Wip group/degroup and operations

This commit is contained in:
Guillaume Damiand 2013-02-12 17:34:25 +01:00
parent 0778e0b166
commit 599d700c65
7 changed files with 1742 additions and 1570 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,633 @@
#ifndef CGAL_COMBINATORIAL_MAP_INSERTIONS_H
#define CGAL_COMBINATORIAL_MAP_INSERTIONS_H
namespace CGAL {
/** @file Combinatorial_map_insertions.h
* Insertion operations on combinatorial map.
*/
/** Insert a vertex in a given edge.
* @param amap the used combinatorial map.
* @param adart a dart of the edge (!=NULL && !=null_dart_handle).
* @return a dart of the new vertex.
*/
template<class CMap>
typename CMap::Dart_handle
insert_cell_0_in_cell_1(CMap& amap, typename CMap::Dart_handle adart)
{
CGAL_assertion(adart != NULL && adart!=CMap::null_dart_handle);
typename CMap::Dart_handle d1, d2;
int mark = amap.get_new_mark();
// 1) We store all the darts of the edge.
std::deque<typename CMap::Dart_handle> vect;
{
for ( typename CMap::template Dart_of_cell_range<1>::iterator it=
amap.template darts_of_cell<1>(adart).begin();
it != amap.template darts_of_cell<1>(adart).end(); ++it )
vect.push_back(it);
}
// 2) For each dart of the cell, we modify link of neighbors.
typename std::deque<typename CMap::Dart_handle>::iterator it = vect.begin();
for (; it != vect.end(); ++it)
{
d1 = amap.create_dart();
if (!(*it)->is_free(1))
{ amap.basic_link_beta_1(d1, (*it)->beta(1)); }
for ( unsigned int dim=2; dim<=CMap::dimension; ++dim )
{
if (!(*it)->is_free(dim) && amap.is_marked((*it)->beta(dim), mark))
{
amap.basic_link_beta_for_involution((*it)->beta(dim), d1, dim);
amap.basic_link_beta_for_involution(*it, (*it)->beta(dim)->
template beta<1>(), dim);
}
}
amap.template link_beta_1(*it, d1);
// TODO remove this group, and use link_beta instead ?
//amap.group_all_dart_attributes_except(*it, d1, 1);
amap.mark(*it, mark);
}
for (it = vect.begin(); it != vect.end(); ++it)
{ amap.unmark(*it, mark); }
amap.free_mark(mark);
internal::Degroup_attribute_functor_run<CMap, 1>::
run(&amap, adart, adart->beta(1));
// CGAL_expensive_postcondition( amap.is_valid() );
return adart->beta(1);
}
/** Insert a vertex in the given 2-cell which is splitted in triangles,
* once for each inital edge of the facet.
* @param amap the used combinatorial map.
* @param adart a dart of the facet to triangulate.
* @return A dart incident to the new vertex.
*/
// TODO revoir toute la gestion des attributs
// (utilisation correcte des link avec/sans la maj)
template < class CMap >
typename CMap::Dart_handle
insert_cell_0_in_cell_2(CMap& amap, typename CMap::Dart_handle adart)
{
CGAL_assertion(adart != NULL && adart!=CMap::null_dart_handle);
typename CMap::Dart_handle first = adart, prev = NULL, cur = NULL;
typename CMap::Dart_handle n1 = NULL, n2 = NULL;
typename CMap::Dart_handle nn1 = NULL, nn2 = NULL;
// If the facet is open, we search the dart 0-free
while (!first->is_free(0) && first->beta(0) != adart)
first = first->beta(0);
// Stack of couple of dart and dimension for which
// we must call on_split functor
std::deque<typename CMap::Dart_handle> modified_darts;
// Mark used to mark darts already treated.
int treated = amap.get_new_mark();
// Stack of marked darts
std::stack<typename CMap::Dart_handle> tounmark;
// Now we run through the facet
for (CGAL::CMap_dart_iterator_basic_of_orbit<CMap,1> it(amap,first);
it.cont();)
{
cur = it;
++it;
amap.mark(cur, treated);
tounmark.push(cur);
if ( cur!=first )
{
// TODO
//if ( amap.template degroup_attribute_of_dart<2>(first, cur) )
{
// TODO Functor takiing a range, an attrib_handle, and that set
// all the darts of the range to this handle
/* for (typename CMap::template Dart_of_involution_range<1>::iterator
it=template darts_of_involution<1>(dh2).begin(),
itend=template darts_of_involution<1>(dh2).end(); it!=itend;
++it)
{
}
tosplit.push(internal::Couple_dart_and_dim
<typename CMap::Dart_handle>
(first,cur,2));*/
}
}
if (!cur->is_free(0))
{
n1 = amap.create_dart();
amap.link_beta_0(cur, n1);
}
else n1 = NULL;
if (!cur->is_free(1))
{
n2 = amap.create_dart();
amap.link_beta_1(cur, n2);
}
else n2 = NULL;
if (n1 != NULL && n2 != NULL)
amap.link_beta_0(n1, n2);
if (n1 != NULL && prev != NULL)
amap.template link_beta_for_involution<2>(prev, n1);
for (unsigned int dim=3; dim<=CMap::dimension; ++dim)
{
if ( !adart->is_free(dim) )
{
if ( !amap.is_marked(cur->beta(dim), treated) )
{
if (n1!=NULL)
{
nn1=amap.create_dart();
amap.link_beta_1(cur->beta(dim), nn1);
amap.basic_link_beta_for_involution(n1, nn1, dim);
}
else nn1=NULL;
if (n2!=NULL)
{
nn2=amap.create_dart();
amap.link_beta_0(cur->beta(dim), nn2);
amap.basic_link_beta_for_involution(n2, nn2, dim);
}
else nn2=NULL;
if (nn1 != NULL && nn2 != NULL)
amap.basic_link_beta_1(nn1, nn2);
if (nn1 != NULL && prev != NULL)
amap.basic_link_beta_for_involution(nn1, prev->beta(dim), 2);
amap.mark(cur->beta(dim), treated);
tounmark.push(cur->beta(dim));
}
else
{
if ( n1!=NULL )
amap.basic_link_beta_for_involution(n1, cur->beta(dim)->beta(1), dim);
if ( n2!=NULL )
amap.basic_link_beta_for_involution(n2, cur->beta(dim)->beta(0), dim);
}
}
}
prev = n2;
}
if (n2 != NULL)
{
amap.template link_beta_for_involution<2>(first->beta(0), n2);
for (unsigned int dim=3; dim<=CMap::dimension; ++dim)
{
if ( !adart->is_free(dim) )
{
amap.basic_link_beta_for_involution(first->beta(0)->beta(dim),
n2->beta(dim), 2);
}
}
}
// Now we unmark all marked darts
while ( !tounmark.empty() )
{
amap.unmark(tounmark.top(), treated);
tounmark.pop();
}
CGAL_assertion(amap.is_whole_map_unmarked(treated));
amap.free_mark(treated);
/* TODO while ( !tosplit.empty() )
{
internal::Couple_dart_and_dim<typename CMap::Dart_handle> c=tosplit.top();
tosplit.pop();
internal::Call_split_functor<CMap, 2>::run(c.d1, c.d2);
} */
CGAL_expensive_postcondition( amap.is_valid() );
return n1;
}
/** Insert a dangling edge in a 2-cell between given by a dart.
