| `halfedges(const G& g)` | `sm.halfedges()` |
| `faces(const G& g)` | `sm.faces()` |
| `boost::graph_traits<G>::%face_descriptor` | `Surface_mesh::Face_index` |
| `halfedges(const G& g)` | `sm.halfedges()` |
| `faces(const G& g)` | `sm.faces()` |
| `hd = next(hd, g)` | `hd = sm.next(hd)` |
| `hd = prev(hd, g)` | `hd = sm.prev(hd)` |
| `hd = opposite(hd,g)` | `hd = sm.opposite(hd)` |
@ -292,18 +292,18 @@ for storing if a vertex has already been visited during a graph traversal.
The BGL way of retrieving the vertex index property map of a graph `g` is
`vipm = get(boost::vertex_index, g)`, and `get(vipm, vd)` in order then
to retrieve the index for a vertex descriptor `vd`, and it is
to retrieve the index for a vertex descriptor `vd`, and it is
`get(vertex_index, g, vd)` to obtain the vertex index directly.
\subsection SubsectionSurfaceMeshBglExample Example
The first example shows that we can apply Kruskal's
The first example shows that we can apply Kruskal's
minimum spanning tree algorithm directly on a surface mesh.
\cgalExample{Surface_mesh/sm_kruskal.cpp}
The second example shows how we can use property maps for
The second example shows how we can use property maps for
algorithms such as Prim's minimum spanning tree.
The algorithm internally also uses a <em>vertex index property map</em>
calling `get(boost::vertex_index_t,sm)`. For the class `Surface_mesh`
@ -319,30 +319,30 @@ See the \ref IOstreamPolygonMeshIO section for more info.
Memory management is semi-automatic. Memory grows as more elements are
added to the structure but does not shrink when elements are
removed.
removed.
When you add elements and the capacity of the underlying vector
is exhausted, the vector reallocates memory. As descriptors are
basically indices, they refer to the same element after a reallocation.
When you remove an element it is only marked as removed.
Internally it is put in a free list, and when you add elements to
the surface mesh, they are taken from the free list in case it is
not empty.
Internally it is put in a free list, and when you add elements to
the surface mesh, they are taken from the free list in case it is
not empty.
For all elements we offer a function to obtain the number of
For all elements we offer a function to obtain the number of
used elements, as well as the number of used and removed elements.
For vertices the functions are `Surface_mesh::number_of_vertices()`
and `Surface_mesh::number_of_removed_vertices()`, respectively.
The first function is slightly different from the free function
`num_vertices(const G&)` of the BGL package.
and `Surface_mesh::number_of_removed_vertices()`, respectively.
The first function is slightly different from the free function
`num_vertices(const G&)` of the BGL package.
As BGL style algorithms use the indices of elements
to access data in temporary vectors of size `num_vertices()`
this function must return a number larger than the largest index of
this function must return a number larger than the largest index of
the elements.
Iterators such as `Surface_mesh::Vertex_iterator` only enumerate
elements that are not marked as deleted.
elements that are not marked as deleted.
To really shrink the used memory, `Surface_mesh::collect_garbage()`
@ -350,8 +350,8 @@ must be called. Garbage collection also compacts the properties
associated with the surface mesh.
Note however that by garbage collecting elements get new indices.
In case you keep vertex descriptors they are most probably no longer
refering to the right vertices.
In case you keep vertex descriptors they are most probably no longer
refering to the right vertices.
\subsection SubsectionSurfaceMeshMemoryManagementExample Example
\cgalExample{Surface_mesh/sm_memory.cpp}
@ -375,8 +375,8 @@ Result of the run of the draw_surface_mesh program. A window shows the surface m
As integer type for the indices we have chosen `boost::uint32_t`. On 64 bit operating systems they
take only half the size of a pointer. They still allow to have meshes with 2 billion elements.
We use `std::vector` for storing properties. So by accessing the address
of the 0th element of a property map you can access the underlying
We use `std::vector` for storing properties. So by accessing the address
of the 0th element of a property map you can access the underlying
raw array. This may be useful, for example for passing an array
of points to OpenGL.
@ -388,10 +388,10 @@ and when iterating over elements they will not be enumerated in the insertion or
\section sectionSurfaceMeshHistory Implementation History
This package is derived from an early version of Daniel Sieger and Mario Botsch package
This package is derived from an early version of Daniel Sieger and Mario Botsch package
<a href="http://graphics.uni-bielefeld.de/publications/imr11/"><em>%Surface_mesh</em></a>
\cgalCite{sieger2011design},
which is inspired from the design of <a href="https://www.openmesh.org/">OpenMesh</a> and the \cgal package
\cgalCite{sieger2011design},
which is inspired from the design of <a href="https://www.openmesh.org/">OpenMesh</a> and the \cgal package
\ref PkgPolyhedron.
Philipp Moeller and Andreas Fabri worked on the code so that iterators

View File

@ -60,7 +60,7 @@ namespace CGAL {
///
/// @return `true`, if reading succeeded, `false` otherwise
///
#endif
#endif
template <typename K>
bool read_mesh(Surface_mesh<K>& mesh, const std::string& filename)
{
@ -97,7 +97,7 @@ bool read_mesh(Surface_mesh<K>& mesh, const std::string& filename)
///
#endif
template <typename K>
bool write_mesh(const Surface_mesh<K>& mesh, const std::string& filename)
bool write_mesh(const Surface_mesh<K>& mesh, const std::string& filename)
{
// extract file extension
std::string::size_type dot(filename.rfind("."));

View File

@ -9,13 +9,13 @@ reconstructed by `make_surface_mesh()` in the OFF file format.
In case the surface is manifold the triangles can be oriented.
\tparam SurfaceMeshComplex_2InTriangulation_3 must be a model of the `SurfaceMeshComplex_2InTriangulation_3` concept.
\tparam SurfaceMeshComplex_2InTriangulation_3 must be a model of the `SurfaceMeshComplex_2InTriangulation_3` concept.
\returns `true` if the surface is manifold and orientable.
\param os stream in which to write.
\param c2t3 Input surface.
\param c2t3 Input surface.
\param options an int that is the binary union of values of `Surface_mesher::IO_option`.
\returns `true` if the surface could be written to the stream.
@ -26,9 +26,9 @@ In case the surface is manifold the triangles can be oriented.
template <class SurfaceMeshComplex_2InTriangulation_3>
bool output_surface_facets_to_off (std::ostream& os,
const SurfaceMeshComplex_2InTriangulation_3& c2t3,
int options =
Surface_mesher::IO_ORIENT_SURFACE);
const SurfaceMeshComplex_2InTriangulation_3& c2t3,
int options =
Surface_mesher::IO_ORIENT_SURFACE);
namespace Surface_mesher {
/*!