* @param amap the used combinatorial map.
* @param adart1 a first dart of the facet (!=NULL && !=null_dart_handle).
* @return a dart of the new edge, not incident to the vertex of adart1.
*/
template<class CMap>
typename CMap::Dart_handle
insert_dangling_cell_1_in_cell_2(CMap& amap, typename CMap::Dart_handle adart1)
{
CGAL_assertion(adart1!=NULL && adart1!=CMap::null_dart_handle);
int mark1 = amap.get_new_mark();
std::deque<typename CMap::Dart_handle> to_unmark;
{
for ( CMap_dart_iterator_basic_of_cell<CMap,0> it(amap,adart1,mark1);
it.cont(); ++it )
{
to_unmark.push_back(it);
amap.mark(it,mark1);
}
}
typename CMap::Dart_handle d1 = NULL;
typename CMap::Dart_handle d2 = NULL;
unsigned int s1 = 0;
int treated = amap.get_new_mark();
CGAL::CMap_dart_iterator_of_involution<CMap,1> it1(amap,adart1);
for ( ; it1.cont(); ++it1)
{
d1 = amap.create_dart();
d2 = amap.create_dart();
if ( amap.is_marked(it1, mark1) ) s1 = 0;
else s1 = 1;
if ( !it1->is_free(s1) )
{
if ( s1==0 ) amap.template link_beta<1>(it1->template beta<0>(), d2);
else amap.template link_beta<0>(it1->template beta<1>(), d2);
}
if (s1==0)
{
amap.template link_beta<0>(it1, d1);
amap.template link_beta<0>(d1,d2);
}
else
{
amap.template link_beta<1>(it1, d1);
amap.template link_beta<1>(d1,d2);
}
amap.template link_beta_for_involution<2>(d1, d2);
for ( unsigned int dim=3; dim<=CMap::dimension; ++dim)
{
if ( !it1->is_free(dim) &&
amap.is_marked(it1->beta(dim), treated) )
{
amap.basic_link_beta_for_involution(it1->beta(dim)->beta_inv(s1), d1,
dim);
amap.basic_link_beta_for_involution
(it1->beta(dim)->beta_inv(s1)->beta(2), d2, dim);
}
}
amap.mark(it1,treated);
}
for ( it1.rewind(); it1.cont(); ++it1 )
{ amap.unmark(it1,treated); }
CGAL_assertion( amap.is_whole_map_unmarked(treated) );
amap.free_mark(treated);
typename std::deque<typename CMap::Dart_handle>::iterator it =
to_unmark.begin();
for (; it != to_unmark.end(); ++it)
{ amap.unmark(*it, mark1); }
CGAL_assertion( amap.is_whole_map_unmarked(mark1) );
amap.free_mark(mark1);
// CGAL_expensive_postcondition( amap.is_valid() );
return adart1->beta(0);
}
/** Test if an edge can be inserted onto a 2-cell between two given darts.
* @param amap the used combinatorial map.
* @param adart1 a first dart.
* @param adart2 a second dart.
* @return true iff an edge can be inserted between adart1 and adart2.
*/
template < class CMap >
bool is_insertable_cell_1_in_cell_2(const CMap& amap,
typename CMap::Dart_const_handle adart1,
typename CMap::Dart_const_handle adart2)
{
CGAL_assertion(adart1 != NULL && adart2 != NULL);
if ( adart1==adart2 ) return false;
for ( CMap_dart_const_iterator_of_orbit<CMap,1> it(amap,adart1);
it.cont(); ++it )
{
if ( it==adart2 ) return true;
}
return false;
}
/** Insert an edge in a 2-cell between two given darts.
* @param amap the used combinatorial map.
* @param adart1 a first dart of the facet (!=NULL && !=null_dart_handle).
* @param adart2 a second dart of the facet. If NULL insert a dangling edge.
* @return a dart of the new edge, and not incident to the
* same vertex than adart1.
*/
template<class CMap>
typename CMap::Dart_handle
insert_cell_1_in_cell_2(CMap& amap,
typename CMap::Dart_handle adart1,
typename CMap::Dart_handle adart2)
{
if ( adart2==NULL ) return insert_dangling_cell_1_in_cell_2(amap,adart1);
CGAL_assertion(is_insertable_cell_1_in_cell_2<CMap>(amap, adart1, adart2));
int m1 = amap.get_new_mark();
CMap_dart_iterator_basic_of_involution<CMap,1>
it1 = CMap_dart_iterator_basic_of_involution<CMap,1>(amap, adart1, m1);
int m2 = amap.get_new_mark();
CMap_dart_iterator_basic_of_involution<CMap,1>
it2 = CMap_dart_iterator_basic_of_involution<CMap,1>(amap, adart2, m2);
int mark1 = amap.get_new_mark();
std::deque<typename CMap::Dart_handle> to_unmark;
{
for ( CMap_dart_iterator_basic_of_cell<CMap,0> it(amap,adart1,mark1);
it.cont(); ++it )
{
to_unmark.push_back(it);
amap.mark(it,mark1);
}
}
typename CMap::Dart_handle d1 = NULL;
typename CMap::Dart_handle d2 = NULL;
unsigned int s1 = 0;
int treated = amap.get_new_mark();
for ( ; it1.cont(); ++it1, ++it2)
{
CGAL_assertion (it2.cont() );
d1 = amap.create_dart();
d2 = amap.create_dart();
if ( amap.is_marked(it1, mark1) ) s1 = 0;
else s1 = 1;
if ( !it1->is_free(s1) )
{
if ( s1==0 ) amap.basic_link_beta_1(it1->template beta<0>(), d2);
else amap.link_beta_0(it1->template beta<1>(), d2);
}
if ( !it2->is_free(s1) )
{
if ( s1==0 ) amap.basic_link_beta_1(it2->template beta<0>(), d1);
else amap.link_beta_0(it2->template beta<1>(), d1);
}
if ( s1==0 )
{
amap.link_beta_0(it1, d1);
amap.link_beta_0(it2, d2);
}
else
{
amap.basic_link_beta_1(it1, d1);
amap.basic_link_beta_1(it2, d2);
}
amap.link_beta_for_involution(d2, d1, 2);
for ( unsigned int dim=3; dim<=CMap::dimension; ++dim)
{
if ( !it1->is_free(dim) &&
amap.is_marked(it1->beta(dim), treated) )
{
amap.basic_link_beta_for_involution
(it1->beta(dim)->beta_inv(s1), d1, dim);
amap.basic_link_beta_for_involution
(it1->beta(dim)->beta_inv(s1)->beta(2), d2, dim);
}
}
amap.mark(it1,treated);
}
internal::Degroup_attribute_functor_run<CMap, 2>::
run(&amap, d1, d2);
amap.negate_mark(m1);
amap.negate_mark(m2);
it1.rewind(); it2.rewind();
for ( ; it1.cont(); ++it1, ++it2)
{
amap.mark(it1,m1);
amap.unmark(it1,treated);
amap.mark(it2,m2);
}
amap.negate_mark(m1);
amap.negate_mark(m2);
CGAL_assertion( amap.is_whole_map_unmarked(m1) );
CGAL_assertion( amap.is_whole_map_unmarked(m2) );
CGAL_assertion( amap.is_whole_map_unmarked(treated) );
amap.free_mark(m1);
amap.free_mark(m2);
amap.free_mark(treated);
typename std::deque<typename CMap::Dart_handle>::iterator it =
to_unmark.begin();
for (; it != to_unmark.end(); ++it)
{ amap.unmark(*it, mark1); }
CGAL_assertion( amap.is_whole_map_unmarked(mark1) );
amap.free_mark(mark1);
// CGAL_expensive_postcondition( amap.is_valid() );
return adart1->template beta<0>();
}
/** Test if a 2-cell can be inserted onto a given 3-cell along
* a path of edges.
* @param amap the used combinatorial map.
* @param afirst iterator on the begining of the path.
* @param alast iterator on the end of the path.
* @return true iff a 2-cell can be inserted along the path.
*/
template <class CMap, class InputIterator>
bool is_insertable_cell_2_in_cell_3(const CMap& amap,
InputIterator afirst,
InputIterator alast)
{
CGAL_static_assertion( CMap::dimension>= 3 );
// The path must have at least one dart.
if (afirst==alast) return false;
typename CMap::Dart_const_handle prec = NULL;
typename CMap::Dart_const_handle od = NULL;
for (InputIterator it(afirst); it!=alast; ++it)
{
// The path must contain only non empty darts.
if (*it == NULL || *it==CMap::null_dart_handle) return false;
// Two consecutive darts of the path must belong to two edges
// incident to the same vertex of the same volume.
if (prec != NULL)
{
od = prec->other_extremity();
if ( od==CMap::null_dart_handle ) return false;
// of and *it must belong to the same vertex of the same volume
if ( !belong_to_same_cell<CMap, 0, 2>(amap, od, *it) )
return false;
}
prec = *it;
}
// The path must be closed.
od = prec->other_extremity();
if ( od==CMap::null_dart_handle ) return false;
if (!belong_to_same_cell<CMap, 0, 2>(amap, od, *afirst))
return false;
return true;
}
/** Insert a 2-cell in a given 3-cell along a path of darts.
* @param amap the used combinatorial map.
* @param afirst iterator on the begining of the path.
* @param alast iterator on the end of the path.
* @return a dart of the new 2-cell.
*/
template<class CMap, class InputIterator>
typename CMap::Dart_handle
insert_cell_2_in_cell_3(CMap& amap, InputIterator afirst, InputIterator alast)
{
CGAL_assertion(is_insertable_cell_2_in_cell_3(amap,afirst,alast));
typename CMap::Dart_handle prec = NULL, d = NULL, dd = NULL, first = NULL;
bool withBeta3 = false;
{
for (InputIterator it(afirst); it!=alast; ++it)
{
if (!(*it)->is_free(2)) withBeta3 = true;
}
}
{
for (InputIterator it(afirst); it!=alast; ++it)
{
d = amap.create_dart();
if (withBeta3)
{
dd = amap.create_dart();
amap.template basic_link_beta_for_involution<3>(d, dd);
}
if (prec != NULL)
{
amap.template link_beta<0>(prec, d);
if (withBeta3)
amap.template link_beta<1>(prec->template beta<3>(), dd);
}
else first = d;
if (!(*it)->is_free(2))
amap.template link_beta_for_involution<2>
((*it)->template beta<2>(), dd);
amap.template link_beta_for_involution<2>(*it, d);
prec = d;
}
}
amap.template link_beta<0>(prec, first);
if (withBeta3)
{
amap.template link_beta<1>(prec->template beta<3>(),
first->template beta<3>());
}
// Make copies of the new facet for dimension >=4
for ( unsigned int dim=4; dim<=CMap::dimension; ++dim )
{
if ( !first->is_free(dim) )
{
typename CMap::Dart_handle first2 = NULL;
prec = NULL;
for ( CMap_dart_iterator_of_orbit<CMap,1> it(amap, first);
it.cont(); ++it )
{
d = amap.create_dart();
amap.link_beta_for_involution(it->template beta<2>(), d, dim);
if ( withBeta3 )
{
dd = amap.create_dart();
amap.link_beta_for_involution
(it->template beta<2>()->template beta<3>(), dd, dim);
amap.template basic_link_beta_for_involution<3>(d, dd);
}
if ( prec!=NULL )
{
amap.link_beta_0(prec, d);
if ( withBeta3 )
{
amap.link_beta_1(prec->template beta<3>(), dd);
}
}
else first2 = prec;
for ( unsigned dim2=2; dim2<=CMap::dimension; ++dim2 )
{
if ( dim2+1!=dim && dim2!=dim && dim2!=dim+1 )
{
if ( !it->is_free(dim2) &&
it->beta(dim2)->is_free(dim) )
amap.basic_link_beta_for_involution(it->beta(dim2)->beta(dim),
d, dim2);
if ( withBeta3 && !it->beta(3)->is_free(dim2) &&
it->template beta<3>()->beta(dim2)->is_free(dim) )
amap.basic_link_beta_for_involution
(it->template beta<3>()->beta(dim2)->beta(dim), dd, dim2);
}
}
prec = d;
}
amap.template link_beta<0>( prec, first2 );
if ( withBeta3 )
{
amap.template link_beta<1>( prec->template beta<3>(),
first2->template beta<3>() );
}
}
}
// Degroup the attributes
if ( withBeta3 )
internal::Degroup_attribute_functor_run<CMap, 3>::
run(&amap, first, first->template beta<3>());
// CGAL_expensive_postcondition( amap.is_valid() );
return first;
}
} // namespace CGAL
#endif // CGAL_COMBINATORIAL_MAP_INSERTIONS_H

View File

@ -365,14 +365,12 @@ namespace CGAL {
/// Destructor.
~CMap_non_basic_iterator()
{
if ( this->mmark_number!=-1 )
{
CGAL_assertion( this->mmark_number!=-1 );
if (this->mmap->get_number_of_times_mark_reserved
(this->mmark_number)==1)
unmark_treated_darts();
this->mmap->free_mark(this->mmark_number);
}
}
/// Copy constructor.