@ -38,7 +38,7 @@ bool output_surface_facets_to_off (std::ostream& os,
enum IO_option { NO_OPTION = 0,
IO_ORIENT_SURFACE = 1,
IO_VERBOSE = 2 };
} /* namespace Surface_mesher */
} /* namespace CGAL */

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\mainpage User Manual
\mainpage User Manual
\anchor Chapter_3D_Surface_Mesh_Generation
\authors Laurent Rineau and Mariette Yvinec
@ -11,7 +11,7 @@ namespace CGAL {
\image html segmented_head.png
\image latex segmented_head.png
\section SurfaceMesher_section_intro Introduction
\section SurfaceMesher_section_intro Introduction
This package provides a function template
to compute a triangular mesh approximating a surface.
@ -57,7 +57,7 @@ surface, and is within a small bounded distance
The algorithm can also be used for non smooth surfaces
but then there is no guarantee.
\section SurfaceMesher_section_interface The Surface Mesh Generator Interface for Smooth Surfaces
\section SurfaceMesher_section_interface The Surface Mesh Generator Interface for Smooth Surfaces
The meshing process is launched through a call to a function template.
There are two overloaded versions of the meshing function
@ -236,7 +236,7 @@ Surface mesh of an iso-contour extracted from a gray level 3D image
\cgalExample{Surface_mesher/mesh_a_3d_gray_image.cpp}
\section SurfaceMesher_section_criteria Meshing Criteria, Guarantees and Variations
\section SurfaceMesher_section_criteria Meshing Criteria, Guarantees and Variations
\anchor SurfaceMesher_section_variations
@ -283,7 +283,7 @@ with the size of the mesh expected by the user,
and still have a guarantee that
the output mesh forms a manifold surface.
The function `make_surface_mesh()` has specialized versions
for the following tag types:
for the following tag types:
`Manifold_tag`: the output mesh is guaranteed to be a manifold
surface without boundary.
@ -296,10 +296,10 @@ guarantees nothing else.
\section Surface_mesherOutput Output
This \cgal component also provides functions to write the reconstructed surface mesh to the %Object File Format (OFF) \cgalCite{cgal:p-gmgv16-96} and to convert it to a `FaceGraph` (when it is manifold):
This \cgal component also provides functions to write the reconstructed surface mesh to the %Object File Format (OFF) \cgalCite{cgal:p-gmgv16-96} and to convert it to a `FaceGraph` (when it is manifold):
- `output_surface_facets_to_off()`
- `output_surface_facets_to_polyhedron()`
- `output_surface_facets_to_off()`
- `output_surface_facets_to_polyhedron()`
- `facets_in_complex_2_to_triangle_mesh()`
\section Surface_mesherUndocumented Undocumented Features Available in Demos
@ -308,12 +308,12 @@ The Polyhedron demo has a feature that allows to remesh a polyhedral
surface, using the 3D Surface Mesh Generator. That has been implemented as
a special model of `SurfaceMeshTraits_3`, for polyhedra. That traits
class is not yet documented because its interface and code have not yet
been stabilized.
been stabilized.
The Surface Mesh Generator demo allows to mesh not only gray level images,
but also segmented images, when voxels are labelled with a domain
index. Such images are for example the result of a segmentation of 3D
medical images.
medical images.
\section Surface_mesherDesign Design and Implementation History
@ -327,6 +327,6 @@ described in \cgalCite{cgal:ry-gsddrm-06}.
David Rey, Steve Oudot and Andreas Fabri have participated
in the development of this package.
*/
*/
} /* namespace CGAL */

View File

@ -33,7 +33,7 @@ namespace CGAL { namespace Surface_mesher {
typename Tr::size_type number_of_facets_on_surface(const Tr& T);
template <class Triangulation>
class Write_to_OFF_file
class Write_to_OFF_file
{
CGAL::File_writer_OFF off;
std::ostream& os;
@ -46,13 +46,13 @@ namespace CGAL { namespace Surface_mesher {
}
bool write_header(const typename Tr::size_type number_of_vertices,
const typename Tr::size_type number_of_facets)
const typename Tr::size_type number_of_facets)
{
off.header().set_no_comments(true);
off.write_header(os,
number_of_vertices,
0, // fake number of halfedges, not used.
number_of_facets);
number_of_vertices,
0, // fake number of halfedges, not used.
number_of_facets);
return os.good();
}
@ -70,8 +70,8 @@ namespace CGAL { namespace Surface_mesher {
}
bool write_facet(const int index1,
const int index2,
const int index3)
const int index2,
const int index3)
{
off.write_facet_begin(3);
off.write_facet_vertex_index(index1);
@ -89,7 +89,7 @@ namespace CGAL { namespace Surface_mesher {
}; // end class Write_to_OFF_file
template <class Triangulation, class HDS>
class Write_to_HDS
class Write_to_HDS
{
CGAL::Polyhedron_incremental_builder_3<HDS> builder;
@ -101,10 +101,10 @@ namespace CGAL { namespace Surface_mesher {
}
bool write_header(const typename Tr::size_type number_of_vertices,
const typename Tr::size_type number_of_facets)
const typename Tr::size_type number_of_facets)
{
builder.begin_surface(number_of_vertices,
number_of_facets);
number_of_facets);
return !builder.error();
}
@ -121,8 +121,8 @@ namespace CGAL { namespace Surface_mesher {
}
bool write_facet(const int index1,
const int index2,
const int index3)
const int index2,
const int index3)
{
int indices[3];
indices[0]=index1;
@ -140,16 +140,16 @@ namespace CGAL { namespace Surface_mesher {
}; // end class Write_to_HDS
enum IO_option { NO_OPTION = 0,
IO_ORIENT_SURFACE = 1,
IO_VERBOSE = 2 };
IO_ORIENT_SURFACE = 1,
IO_VERBOSE = 2 };
} // end namespace Surface_mesher
template <class C2t3>
bool output_surface_facets_to_off (std::ostream& os,
const C2t3& c2t3,
int options =
Surface_mesher::IO_ORIENT_SURFACE)
const C2t3& c2t3,
int options =
Surface_mesher::IO_ORIENT_SURFACE)
{
using CGAL::Surface_mesher::number_of_facets_on_surface;
@ -165,14 +165,14 @@ bool output_surface_facets_to_off (std::ostream& os,
bool success = true;
Surface_mesher::Write_to_OFF_file<Tr>
Surface_mesher::Write_to_OFF_file<Tr>
off(os, (options & Surface_mesher::IO_VERBOSE) != 0);
success &= off.write_header(tr.number_of_vertices(),
c2t3.number_of_facets());
c2t3.number_of_facets());
CGAL_assertion(c2t3.number_of_facets() == number_of_facets_on_surface(tr));
// Finite vertices coordinates.