CMap_non_basic_iterator(const Self& aiterator):
@ -384,6 +382,11 @@ namespace CGAL {
{
if (this != &aiterator)
{
if (this->mmap->get_number_of_times_mark_reserved
(this->mmark_number)==1)
unmark_treated_darts();
this->mmap->free_mark(this->mmark_number);
Base::operator=(aiterator);
this->mmap->share_a_mark(this->mmark_number);
}

View File

@ -21,7 +21,8 @@
#define CGAL_COMBINATORIAL_MAP_OPERATIONS_H 1
#include <CGAL/Combinatorial_map_basic_operations.h>
#include <vector>
#include <CGAL/Combinatorial_map_insertions.h>
#include <deque>
#include <stack>
namespace CGAL {
@ -30,167 +31,6 @@ namespace CGAL {
* Some operations to modify a combinatorial map.
*/
/** Insert a vertex in the given 2-cell which is splitted in triangles,
* once for each inital edge of the facet.
* @param amap the used combinatorial map.
* @param adart a dart of the facet to triangulate.
* @return A dart incident to the new vertex.
*/
// TODO revoir toute la gestion des attributs
// (utilisation correcte des link avec/sans la maj)
template < class CMap >
typename CMap::Dart_handle
insert_cell_0_in_cell_2(CMap& amap, typename CMap::Dart_handle adart)
{
CGAL_assertion(adart != NULL && adart!=CMap::null_dart_handle);
typename CMap::Dart_handle first = adart, prev = NULL, cur = NULL;
typename CMap::Dart_handle n1 = NULL, n2 = NULL;
typename CMap::Dart_handle nn1 = NULL, nn2 = NULL;
// If the facet is open, we search the dart 0-free
while (!first->is_free(0) && first->beta(0) != adart)
first = first->beta(0);
// Stack of couple of dart and dimension for which
// we must call on_split functor
std::stack<internal::Couple_dart_and_dim<typename CMap::Dart_handle> >
tosplit;
// Mark used to mark darts already treated.
int treated = amap.get_new_mark();
// Stack of marked darts
std::stack<typename CMap::Dart_handle> tounmark;
// Now we run through the facet
for (CGAL::CMap_dart_iterator_basic_of_orbit<CMap,1> it(amap,first);
it.cont();)
{
cur = it;
++it;
amap.mark(cur, treated);
tounmark.push(cur);
if ( cur!=first )
{
// TODO
//if ( amap.template degroup_attribute_of_dart<2>(first, cur) )
{
// TODO Functor takiing a range, an attrib_handle, and that set
// all the darts of the range to this handle
/* for (typename CMap::template Dart_of_involution_range<1>::iterator
it=template darts_of_involution<1>(dh2).begin(),
itend=template darts_of_involution<1>(dh2).end(); it!=itend;
++it)
{
}*/
tosplit.push(internal::Couple_dart_and_dim
<typename CMap::Dart_handle>
(first,cur,2));
}
}
if (!cur->is_free(0))
{
n1 = amap.create_dart();
amap.link_beta_0(cur, n1);
}
else n1 = NULL;
if (!cur->is_free(1))
{
n2 = amap.create_dart();
amap.link_beta_1(cur, n2);
}
else n2 = NULL;
if (n1 != NULL && n2 != NULL)
amap.link_beta_0(n1, n2);
if (n1 != NULL && prev != NULL)
amap.template link_beta_for_involution<2>(prev, n1);
for (unsigned int dim=3; dim<=CMap::dimension; ++dim)
{
if ( !adart->is_free(dim) )
{
if ( !amap.is_marked(cur->beta(dim), treated) )
{
if (n1!=NULL)
{
nn1=amap.create_dart();
amap.link_beta_1(cur->beta(dim), nn1);
amap.basic_link_beta_for_involution(n1, nn1, dim);
}
else nn1=NULL;
if (n2!=NULL)
{
nn2=amap.create_dart();
amap.link_beta_0(cur->beta(dim), nn2);
amap.basic_link_beta_for_involution(n2, nn2, dim);
}
else nn2=NULL;
if (nn1 != NULL && nn2 != NULL)
amap.basic_link_beta_1(nn1, nn2);
if (nn1 != NULL && prev != NULL)
amap.basic_link_beta_for_involution(nn1, prev->beta(dim), 2);
amap.mark(cur->beta(dim), treated);
tounmark.push(cur->beta(dim));
}
else
{
if ( n1!=NULL )
amap.basic_link_beta_for_involution(n1, cur->beta(dim)->beta(1), dim);
if ( n2!=NULL )
amap.basic_link_beta_for_involution(n2, cur->beta(dim)->beta(0), dim);
}
}
}
prev = n2;
}
if (n2 != NULL)
{
amap.template link_beta_for_involution<2>(first->beta(0), n2);
for (unsigned int dim=3; dim<=CMap::dimension; ++dim)
{
if ( !adart->is_free(dim) )
{
amap.basic_link_beta_for_involution(first->beta(0)->beta(dim),
n2->beta(dim), 2);
}
}
}
// Now we unmark all marked darts
while ( !tounmark.empty() )
{
amap.unmark(tounmark.top(), treated);
tounmark.pop();
}
CGAL_assertion(amap.is_whole_map_unmarked(treated));
amap.free_mark(treated);
while ( !tosplit.empty() )
{
internal::Couple_dart_and_dim<typename CMap::Dart_handle> c=tosplit.top();
tosplit.pop();
internal::Call_split_functor<CMap, 2>::run(c.d1, c.d2);
}
CGAL_expensive_postcondition( amap.is_valid() );
return n1;
}
/** Test if an i-cell can be removed.
* An i-cell can be removed if i==CMap::dimension or i==CMap::dimension-1,
* or if there are at most two (i+1)-cell incident to it.
@ -244,17 +84,6 @@ namespace CGAL {
const int iinv = CGAL_BETAINV(i);
/*int mark_for_incident_cells[CMap::Helper::nb_attribs];
std::deque<std::deque<typename CMap::Dart_handle> >
incident_cells[CMap::Helper::nb_attribs];
// Marks used to mark all the incident cells.
for (int j=0; j<CMap::Helper::nb_attribs; ++j)
{
mark_for_incident_cells [j] = amap.get_new_mark();
CGAL_assertion( mark_for_incident_cells[j]!=-1 );
}*/
// First we store and mark all the darts of the i-cell to remove.
for ( CMap_dart_iterator_basic_of_cell<CMap,i> it(amap,adart,mark);
it.cont(); ++it )
@ -266,106 +95,38 @@ namespace CGAL {
++res;
}
// Second we store all the incident cells that can be split by
// the operation.
typename std::deque<typename CMap::Dart_handle>::iterator it =
to_erase.begin();
/*for (; it != to_erase.end(); ++it)
{
d1 = (*it)->beta(iinv);
while ( d1!=CMap::null_dart_handle && amap.is_marked(d1, mark) )
{
d1 = d1->beta(i+1)->beta(iinv);
if (d1 == (*it)->beta(iinv)) d1 = CMap::null_dart_handle;
}
d2 = (*it)->beta(i+1)->beta(i);
while ( d2!=CMap::null_dart_handle && amap.is_marked(d2, mark) )
{
d2 = d2->beta(i+1)->beta(i);
if ( d2==(*it)->beta(i+1)->beta(i) ) d2=CMap::null_dart_handle;
}
if (d1 != CMap::null_dart_handle)
{
if (d2 != CMap::null_dart_handle)
{
if ( dg1==NULL ) { dg1 = d1; dg2=d2; }
CMap::Helper::template Foreach_enabled_attributes
<internal::Store_incident_cells<CMap,i> >::
run(&amap, d1, mark, &mark_for_incident_cells[0],
&incident_cells[0]);
CMap::Helper::template Foreach_enabled_attributes
<internal::Store_incident_cells<CMap,i> >::
run(&amap, d2, mark, &mark_for_incident_cells[0],
&incident_cells[0]);
}
else
{
if ( !d1->is_free(i) )
{
CMap::Helper::template Foreach_enabled_attributes
<internal::Store_incident_cells<CMap,i> >::
run(&amap, d1->beta(i), mark, &mark_for_incident_cells[0],
&incident_cells[0]);
}
}
}
else if (d2 != CMap::null_dart_handle)
{
if ( !d2->is_free(iinv) )
{
CMap::Helper::template Foreach_enabled_attributes
<internal::Store_incident_cells<CMap,i> >::
run(&amap, d2, mark, &mark_for_incident_cells[0],
&incident_cells[0]);
}
}
if ((*it)->is_free(i+1) && !(*it)->is_free(i))
{
d1 = (*it)->beta(i);
if ( !d1->is_free(iinv) )
{
CMap::Helper::template Foreach_enabled_attributes
<internal::Store_incident_cells<CMap,i> >::
run(&amap, d1, mark, &mark_for_incident_cells[0],
&incident_cells[0]);
}
}
// Required to process cells non consider in the cases above.
amap.update_dart_of_all_attributes(*it, mark);
}*/
for (; it != to_erase.end(); ++it)
amap.update_dart_of_all_attributes(*it, mark);
// We group the two (i+1)-cells incident if they exist.
if ( dg1!=NULL )
internal::Group_attribute_functor_run<CMap, i+1>::
run(&amap, dg1, dg2);
// Second we store all the incident cells that can be split by
// the operation.
typename std::deque<typename CMap::Dart_handle>::iterator it =
to_erase.begin();
for (; it != to_erase.end(); ++it)
amap.update_dart_of_all_attributes(*it, mark);
std::deque<typename CMap::Dart_handle> modified_darts;
// std::deque<typename CMap::Dart_handle> modified_darts2;
// For each dart of the i-cell, we modify i-links of neighbors.
for ( it=to_erase.begin(); it != to_erase.end(); ++it)
{
d1=(*it)->beta(iinv);
d1=(*it)->template beta<iinv>();
while ( d1!=CMap::null_dart_handle && amap.is_marked(d1, mark) )
{
d1=d1->beta(i+1)->beta(iinv);
if ( d1==(*it)->beta(iinv) ) d1=CMap::null_dart_handle;
d1=d1->template beta<i+1>()->template beta<iinv>();
if ( d1==(*it)->template beta<iinv>() ) d1=CMap::null_dart_handle;
}
if ( !amap.is_marked(d1, mark_modified_darts) )
{
d2=(*it)->beta(i+1)->beta(i);
d2=(*it)->template beta<i+1>()->template beta<i>();
while ( d2!=CMap::null_dart_handle && amap.is_marked(d2, mark) )
{
d2=d2->beta(i+1)->beta(i);
if ( d2==(*it)->beta(i+1)->beta(i) ) d2=CMap::null_dart_handle;
d2=d2->template beta<i+1>()->template beta<i>();
if ( d2==(*it)->template beta<i+1>()->template beta<i>() )
d2=CMap::null_dart_handle;
}
if ( !amap.is_marked(d2, mark_modified_darts) )
@ -425,12 +186,9 @@ namespace CGAL {
// We test the split of all the incident cells for all the non
// void attributes.
CMap::Helper::template Foreach_enabled_attributes
<internal::Test2_split_with_deque<CMap,i> >::
// <internal::Test_split_with_deque<CMap,i> >::
CMap::Helper::template Foreach_enabled_attributes_except
<internal::Test_split_attribute_functor<CMap,i>, i>::
run(&amap, &modified_darts, mark_modified_darts);
//&modified_darts2);
//&mark_for_incident_cells[0], &incident_cells[0]);
// We remove all the darts of the i-cell.
for ( it=to_erase.begin(); it!=to_erase.end(); ++it )
@ -445,25 +203,13 @@ namespace CGAL {
iterator it=modified_darts.begin();
it!=modified_darts.end(); ++it )
amap.unmark(*it, mark_modified_darts);
/*for ( typename std::deque<typename CMap::Dart_handle>::
iterator it=modified_darts2.begin();
it!=modified_darts2.end(); ++it )
amap.unmark(*it, mark_modified_darts);*/
}
CGAL_assertion ( amap.is_whole_map_unmarked(mark_modified_darts) );
amap.free_mark(mark_modified_darts);
// We free the marks.
/*for (int j=0; j<CMap::Helper::nb_attribs; ++j)
{
CGAL_assertion( amap.is_whole_map_marked
(mark_for_incident_cells[j]) );
amap.free_mark( mark_for_incident_cells[j] );
}*/
CGAL_expensive_postcondition( amap.is_valid() );
assert( amap.is_valid() );
assert( amap.is_valid() ); // TODO remove
return res;
}
@ -540,8 +286,9 @@ namespace CGAL {
// 4) We test the split of all the incident cells for all the non
// void attributes.
CMap::Helper::template Foreach_enabled_attributes
<internal::Test2_split_with_deque<CMap,i> >::
CMap::Helper::template Foreach_enabled_attributes_except
<internal::Test_split_attribute_functor<CMap,i>,
CMap::dimension>::
run(&amap, &modified_darts, -1); //, modified_darts2);
//&mark_for_incident_cells[0],
//&incident_cells[0]);
@ -710,8 +457,8 @@ namespace CGAL {
// We test the split of all the incident cells for all the non
// void attributes.
CMap::Helper::template Foreach_enabled_attributes
<internal::Test2_split_with_deque<CMap,0> >::
CMap::Helper::template Foreach_enabled_attributes_except
<internal::Test_split_attribute_functor<CMap,0>, 1>::
// <internal::Test_split_with_deque<CMap,0> >::
run(&amap,
&modified_darts, -1); //mark_modified_darts);
@ -750,27 +497,6 @@ namespace CGAL {
size_t remove_cell(CMap& amap, typename CMap::Dart_handle adart)
{ return Remove_cell_functor<CMap,i,CMap::dimension-i>::run(amap,adart); }
/** Test if an edge can be inserted onto a 2-cell between two given darts.