std::map<Vertex_handle, int> V;
int inum = 0;
@ -186,19 +186,19 @@ bool output_surface_facets_to_off (std::ostream& os,
success &= off.begin_facets();
if((options & Surface_mesher::IO_ORIENT_SURFACE) == 0)
if((options & Surface_mesher::IO_ORIENT_SURFACE) == 0)
{
for( Finite_facets_iterator fit = tr.finite_facets_begin();
fit != tr.finite_facets_end(); ++fit)
fit != tr.finite_facets_end(); ++fit)
{
const typename Tr::Cell_handle cell = fit->first;
const int& index = fit->second;
if (cell->is_facet_on_surface(index)==true)
{
const int index1 = V[cell->vertex(tr.vertex_triple_index(index, 0))];
const int index2 = V[cell->vertex(tr.vertex_triple_index(index, 1))];
const int index3 = V[cell->vertex(tr.vertex_triple_index(index, 2))];
success &= off.write_facet(index1, index2, index3);
const int index1 = V[cell->vertex(tr.vertex_triple_index(index, 0))];
const int index2 = V[cell->vertex(tr.vertex_triple_index(index, 1))];
const int index3 = V[cell->vertex(tr.vertex_triple_index(index, 2))];
success &= off.write_facet(index1, index2, index3);
}
}
}
@ -213,52 +213,52 @@ bool output_surface_facets_to_off (std::ostream& os,
CGAL_assertion_code(typename Tr::size_type nb_facets = 0; )
while (oriented_set.size() != number_of_facets)
while (oriented_set.size() != number_of_facets)
{
while ( fit->first->is_facet_on_surface(fit->second) == false ||
oriented_set.find(*fit) != oriented_set.end() ||
oriented_set.find(c2t3.opposite_facet(*fit)) !=
oriented_set.end() )
{
++fit;
}
oriented_set.insert(*fit);
stack.push(*fit);
while(! stack.empty() )
{
Facet f = stack.top();
stack.pop();
for(int ih = 0 ; ih < 3 ; ++ih) {
const int i1 = tr.vertex_triple_index(f.second, tr. cw(ih));
const int i2 = tr.vertex_triple_index(f.second, tr.ccw(ih));
while ( fit->first->is_facet_on_surface(fit->second) == false ||
oriented_set.find(*fit) != oriented_set.end() ||
const typename C2t3::Face_status face_status
= c2t3.face_status(Edge(f.first, i1, i2));
if(face_status == C2t3::REGULAR) {
Facet fn = c2t3.neighbor(f, ih);
if (oriented_set.find(fn) == oriented_set.end()) {
if(oriented_set.find(c2t3.opposite_facet(fn)) == oriented_set.end())
{
oriented_set.insert(fn);
stack.push(fn);
}
else {
success = false; // non-orientable
}
}
}
else if(face_status != C2t3::BOUNDARY) {
success = false; // non manifold, thus non-orientable
}
} // end "for each neighbor of f"
} // end "stack non empty"
oriented_set.find(c2t3.opposite_facet(*fit)) !=
oriented_set.end() )
{
++fit;
}
oriented_set.insert(*fit);
stack.push(*fit);
while(! stack.empty() )
{
Facet f = stack.top();
stack.pop();
for(int ih = 0 ; ih < 3 ; ++ih) {
const int i1 = tr.vertex_triple_index(f.second, tr. cw(ih));
const int i2 = tr.vertex_triple_index(f.second, tr.ccw(ih));
const typename C2t3::Face_status face_status
= c2t3.face_status(Edge(f.first, i1, i2));
if(face_status == C2t3::REGULAR) {
Facet fn = c2t3.neighbor(f, ih);
if (oriented_set.find(fn) == oriented_set.end()) {
if(oriented_set.find(c2t3.opposite_facet(fn)) == oriented_set.end())
{
oriented_set.insert(fn);
stack.push(fn);
}
else {
success = false; // non-orientable
}
}
}
else if(face_status != C2t3::BOUNDARY) {
success = false; // non manifold, thus non-orientable
}
} // end "for each neighbor of f"
} // end "stack non empty"
} // end "oriented_set not full"
for(typename std::set<Facet>::const_iterator fit =
oriented_set.begin();
fit != oriented_set.end();
++fit)
for(typename std::set<Facet>::const_iterator fit =
oriented_set.begin();
fit != oriented_set.end();
++fit)
{
const typename Tr::Cell_handle cell = fit->first;
const int& index = fit->second;
@ -288,90 +288,90 @@ bool output_surface_facets_to_off (std::ostream& os,
// void operator()( HalfedgeDS& hds) {
// CGAL::Polyhedron_incremental_builder_3<HalfedgeDS> builder(hds, true);
// const typename Tr::size_type number_of_facets = c2t3.number_of_facets();
// builder.begin_surface(tr.number_of_vertices(),
// number_of_facets);
// builder.begin_surface(tr.number_of_vertices(),
// number_of_facets);
// {
// // Finite vertices coordinates.
// std::map<Vertex_handle, int> V;
// int inum = 0;
// for(Finite_vertices_iterator vit = tr.finite_vertices_begin();
// vit != tr.finite_vertices_end();
// ++vit)
// {
// V[vit] = inum++;
// Point p = static_cast<Point>(vit->point());
// builder.add_vertex(p);
// }
// Finite_facets_iterator fit = tr.finite_facets_begin();
// std::set<Facet> oriented_set;
// std::stack<Facet> stack;
// // Finite vertices coordinates.