* @param amap the used combinatorial map.
* @param adart1 a first dart.
* @param adart2 a second dart.
* @return true iff an edge can be inserted between adart1 and adart2.
*/
template < class CMap >
bool is_insertable_cell_1_in_cell_2(const CMap& amap,
typename CMap::Dart_const_handle adart1,
typename CMap::Dart_const_handle adart2)
{
CGAL_assertion(adart1 != NULL && adart2 != NULL);
if ( adart1==adart2 ) return false;
for ( CMap_dart_const_iterator_of_orbit<CMap,1> it(amap,adart1);
it.cont(); ++it )
{
if ( it==adart2 ) return true;
}
return false;
}
/** Test if an i-cell can be contracted.
* An i-cell can be contracted if i==1
* or if there are at most two (i-1)-cell incident to it.
@ -917,8 +643,8 @@ namespace CGAL {
// We test the split of all the incident cells for all the non
// void attributes.
CMap::Helper::template Foreach_enabled_attributes
<internal::Test2_split_with_deque<CMap,i> >::
CMap::Helper::template Foreach_enabled_attributes_except
<internal::Test_split_attribute_functor<CMap,i>, i>::
run(&amap, &modified_darts, mark_modified_darts);
// We remove all the darts of the i-cell.
@ -1029,8 +755,8 @@ namespace CGAL {
// We test the split of all the incident cells for all the non
// void attributes.
CMap::Helper::template Foreach_enabled_attributes
<internal::Test2_split_with_deque<CMap,1> >::
CMap::Helper::template Foreach_enabled_attributes_except
<internal::Test_split_attribute_functor<CMap,1>, 1>::
// <internal::Test_split_with_deque<CMap,0> >::
run(&amap,
&modified_darts, -1); //mark_modified_darts);
@ -1060,443 +786,6 @@ namespace CGAL {
size_t contract_cell(CMap& amap, typename CMap::Dart_handle adart)
{ return Contract_cell_functor<CMap,i>::run(amap,adart); }
/** Test if a 2-cell can be inserted onto a given 3-cell along
* a path of edges.
* @param amap the used combinatorial map.
* @param afirst iterator on the begining of the path.
* @param alast iterator on the end of the path.
* @return true iff a 2-cell can be inserted along the path.
*/
template <class CMap, class InputIterator>
bool is_insertable_cell_2_in_cell_3(const CMap& amap,
InputIterator afirst,
InputIterator alast)
{
CGAL_static_assertion( CMap::dimension>= 3 );
// The path must have at least one dart.
if (afirst==alast) return false;
typename CMap::Dart_const_handle prec = NULL;
typename CMap::Dart_const_handle od = NULL;
for (InputIterator it(afirst); it!=alast; ++it)
{
// The path must contain only non empty darts.
if (*it == NULL || *it==CMap::null_dart_handle) return false;
// Two consecutive darts of the path must belong to two edges
// incident to the same vertex of the same volume.
if (prec != NULL)
{
od = prec->other_extremity();
if ( od==CMap::null_dart_handle ) return false;
// of and *it must belong to the same vertex of the same volume
if ( !belong_to_same_cell<CMap, 0, 2>(amap, od, *it) )
return false;
}
prec = *it;
}
// The path must be closed.
od = prec->other_extremity();
if ( od==CMap::null_dart_handle ) return false;
if (!belong_to_same_cell<CMap, 0, 2>(amap, od, *afirst))
return false;
return true;
}
/** Insert a vertex in a given edge.
* @param amap the used combinatorial map.
* @param adart a dart of the edge (!=NULL && !=null_dart_handle).
* @return a dart of the new vertex.
*/
template<class CMap>
typename CMap::Dart_handle
insert_cell_0_in_cell_1(CMap& amap, typename CMap::Dart_handle adart)
{
CGAL_assertion(adart != NULL && adart!=CMap::null_dart_handle);
typename CMap::Dart_handle d1, d2;
int mark = amap.get_new_mark();
std::vector<typename CMap::Dart_handle> vect;
{
for (typename CMap::template Dart_of_cell_range<1>::iterator it=
amap.template darts_of_cell<1>(adart).begin();
it != amap.template darts_of_cell<1>(adart).end(); ++it)
vect.push_back(it);
}
// 3) For each dart of the cell, we modify link of neighbors.
typename std::vector<typename CMap::Dart_handle>::iterator it = vect.begin();
for (; it != vect.end(); ++it)
{
d1 = amap.create_dart();
if (!(*it)->is_free(1))
{ amap.template basic_link_beta<1>(d1, (*it)->beta(1)); }
for ( unsigned int dim = 2; dim<=CMap::dimension; ++dim )
{
if (!(*it)->is_free(dim) && amap.is_marked((*it)->beta(dim), mark))
{
amap.basic_link_beta((*it)->beta(dim), d1, dim);
amap.basic_link_beta(*it, (*it)->beta(dim)->beta(1), dim);
}
}
amap.template basic_link_beta<1>(*it, d1);
// TODO remove this group, and use link_beta instead ?
//amap.group_all_dart_attributes_except(*it, d1, 1);
amap.mark(*it, mark);
}
for (it = vect.begin(); it != vect.end(); ++it)
{ amap.unmark(*it, mark); }
amap.free_mark(mark);
// TODO amap.template degroup_attribute<1>(adart, adart->beta(1));
// CGAL_expensive_postcondition( amap.is_valid() );
return adart->beta(1);
}
/** Insert a dangling edge in a 2-cell between given by a dart.
* @param amap the used combinatorial map.
* @param adart1 a first dart of the facet (!=NULL && !=null_dart_handle).
* @return a dart of the new edge, not incident to the vertex of adart1.