// std::map<Vertex_handle, int> V;
// int inum = 0;
// for(Finite_vertices_iterator vit = tr.finite_vertices_begin();
// vit != tr.finite_vertices_end();
// ++vit)
// {
// V[vit] = inum++;
// Point p = static_cast<Point>(vit->point());
// builder.add_vertex(p);
// }
// Finite_facets_iterator fit = tr.finite_facets_begin();
// std::set<Facet> oriented_set;
// std::stack<Facet> stack;
// CGAL_assertion_code(typename Tr::size_type nb_facets = 0; )
// CGAL_assertion_code(typename Tr::size_type nb_facets = 0; )
// while (oriented_set.size() != number_of_facets) {
// while ( fit->first->is_facet_on_surface(fit->second) == false ||
// oriented_set.find(*fit) != oriented_set.end() ||
// while (oriented_set.size() != number_of_facets) {
// while ( fit->first->is_facet_on_surface(fit->second) == false ||
// oriented_set.find(*fit) != oriented_set.end() ||
// oriented_set.find(c2t3.opposite_facet(*fit)) !=
// oriented_set.end() ) {
// ++fit;
// }
// oriented_set.insert(*fit);
// stack.push(*fit);
// while(! stack.empty() ) {
// Facet f = stack.top();
// stack.pop();
// for(int ih = 0 ; ih < 3 ; ++ih) {
// const int i1 = tr.vertex_triple_index(f.second, tr. cw(ih));
// const int i2 = tr.vertex_triple_index(f.second, tr.ccw(ih));
// if( c2t3.face_status(Edge(f.first, i1, i2)) == C2t3::REGULAR ) {
// Facet fn = c2t3.neighbor(f, ih);
// if (oriented_set.find(fn) == oriented_set.end() &&
// oriented_set.find(c2t3.opposite_facet(fn)) == oriented_set.end())
// {
// oriented_set.insert(fn);
// stack.push(fn);
// }
// } // end "if the edge is regular"
// } // end "for each neighbor of f"
// } // end "stack non empty"
// } // end "oriented_set not full"
// oriented_set.find(c2t3.opposite_facet(*fit)) !=
// oriented_set.end() ) {
// ++fit;
// }
// oriented_set.insert(*fit);
// stack.push(*fit);
// while(! stack.empty() ) {
// Facet f = stack.top();
// stack.pop();
// for(int ih = 0 ; ih < 3 ; ++ih) {
// const int i1 = tr.vertex_triple_index(f.second, tr. cw(ih));
// const int i2 = tr.vertex_triple_index(f.second, tr.ccw(ih));
// if( c2t3.face_status(Edge(f.first, i1, i2)) == C2t3::REGULAR ) {
// Facet fn = c2t3.neighbor(f, ih);
// if (oriented_set.find(fn) == oriented_set.end() &&
// oriented_set.find(c2t3.opposite_facet(fn)) == oriented_set.end())
// {
// oriented_set.insert(fn);
// stack.push(fn);
// }
// } // end "if the edge is regular"
// } // end "for each neighbor of f"
// } // end "stack non empty"
// } // end "oriented_set not full"
// for(typename std::set<Facet>::const_iterator fit =
// oriented_set.begin();
// fit != oriented_set.end();
// ++fit)
// {
// int indices[3];
// int index = 0;
// for (int i=0; i<3; i++)
// indices[index++] =
// V[fit->first->vertex(tr.vertex_triple_index(fit->second, i))];
// builder.add_facet(indices+0, indices+3);
// CGAL_assertion_code(++nb_facets);
// }
// CGAL_assertion(nb_facets == number_of_facets);
// // for( Finite_facets_iterator fit = tr.finite_facets_begin();
// // fit != tr.finite_facets_end(); ++fit)
// // if ((*fit).first->is_facet_on_surface((*fit).second)==true)
// // {
// // int indices[3];
// // int index = 0;
// // for (int i=0; i<3; i++)
// // std::cerr << ( indices[index++] = V[(*fit).first->vertex(tr.vertex_triple_index(fit->second, i))] ) << ", ";
// // std::cerr << "\n";
// // if( builder.test_facet(indices+0, indices+3) )
// // builder.add_facet(indices+0, indices+3);
// // else
// // {
// // builder.begin_facet();
// // builder.add_vertex_to_facet(indices[2]);
// // builder.add_vertex_to_facet(indices[1]);
// // builder.add_vertex_to_facet(indices[0]);
// // builder.end_facet();
// // }
// // CGAL_assertion_code(++nb_facets);
// // }
// for(typename std::set<Facet>::const_iterator fit =
// oriented_set.begin();
// fit != oriented_set.end();
// ++fit)
// {
// int indices[3];
// int index = 0;
// for (int i=0; i<3; i++)
// indices[index++] =
// V[fit->first->vertex(tr.vertex_triple_index(fit->second, i))];
// builder.add_facet(indices+0, indices+3);
// CGAL_assertion_code(++nb_facets);
// }
// CGAL_assertion(nb_facets == number_of_facets);
// // for( Finite_facets_iterator fit = tr.finite_facets_begin();
// // fit != tr.finite_facets_end(); ++fit)
// // if ((*fit).first->is_facet_on_surface((*fit).second)==true)
// // {
// // int indices[3];
// // int index = 0;
// // for (int i=0; i<3; i++)
// // std::cerr << ( indices[index++] = V[(*fit).first->vertex(tr.vertex_triple_index(fit->second, i))] ) << ", ";
// // std::cerr << "\n";
// // if( builder.test_facet(indices+0, indices+3) )
// // builder.add_facet(indices+0, indices+3);
// // else
// // {
// // builder.begin_facet();
// // builder.add_vertex_to_facet(indices[2]);
// // builder.add_vertex_to_facet(indices[1]);
// // builder.add_vertex_to_facet(indices[0]);
// // builder.end_facet();
// // }
// // CGAL_assertion_code(++nb_facets);
// // }
// }
// builder.end_surface();
// }
@ -417,17 +417,17 @@ output_oriented_surface_facets_to_off (std::ostream& os, const Tr & T) {
fit != T.finite_facets_end(); ++fit)
if ((*fit).first->is_facet_on_surface((*fit).second)==true)
{
typename Tr::Facet f = *fit;
typename Tr::Facet opposite = T.mirror_facet(f);
CGAL_assertion (f.first->is_in_domain() !=
opposite.first->is_in_domain());
if(!f.first->is_in_domain())
f = T.mirror_facet(f);
os << "3 "
<< V[f.first->vertex(T.vertex_triple_index(f.second,0))] << " "
<< V[f.first->vertex(T.vertex_triple_index(f.second,1))] << " "
<< V[f.first->vertex(T.vertex_triple_index(f.second,2))] << " "
<< "\n"; // without color.
typename Tr::Facet f = *fit;
typename Tr::Facet opposite = T.mirror_facet(f);
CGAL_assertion (f.first->is_in_domain() !=
opposite.first->is_in_domain());
if(!f.first->is_in_domain())
f = T.mirror_facet(f);
os << "3 "
<< V[f.first->vertex(T.vertex_triple_index(f.second,0))] << " "
<< V[f.first->vertex(T.vertex_triple_index(f.second,1))] << " "
<< V[f.first->vertex(T.vertex_triple_index(f.second,2))] << " "
<< "\n"; // without color.
}
}
@ -435,8 +435,8 @@ output_oriented_surface_facets_to_off (std::ostream& os, const Tr & T) {
template < class Tr>
void
output_surface_facets_to_ghs (std::ostream& os_points,
std::ostream& os_faces,
const Tr & T) {
std::ostream& os_faces,
const Tr & T) {
typedef typename Tr::Finite_facets_iterator Finite_facets_iterator;
typedef typename Tr::Finite_vertices_iterator Finite_vertices_iterator;
typedef typename Tr::Vertex_handle Vertex_handle;
@ -466,15 +466,15 @@ output_surface_facets_to_ghs (std::ostream& os_points,
fit != T.finite_facets_end(); ++fit)
if ((*fit).first->is_facet_on_surface((*fit).second)==true)
{
Facet f = *fit;
if(!f.first->is_in_domain())
f = T.mirror_facet(f);
os_faces
<< "3 "
<< V[f.first->vertex(T.vertex_triple_index(f.second,0))] << " "
<< V[f.first->vertex(T.vertex_triple_index(f.second,1))] << " "
<< V[f.first->vertex(T.vertex_triple_index(f.second,2))] << " "
<< "0 0 0 0\n";
Facet f = *fit;
if(!f.first->is_in_domain())
f = T.mirror_facet(f);
os_faces
<< "3 "
<< V[f.first->vertex(T.vertex_triple_index(f.second,0))] << " "
<< V[f.first->vertex(T.vertex_triple_index(f.second,1))] << " "
<< V[f.first->vertex(T.vertex_triple_index(f.second,2))] << " "
<< "0 0 0 0\n";
}
}
@ -485,7 +485,7 @@ int number_of_facets_in_domain(const Tr& T) {
fit != T.finite_facets_end(); ++fit) {
typename Tr::Cell_handle neighb = fit->first->neighbor (fit->second);
if ((fit->first->is_in_domain () || neighb->is_in_domain()) &&
!fit->first->is_facet_on_surface (fit->second))
!fit->first->is_facet_on_surface (fit->second))
++result;
}
return result;
@ -522,14 +522,14 @@ output_interior_facets_to_off (std::ostream& os, const Tr & T) {
fit != T.finite_facets_end(); ++fit){
typename Tr::Cell_handle neighb = fit->first->neighbor (fit->second);
if ((fit->first->is_in_domain () || neighb->is_in_domain()) &&
!fit->first->is_facet_on_surface (fit->second))
!fit->first->is_facet_on_surface (fit->second))
{
os << "3 ";
for (int i=0; i<4; i++)
os << "3 ";
for (int i=0; i<4; i++)
if (i != (*fit).second)
os << V[(*fit).first->vertex(i)] << " ";
os << V[(*fit).first->vertex(i)] << " ";
os << "\n"; // without color.
os << "\n"; // without color.
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -32,12 +32,12 @@ A simplex \f$ s\in S\f$ is <I>maximal</I> if it is not a proper subset of some o
set in \f$ S\f$.
A simplex having \f$ k+1 \f$ vertices is said of dimension \f$ k \f$.
An \f$ k\f$-face denotes a \f$ k\f$-dimensional simplex, i.e., a simplex with \f$ k+1\f$
vertices.
vertices.
The simplicial complex is <I>pure</I> if all the maximal simplices
have the same dimension.
A <i>triangulation</i> is a simplicial complex
that is pure, connected and without boundaries nor singularities. The
A <i>triangulation</i> is a simplicial complex
that is pure, connected and without boundaries nor singularities. The
<i>dimension</i> of the triangulation is the dimension of its maximal
simplices.
@ -48,7 +48,7 @@ A <I>proper face</I> of a simplex is a strict subset of this simplex.
Two faces \f$ \sigma\f$ and \f$ \sigma'\f$ are <I>incident</I> if and only if
\f$ \sigma'\f$ is a proper face of \f$ \sigma\f$ or <I>vice versa</I>.
A complex has <i>no boundaries</i> if any proper face of a simplex is also a
A complex has <i>no boundaries</i> if any proper face of a simplex is also a
proper face of another simplex.
If the triangulation is of dimension \f$ d \f$, we use the following terminology:<UL>
@ -60,7 +60,7 @@ If the triangulation is of dimension \f$ d \f$, we use the following terminology
<LI><I>full cell</I>: a \f$ d\f$-face.
</UL>
If the vertices are embedded into Euclidean space \f$ \mathbb{R}^n\f$,
If the vertices are embedded into Euclidean space \f$ \mathbb{R}^n\f$,
we deal with
<I>finite simplicial complexes</I>, which have slightly different simplices
and additional requirements:
@ -77,28 +77,28 @@ simplices (the empty set counts).
This \cgal package provides four main classes
for creating and manipulating triangulations.
The class `CGAL::Triangulation_data_structure<Dimensionality, TriangulationDSVertex_, TriangulationDSFullCell_>`
The class `CGAL::Triangulation_data_structure<Dimensionality, TriangulationDSVertex_, TriangulationDSFullCell_>`
models an <I>abstract triangulation</I>: vertices in this
class are not embedded in Euclidean space but are only of combinatorial
nature.
The class `CGAL::Triangulation<TriangulationTraits_, TriangulationDataStructure_>`
The class `CGAL::Triangulation<TriangulationTraits_, TriangulationDataStructure_>`
describes an embedded triangulation that has as vertices a given set of points.
Methods are provided for the insertion of points in the triangulation, the
traversal of various elements of the triangulation, as well as the location of a
query point inside the triangulation.
query point inside the triangulation.
The triangulation covers the convex hull of the set of points.
The class `CGAL::Delaunay_triangulation<DelaunayTriangulationTraits_, TriangulationDataStructure_>`
builds the Delaunay triangulation of a set of points.
The class `CGAL::Delaunay_triangulation<DelaunayTriangulationTraits_, TriangulationDataStructure_>`
builds the Delaunay triangulation of a set of points.
In a Delaunay triangulation, each face has the so-called
<I>Delaunay</I> or <I>empty-ball</I> property: there exists a
circumscribing ball whose interior does not contain
circumscribing ball whose interior does not contain
any vertex of the triangulation.
The class `CGAL::Regular_triangulation<RegularTriangulationTraits_, TriangulationDataStructure_>`
builds the regular triangulation
-- also known as weighted Delaunay triangulation -- of a set of points.
The class `CGAL::Regular_triangulation<RegularTriangulationTraits_, TriangulationDataStructure_>`
builds the regular triangulation
-- also known as weighted Delaunay triangulation -- of a set of points.
A detailed definition of such a triangulation is available in section
\ref TriangulationSecRT.
@ -109,10 +109,10 @@ which \cgal provides one model class:
`CGAL::Triangulation_data_structure<Dimensionality, TriangulationDSVertex_, TriangulationDSFullCell_>`.
A triangulation data structure can represent an abstract triangulation.
The <I>maximal dimension</I> of a triangulation data structure is a
The <I>maximal dimension</I> of a triangulation data structure is a
positive integer equal to the maximum dimension a full cell can have.
This maximal dimension can be chosen by the user at the creation of the
This maximal dimension can be chosen by the user at the creation of the
triangulation data structure and can then be obtained using the method `tds.maximal_dimension()`.
A triangulation data structure also knows the <I>current dimension</I> of its full cells,
which can be obtained using `tds.current_dimension()`. In the sequel, let
@ -122,8 +122,8 @@ The special meaning of negative values for \f$d\f$ is explained below.