*/
template<class CMap>
typename CMap::Dart_handle
insert_dangling_cell_1_in_cell_2(CMap& amap, typename CMap::Dart_handle adart1)
{
CGAL_assertion(adart1!=NULL && adart1!=CMap::null_dart_handle);
int mark1 = amap.get_new_mark();
std::vector<typename CMap::Dart_handle> to_unmark;
{
for ( CMap_dart_iterator_basic_of_cell<CMap,0> it(amap,adart1,mark1);
it.cont(); ++it )
{
to_unmark.push_back(it);
amap.mark(it,mark1);
}
}
typename CMap::Dart_handle d1 = NULL;
typename CMap::Dart_handle d2 = NULL;
unsigned int s1 = 0;
int treated = amap.get_new_mark();
CGAL::CMap_dart_iterator_of_involution<CMap,1> it1(amap,adart1);
for ( ; it1.cont(); ++it1)
{
d1 = amap.create_dart();
d2 = amap.create_dart();
if ( amap.is_marked(it1, mark1) ) s1 = 0;
else s1 = 1;
if ( !it1->is_free(s1) )
{
if ( s1==0 ) amap.template link_beta<1>(it1->beta(0), d2);
else amap.template link_beta<0>(it1->beta(1), d2);
}
if (s1==0)
{
amap.template link_beta<0>(it1, d1);
amap.template basic_link_beta<0>(d1,d2);
}
else
{
amap.template link_beta<1>(it1, d1);
amap.template basic_link_beta<1>(d1,d2);
}
amap.template link_beta_for_involution<2>(d1, d2);
for ( unsigned int dim=3; dim<=CMap::dimension; ++dim)
{
if ( !it1->is_free(dim) &&
amap.is_marked(it1->beta(dim), treated) )
{
amap.basic_link_beta_for_involution(it1->beta(dim)->beta_inv(s1), d1,
dim);
amap.basic_link_beta_for_involution
(it1->beta(dim)->beta_inv(s1)->beta(2), d2, dim);
}
}
amap.mark(it1,treated);
}
// amap.template degroup_attribute<1>(adart1, adart1->beta(0));
// amap.template degroup_attribute<2>(d1, d2);
for ( it1.rewind(); it1.cont(); ++it1 )
{
amap.unmark(it1,treated);
}
CGAL_assertion( amap.is_whole_map_unmarked(treated) );
amap.free_mark(treated);
typename std::vector<typename CMap::Dart_handle>::iterator it =
to_unmark.begin();
for (; it != to_unmark.end(); ++it)
{ amap.unmark(*it, mark1); }
CGAL_assertion( amap.is_whole_map_unmarked(mark1) );
amap.free_mark(mark1);
// CGAL_expensive_postcondition( amap.is_valid() );
return adart1->beta(0);
}
/** Insert an edge in a 2-cell between two given darts.
* @param amap the used combinatorial map.
* @param adart1 a first dart of the facet (!=NULL && !=null_dart_handle).
* @param adart2 a second dart of the facet. If NULL insert a dangling edge.
* @return a dart of the new edge, and not incident to the
* same vertex than adart1.
*/
template<class CMap>
typename CMap::Dart_handle
insert_cell_1_in_cell_2(CMap& amap,
typename CMap::Dart_handle adart1,
typename CMap::Dart_handle adart2)
{
if ( adart2==NULL ) return insert_dangling_cell_1_in_cell_2(amap,adart1);
CGAL_assertion(is_insertable_cell_1_in_cell_2<CMap>(amap, adart1, adart2));
int m1 = amap.get_new_mark();
CMap_dart_iterator_basic_of_involution<CMap,1>
it1 = CMap_dart_iterator_basic_of_involution<CMap,1>(amap, adart1, m1);
int m2 = amap.get_new_mark();
CMap_dart_iterator_basic_of_involution<CMap,1>
it2 = CMap_dart_iterator_basic_of_involution<CMap,1>(amap, adart2, m2);
int mark1 = amap.get_new_mark();
std::vector<typename CMap::Dart_handle> to_unmark;
{
for ( CMap_dart_iterator_basic_of_cell<CMap,0> it(amap,adart1,mark1);
it.cont(); ++it )
{
to_unmark.push_back(it);
amap.mark(it,mark1);
}
}
typename CMap::Dart_handle d1 = NULL;
typename CMap::Dart_handle d2 = NULL;
unsigned int s1 = 0;
int treated = amap.get_new_mark();
for ( ; it1.cont(); ++it1, ++it2)
{
CGAL_assertion (it2.cont() );
d1 = amap.create_dart();
d2 = amap.create_dart();
if ( amap.is_marked(it1, mark1) ) s1 = 0;
else s1 = 1;
if ( !it1->is_free(s1) )
{
if ( s1==0 ) amap.basic_link_beta_1(it1->beta(0), d2);
else amap.link_beta_0(it1->beta(1), d2);
}
if ( !it2->is_free(s1) )
{
if ( s1==0 ) amap.basic_link_beta_1(it2->beta(0), d1);
else amap.link_beta_0(it2->beta(1), d1);
}
if ( s1==0 )
{
amap.link_beta_0(it1, d1);
amap.link_beta_0(it2, d2);
}
else
{
amap.basic_link_beta_1(it1, d1);
amap.basic_link_beta_1(it2, d2);
}
amap.link_beta_for_involution(d2, d1, 2);
for ( unsigned int dim=3; dim<=CMap::dimension; ++dim)
{
if ( !it1->is_free(dim) &&
amap.is_marked(it1->beta(dim), treated) )
{
amap.basic_link_beta_for_involution
(it1->beta(dim)->beta_inv(s1), d1, dim);
amap.basic_link_beta_for_involution
(it1->beta(dim)->beta_inv(s1)->beta(2), d2, dim);
}
}
amap.mark(it1,treated);
}
// amap.template degroup_attribute<1>(adart1, adart1->beta(0));
// TODO amap.template degroup_attribute<2>(d1, d2);
amap.negate_mark(m1);
amap.negate_mark(m2);
it1.rewind(); it2.rewind();
for ( ; it1.cont(); ++it1, ++it2)
{
amap.mark(it1,m1);
amap.unmark(it1,treated);
amap.mark(it2,m2);
}
amap.negate_mark(m1);
amap.negate_mark(m2);
CGAL_assertion( amap.is_whole_map_unmarked(m1) );
CGAL_assertion( amap.is_whole_map_unmarked(m2) );
CGAL_assertion( amap.is_whole_map_unmarked(treated) );
amap.free_mark(m1);
amap.free_mark(m2);
amap.free_mark(treated);
typename std::vector<typename CMap::Dart_handle>::iterator it =
to_unmark.begin();
for (; it != to_unmark.end(); ++it)
{ amap.unmark(*it, mark1); }
CGAL_assertion( amap.is_whole_map_unmarked(mark1) );
amap.free_mark(mark1);
// CGAL_expensive_postcondition( amap.is_valid() );
return adart1->beta(0);
}
/** Insert a 2-cell in a given 3-cell along a path of darts.
* @param amap the used combinatorial map.
* @param afirst iterator on the begining of the path.
* @param alast iterator on the end of the path.
* @return a dart of the new 2-cell.