## The Set of Faces ##
The set of faces of a triangulation data structure with
current dimension \f$ d \f$ forms a triangulation of the
The set of faces of a triangulation data structure with
current dimension \f$ d \f$ forms a triangulation of the
topological sphere \f$ \mathbb{S}^d\f$.
Two full cells \f$ \sigma\f$ and \f$ \sigma'\f$ sharing a facet are called
@ -134,10 +134,10 @@ Possible values of \f$d\f$ (the <I>current dimension</I> of the triangulation) i
<DL>
<DT><B>\f$d=-2\f$</B><DD> This corresponds to an empty
triangulation data structure.
<DT><B>\f$d=-1\f$</B><DD> This corresponds to an abstract simplicial
<DT><B>\f$d=-1\f$</B><DD> This corresponds to an abstract simplicial
complex reduced to a single vertex.
<!--- and a single full cell. In a geometric triangulation, this vertex corresponds to the vertex at infinity.--->
<DT><B>\f$d=0\f$</B><DD> This corresponds to an abstract simplicial
<DT><B>\f$d=0\f$</B><DD> This corresponds to an abstract simplicial
complex including two vertices, each corresponding to a full cell;
the two full cells being neighbors of each other. This is the unique
triangulation of the \f$ 0\f$-sphere.
@ -145,7 +145,7 @@ triangulation of the \f$ 0\f$-sphere.
<DT><B>\f$ 0< d \le D\f$</B><DD> This corresponds to a triangulation of
the sphere \f$ \mathbb{S}^d\f$.
</DL>
</BLOCKQUOTE>
</BLOCKQUOTE>
## The `Triangulation_data_structure` Class ##
@ -176,7 +176,7 @@ Indexing the vertices and neighbors of a full cell \f$ c\f$ in dimension \f$ d=2
\cgalFigureEnd
Faces of dimension between 0 and \f$ d-1 \f$ can be accessed as
subfaces of a full cell, through the nested type `Face`. The `Face` instance
subfaces of a full cell, through the nested type `Face`. The `Face` instance
corresponding to a face \f$ f \f$ stores a reference to a full cell `c`
containing \f$ f \f$, and the indices of the vertices of `c` that belong
to \f$ f \f$.
@ -212,7 +212,7 @@ template parameter and
</UL>
The last two parameters have default values and are thus not necessary, unless
the user needs custom types (see `Triangulation_data_structure`).
the user needs custom types (see `Triangulation_data_structure`).
The first template parameter, `Dimensionality`, must be one of the following:
<UL>
<LI>`CGAL::Dimension_tag<D>` for some integer \f$ D \f$. This
@ -234,11 +234,11 @@ some nested types in `TriangulationDataStructure_`.
The default values are `CGAL::Triangulation_ds_vertex<TDS>`
and `CGAL::Triangulation_ds_full_cell<TDS>`
where `TDS` is the current class
where `TDS` is the current class
`Triangulation_data_structure<Dimensionality, TriangulationDSVertex_, TriangulationDSFullCell_>`.
<I>This creates a circular dependency</I>, which we resolve in the same way
as in the \cgal `Triangulation_2` and `Triangulation_3` packages (see
Chapters \ref Chapter_2D_Triangulation_Data_Structure, \ref Chapter_2D_Triangulations,
Chapters \ref Chapter_2D_Triangulation_Data_Structure, \ref Chapter_2D_Triangulations,
\ref Chapter_3D_Triangulation_Data_Structure, and \ref Chapter_3D_Triangulations).
In particular, models of the concepts `TriangulationDSVertex` and
`TriangulationDSFullCell` must provide a nested template `Rebind_TDS`
@ -254,7 +254,7 @@ class. The user is encouraged to read the documentation of the \cgal
The following examples shows how to construct a triangulation data structure by
inserting vertices. Its main interest is that it demonstrates most of the API
to insert new vertices into the triangulation.
to insert new vertices into the triangulation.
<!---
Therefore, the reader will make
the best use of this example by reading it slowly, together with the reference
@ -287,20 +287,20 @@ Barycentric subdivision in dimension \f$ d=2\f$.
\section TriangulationSecTriangulations Triangulations
The class `CGAL::Triangulation<TriangulationTraits_, TriangulationDataStructure_>`
maintains a triangulation embedded in Euclidean space. The triangulation
The class `CGAL::Triangulation<TriangulationTraits_, TriangulationDataStructure_>`
maintains a triangulation embedded in Euclidean space. The triangulation
covers the convex hull of the input points (the embedded vertices of the
triangulation).
To store this triangulation in a triangulation data structure, we turn the set
of its faces into a topological sphere by adding a
fictitious vertex, called the <i>infinite vertex</i>, as well as infinite
simplices incident to boundary faces of the convex hull.
Each infinite \f$ i\f$-simplex is
incident to the infinite vertex and to an \f$ (i-1)\f$-simplex of the
fictitious vertex, called the <i>infinite vertex</i>, as well as infinite
simplices incident to boundary faces of the convex hull.
Each infinite \f$ i\f$-simplex is
incident to the infinite vertex and to an \f$ (i-1)\f$-simplex of the
convex hull boundary.
See Chapters \ref Chapter_2D_Triangulations "2D Triangulations" or
See Chapters \ref Chapter_2D_Triangulations "2D Triangulations" or
\ref Chapter_3D_Triangulations "3D Triangulations" for more details
about infinite vertices and cells.
@ -311,22 +311,22 @@ as well as the location of a query point inside the triangulation.
The ordering of the vertices of a full cell defines an orientation of
that full cell.
As long as no <I>advanced</I> class method is called, it is guaranteed
that all finite full cells have positive orientation. Each infinite full
that all finite full cells have positive orientation. Each infinite full
cell is oriented as if its infinite vertex was on the side of
the hyperplane supported by its finite facet where there is no other point.
## Implementation ##
The class `CGAL::Triangulation<TriangulationTraits_, TriangulationDataStructure_>`
stores a model of the concept `TriangulationDataStructure` that is
The class `CGAL::Triangulation<TriangulationTraits_, TriangulationDataStructure_>`
stores a model of the concept `TriangulationDataStructure` that is
instantiated with a vertex type that stores a point.
The template parameter `TriangulationTraits_` must be a model of the concept
`TriangulationTraits`, which provides the point type as well
as various geometric predicates used by the `Triangulation` class.
The `TriangulationTraits` concept includes a nested type
`TriangulationTraits::Dimension`. This dimension governs the number of points
The `TriangulationTraits` concept includes a nested type
`TriangulationTraits::Dimension`. This dimension governs the number of points
given as arguments to the predicates. This type is either
`CGAL::Dimension_tag<D>` or `CGAL::Dynamic_dimension_tag`.
In any case, the dimension of the traits
@ -348,7 +348,7 @@ ask the triangulation to construct the set of edges
these edges are in bijection with the vertices on the convex hull of the
points. This gives us a handy way to count the convex hull vertices
(include files <tt>triangulation1.cpp</tt> and
<tt>triangulation2.cpp</tt> are given and commented below).
<tt>triangulation2.cpp</tt> are given and commented below).
\cgalExample{triangulation.cpp}
@ -356,7 +356,7 @@ points. This gives us a handy way to count the convex hull vertices
Remember that a triangulation covers the convex hull of its
vertices.
Each facet of the convex hull is incident
Each facet of the convex hull is incident
to one finite full cell and one infinite
full cell. In fact there is a bijection between the infinite full cells and the
facets of the convex hull.
@ -392,17 +392,17 @@ A <I>circumscribing ball</I> of a simplex is a ball
having all vertices of the simplex on its boundary.
In a Delaunay triangulation, each face has the so-called
<I>Delaunay</I> or <I>empty-ball</I> property: there exists a
circumscribing ball whose interior does not contain
circumscribing ball whose interior does not contain
any vertex of the triangulation.
In case of degeneracies (co-spherical points) the triangulation is not
uniquely defined. Note however that the CGAL implementation computes a
uniquely defined. Note however that the CGAL implementation computes a
unique triangulation even in these cases.
When a new point `p` is inserted into a Delaunay triangulation, the
full cells whose circumscribing ball contains `p` are said to
<I>be in conflict</I> with point `p`. Note that the circumscribing ball
of an infinite full cell is the empty half-space bounded by the affine hull
of an infinite full cell is the empty half-space bounded by the affine hull
of the finite facet of this cell. The set of full cells that are in
conflict with `p` form the <I>conflict zone</I>. The full cells
in the conflict zone are removed, leaving a hole that contains `p`. That
@ -451,9 +451,9 @@ Regular triangulations are also known as weighted Delaunay triangulations.
Let \f$ {S}^{(w)}\f$ be a set of weighted points in \f$ \mathbb{R}^D\f$. Let
\f$ {p}^{(w)}=(p,w_p), p\in\mathbb{R}^D, w_p\in\mathbb{R}\f$ and
\f$ {z}^{(w)}=(z,w_z), z\in\mathbb{R}^D, w_z\in\mathbb{R}\f$
\f$ {z}^{(w)}=(z,w_z), z\in\mathbb{R}^D, w_z\in\mathbb{R}\f$
be two weighted points.
A weighted point \f$ {p}^{(w)}=(p,w_p)\f$ can also be seen as a sphere of
A weighted point \f$ {p}^{(w)}=(p,w_p)\f$ can also be seen as a sphere of
center \f$ p\f$ and radius \f$ \sqrt{w_p}\f$.
The <I>power product</I> (or <I>power distance</I> )
between \f$ {p}^{(w)}\f$ and \f$ {z}^{(w)}\f$ is
@ -464,7 +464,7 @@ where \f$ \|{p-z}\|\f$ is the Euclidean distance between \f$ p\f$ and \f$ z\f$.
are said to be <I>orthogonal</I> if \f$ \Pi({p}^{(w)},{z}^{(w)})
= 0\f$.
\f$D + 1\f$ weighted points have a unique common orthogonal weighted point
\f$D + 1\f$ weighted points have a unique common orthogonal weighted point
called the <I>power sphere</I>. A sphere \f$ {z}^{(w)}\f$ is said to be
<I>regular</I> if \f$ \forall {p}^{(w)}\in{S}^{(w)},
\Pi({p}^{(w)},{z}^{(w)})\geq 0\f$.
@ -475,10 +475,10 @@ of all simplices are regular.
Note that as a result, some points can be hidden and do not result in vertices
in the triangulation. Those points are discarded and cannot be retrieved.
A weighted point `p` is said to be in conflict
A weighted point `p` is said to be in conflict
with a simplex `s` if it has a negative power distance to the power sphere of `s`.
Regular triangulations support insertion of weighted points,
Regular triangulations support insertion of weighted points,
and location of a query point inside the triangulation.
Note that inserting a large set of points at once is much faster
than inserting the same points one by one.
@ -493,8 +493,8 @@ the concept `TriangulationDataStructure_` which is instantiated with a vertex
type that stores a weighted point and allows its retrieval.
The template parameter `RegularTriangulationTraits_` must be a model of the concept
`RegularTriangulationTraits`. It must provide the `%Weighted_point_d`
type as well as various geometric predicates used by the
`RegularTriangulationTraits`. It must provide the `%Weighted_point_d`
type as well as various geometric predicates used by the
`Regular_triangulation` class.
The concept `RegularTriangulationTraits` refines the concept
`TriangulationTraits`.
@ -507,12 +507,12 @@ This simple example shows how to create a regular triangulation.
\section TriangulationSecPerf Complexity and Performances
When inserting a batch of points into a Delaunay triangulation,
the current implementation starts by spatially sorting the points.
When inserting a batch of points into a Delaunay triangulation,
the current implementation starts by spatially sorting the points.
Then, for each point to insert, it locates it by walking in the triangulation,
using the previously inserted vertex as a "hint". Finally, the point is
inserted.
In the worst case scenario, without spatial sort, the expected complexity is
In the worst case scenario, without spatial sort, the expected complexity is
\f$ O(n^{\lceil\frac{d}{2}\rceil+1}) \f$.
When the algorithm is run on uniformly distributed points, the localization complexity is
\f$ O(n^{\frac{1}{d}}) \f$ and the size of the triangulation is \f$ O(n) \f$, which gives
@ -520,11 +520,11 @@ a complexity of \f$ O(n^{1+\frac{1}{d}}) \f$ for the insertion.
With spatial sort and random points, one can expect a complexity of \f$ O(n\log n) \f$.
Please refer to \cgalCite{boissonnat2009Delaunay} for more details.
We provide below (\cgalFigureRef{Triangulationfigbenchmarks100},
\cgalFigureRef{Triangulationfigbenchmarks1000} and
We provide below (\cgalFigureRef{Triangulationfigbenchmarks100},
\cgalFigureRef{Triangulationfigbenchmarks1000} and
\cgalFigureRef{triangulationfigbenchmarkchart}) the
performance of the Delaunay triangulation on randomly distributed points.
The machine used is a PC running
performance of the Delaunay triangulation on randomly distributed points.
The machine used is a PC running
Windows 7 64-bits with an Intel Xeon CPU clocked at 2.80 GHz with 32GB of RAM.
The program has been compiled with Microsoft Visual C++ 2013 in Release mode.
@ -581,7 +581,7 @@ instead.
This package is heavily inspired by the works of
Monique Teillaud and Sylvain Pion (`Triangulation_3`)
and Mariette Yvinec (`Triangulation_2`).
The first version was written by Samuel Hornus. The final version is a joint
The first version was written by Samuel Hornus. The final version is a joint
work by Samuel Hornus, Olivier Devillers and Clément Jamin. In 2017, Clément
Jamin added the regular triangulations.
@ -590,6 +590,6 @@ Clément Jamin's work was supported by the
(Geometric Understanding in Higher Dimensions).
*/
*/
} /* namespace CGAL */

View File

@ -57,36 +57,36 @@ int main( int argc, char **argv) {
for (int i = 1; i < argc; i++) { // check commandline options
if ( strcmp( "-v", argv[i]) == 0)
verbose = true;
else if ( strcmp( "-b", argv[i]) == 0)
binary = true;
else if ( strcmp( "-noc", argv[i]) == 0)
noc = true;
else if ( strcmp( "-delaunay", argv[i]) == 0)
delaunay = true;
else if ( strcmp( "-incr", argv[i]) == 0)
incr = true;
else if ( strcmp( "-b", argv[i]) == 0)
binary = true;
else if ( strcmp( "-noc", argv[i]) == 0)
noc = true;
else if ( strcmp( "-delaunay", argv[i]) == 0)
delaunay = true;
else if ( strcmp( "-incr", argv[i]) == 0)
incr = true;
else if ( (strcmp( "-h", argv[i]) == 0) ||
(strcmp( "-help", argv[i]) == 0))
help = true;
else if ( n < 2 ) {
filename[ n++] = argv[i];
} else {
++n;
++n;
break;
}
}
}
if ((n > 2) || help) {
if ( ! help)
cerr << "Error: in parameter list" << endl;
cerr << "Usage: " << argv[0] << " [<options>] [<infile> [<outfile>]]"
<< endl;
cerr << " Terrain triangulation in the xy-plane." << endl;
cerr << " -delaunay Delaunay triangulation (default)." << endl;
cerr << " -incr Incremental insertion (no flips)." << endl;
cerr << " -b binary output (default is ASCII)." << endl;
cerr << " -noc no comments in file." << endl;
cerr << " -v verbose." << endl;
exit( ! help);
cerr << " Terrain triangulation in the xy-plane." << endl;
cerr << " -delaunay Delaunay triangulation (default)." << endl;
cerr << " -incr Incremental insertion (no flips)." << endl;
cerr << " -b binary output (default is ASCII)." << endl;
cerr << " -noc no comments in file." << endl;
cerr << " -v verbose." << endl;
exit( ! help);
}
CGAL::Verbose_ostream vout( verbose);
@ -96,77 +96,77 @@ int main( int argc, char **argv) {
istream* p_in = &cin;
ifstream in;
if ( n > 0) {
in.open( filename[0]);
p_in = &in;
iname = filename[0];
in.open( filename[0]);
p_in = &in;
iname = filename[0];
}
if ( !*p_in) {
cerr << argv[0] << ": error: cannot open file '" << iname
<< "' for reading." <<endl;
exit( 1);
cerr << argv[0] << ": error: cannot open file '" << iname
<< "' for reading." <<endl;
exit( 1);
}
CGAL::File_scanner_OFF scanner( * p_in, true);
if ( !*p_in)
exit( 1);
exit( 1);
const char* oname = "cout";
ostream* p_out = &cout;
ofstream out;
if ( n > 1) {
out.open( filename[1]);
p_out = &out;
oname = filename[1];
out.open( filename[1]);
p_out = &out;
oname = filename[1];
}
if ( !*p_out) {
cerr << argv[0] << ": error: cannot open file '"<< oname
<< "' for writing." <<endl;
exit( 1);
cerr << argv[0] << ": error: cannot open file '"<< oname
<< "' for writing." <<endl;
exit( 1);
}
// index array.
int* indices = new int[ scanner.size_of_vertices()];
for ( std::size_t k = 0; k < scanner.size_of_vertices(); k++)
indices[k] = -1;
indices[k] = -1;
if ( delaunay || ! incr) {
Delaunay_triangulation triang;
vout << "Scanning and triangulating ..." << endl;
for ( std::size_t j = 0; j < scanner.size_of_vertices(); j++) {
double x, y, z;
scanner.scan_vertex( x, y, z);
IPoint p( x, y, z, indices + j);
triang.insert( p);
}
vout << " .... done." << endl;
vout << "write_triangulation( " << oname
<< (binary ? ", binary" : ", ASCII") << ") ...." << endl;
CGAL::triangulation_print_OFF( *p_out, triang, binary, noc, verbose);
vout << " .... done." << endl;
Delaunay_triangulation triang;
vout << "Scanning and triangulating ..." << endl;
for ( std::size_t j = 0; j < scanner.size_of_vertices(); j++) {
double x, y, z;
scanner.scan_vertex( x, y, z);
IPoint p( x, y, z, indices + j);
triang.insert( p);
}
vout << " .... done." << endl;
vout << "write_triangulation( " << oname
<< (binary ? ", binary" : ", ASCII") << ") ...." << endl;
CGAL::triangulation_print_OFF( *p_out, triang, binary, noc, verbose);
vout << " .... done." << endl;
} else {
Triangulation triang;
vout << "Scanning and triangulating ..." << endl;
for ( std::size_t j = 0; j < scanner.size_of_vertices(); j++) {
double x, y, z;
scanner.scan_vertex( x, y, z);
IPoint p( x, y, z, indices + j);
triang.insert( p);
}
vout << " .... done." << endl;
vout << "write_triangulation( " << oname
<< (binary ? ", binary" : ", ASCII") << ") ...." << endl;
CGAL::triangulation_print_OFF( *p_out, triang, binary, noc, verbose);
vout << " .... done." << endl;
vout << "Scanning and triangulating ..." << endl;
for ( std::size_t j = 0; j < scanner.size_of_vertices(); j++) {
double x, y, z;
scanner.scan_vertex( x, y, z);
IPoint p( x, y, z, indices + j);
triang.insert( p);
}
vout << " .... done." << endl;
vout << "write_triangulation( " << oname
<< (binary ? ", binary" : ", ASCII") << ") ...." << endl;
CGAL::triangulation_print_OFF( *p_out, triang, binary, noc, verbose);
vout << " .... done." << endl;
}
if ( !*p_in) {
cerr << argv[0] << " read error: while reading file '"<< iname << "'."
<< endl;
exit( 1);
cerr << argv[0] << " read error: while reading file '"<< iname << "'."
<< endl;
exit( 1);
}
if ( !*p_out) {
cerr << argv[0] << " write error: while writing file '"<< oname << "'."
<< endl;
exit( 1);
cerr << argv[0] << " write error: while writing file '"<< oname << "'."
<< endl;
exit( 1);
}
delete[] indices;
return 0;