*/
template<class CMap, class InputIterator>
typename CMap::Dart_handle
insert_cell_2_in_cell_3(CMap& amap, InputIterator afirst, InputIterator alast)
{
CGAL_assertion(is_insertable_cell_2_in_cell_3(amap,afirst,alast));
typename CMap::Dart_handle prec = NULL, d = NULL, dd = NULL, first = NULL;
bool withBeta3 = false;
{
for (InputIterator it(afirst); it!=alast; ++it)
{
if (!(*it)->is_free(2)) withBeta3 = true;
}
}
{
for (InputIterator it(afirst); it!=alast; ++it)
{
d = amap.create_dart();
if (withBeta3)
{
dd = amap.create_dart();
amap.basic_link_beta_for_involution(d, dd, 3);
}
if (prec != NULL)
{
amap.template link_beta<0>(prec, d);
if (withBeta3) amap.template link_beta<1>(prec->beta(3), dd);
}
else first = d;
if (!(*it)->is_free(2))
amap.link_beta_for_involution((*it)->beta(2), dd, 2);
amap.link_beta_for_involution(*it, d, 2);
prec = d;
}
}
amap.template link_beta<0>(prec, first);
if (withBeta3)
{
amap.template link_beta<1>(prec->beta(3), first->beta(3));
}
// Make copies of the new facet for dimension >=4
for ( unsigned int dim=4; dim<=CMap::dimension; ++dim )
{
if ( !first->is_free(dim) )
{
typename CMap::Dart_handle first2 = NULL;
prec = NULL;
for ( CMap_dart_iterator_of_orbit<CMap,1> it(amap, first);
it.cont(); ++it )
{
d = amap.create_dart();
amap.link_beta_for_involution(it->beta(2),d,dim);
if ( withBeta3 )
{
dd = amap.create_dart();
amap.link_beta_for_involution(it->beta(2)->beta(3),dd,dim);
amap.basic_link_beta_for_involution(d, dd, 3);
}
if ( prec!=NULL )
{
amap.link_beta_0(prec,d);
if ( withBeta3 )
{
amap.link_beta_1(prec->beta(3),dd);
}
}
else first2 = prec;
for ( unsigned dim2=2; dim2<=CMap::dimension; ++dim2 )
{
if ( dim2+1!=dim && dim2!=dim && dim2!=dim+1 )
{
if ( !it->is_free(dim2) &&
it->beta(dim2)->is_free(dim) )
amap.basic_link_beta_for_involution(it->beta(dim2)->beta(dim),
d, dim2);
if ( withBeta3 && !it->beta(3)->is_free(dim2) &&
it->beta(3)->beta(dim2)->is_free(dim) )
amap.basic_link_beta_for_involution
(it->beta(3)->beta(dim2)->beta(dim), dd, dim2);
}
}
prec = d;
}
amap.template link_beta<0>( prec, first2 );
if ( withBeta3 )
{
amap.template link_beta<1>( prec->beta(3), first2->beta(3) );
}
}
}
// Degroup the attributes
/* TODO if ( withBeta3 )
amap.template degroup_attribute<3>( first, first->beta(3) );
*/
// CGAL_expensive_postcondition( amap.is_valid() );
return first;
}
} // namespace CGAL
#endif // CGAL_COMBINATORIAL_MAP_OPERATIONS_H //

View File

@ -0,0 +1,343 @@
// Copyright (c) 2010-2011 CNRS and LIRIS' Establishments (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
//
#ifndef CGAL_COMBINATORIAL_MAP_SEWABLE_H
#define CGAL_COMBINATORIAL_MAP_SEWABLE_H
/* Definition of functor used to test if two darts are i-sewable
* (we use functors as there are different specializations).
*/
namespace CGAL
{
namespace internal
{
// Generic case for 2<=i<=dimension, and 3<dim.
template<typename CMap, unsigned int i, unsigned int dim=CMap::dimension>
struct Is_sewable_functor
{
static bool run( const CMap* amap,
typename CMap::Dart_const_handle adart1,
typename CMap::Dart_const_handle adart2 )
{
CGAL_assertion( 2<=i && i<=CMap::dimension );
CGAL_assertion( 3<dim );
CGAL_assertion(adart1!=NULL && adart2!=NULL);
CGAL_assertion(adart1!=CMap::null_dart_handle &&
adart2!=CMap::null_dart_handle);
if ( !adart1->template is_free<i>() ||
!adart2->template is_free<i>() || adart1==adart2 )
return false;
// TODO use a map (of hashtable) to build the isomorphism and to test
// it during the while loop
CMap_dart_const_iterator_of_involution<CMap,i> I1(*amap, adart1);
CMap_dart_const_iterator_of_involution_inv<CMap,i> I2(*amap, adart2);
bool res = true;
while (res && I1.cont() && I2.cont())
{
// We can remove this constraint which is not required for
// combinatorial map definition, but which is quite "normal"
if ( I1==adart2 || I2==adart1 ) res=false;
// Special case to consider beta0 and beta1
if ( i>2 )
{
if ( I1->is_free(0)!=I2->is_free(1) ) res = false;
else if ( I1->is_free(1)!=I2->is_free(0) ) res = false;
}
// General case
for (unsigned int j=2;res && j<=CMap::dimension; ++j)
{
if ( j+1!=i && j!=i && j!=i+1 &&
I1->is_free(j)!=I2->is_free(j) )
{ res = false; }
}
++I1; ++I2;
}
if (I1.cont() != I2.cont())
res = false;
return res;
}
};
// Specialization for i=0 and 3<dim.
template<typename CMap, unsigned int dim>
struct Is_sewable_functor<CMap, 0, dim>
{
static bool run( const CMap* amap,
typename CMap::Dart_const_handle adart1,
typename CMap::Dart_const_handle adart2 )
{
CGAL_assertion( 3<dim );
CGAL_assertion( adart1!=NULL && adart2!=NULL);
CGAL_assertion( adart1!=CMap::null_dart_handle &&
adart2!=CMap::null_dart_handle );
if ( !adart1->template is_free<0>() ||
!adart2->template is_free<1>() )
return false;
if ( adart1==adart2 ) return true;
// TODO use a map (of hashtable) to build the isomorphism and to test
// it during the while loop
CMap_dart_const_iterator_of_involution <CMap,1> I1(*amap, adart1);
CMap_dart_const_iterator_of_involution_inv<CMap,1> I2(*amap, adart2);
bool res = true;
while (res && I1.cont() && I2.cont())
{
// We can remove this constraint which is not required for
// combinatorial map definition, but which imposes quite "normal"
// configurations
if ( I1==adart2 || I2==adart1 ) res=false;
for (unsigned int j=3;res && j<=CMap::dimension; ++j)
{
if ( I1->is_free(j)!=I2->is_free(j) )
{
res = false;
}
}
++I1; ++I2;
}
if (I1.cont() != I2.cont())
res = false;
return res;
}
};
// Specialization for i=0 and dim=1.
template<typename CMap>
struct Is_sewable_functor<CMap, 0, 1>
{
static bool run( const CMap* amap,
typename CMap::Dart_const_handle adart1,
typename CMap::Dart_const_handle adart2 )
{
CGAL_assertion(adart1!=NULL && adart2!=NULL);
CGAL_assertion(adart1!=CMap::null_dart_handle &&
adart2!=CMap::null_dart_handle);
if ( !adart1->template is_free<0>() ||
!adart2->template is_free<1>() )
return false;
return true;
}
};
// Specialization for i=1 and dim=1.
template<typename CMap>
struct Is_sewable_functor<CMap, 1, 1>
{
static bool run( const CMap* amap,
typename CMap::Dart_const_handle adart1,
typename CMap::Dart_const_handle adart2 )
{
CGAL_assertion(adart1!=NULL && adart2!=NULL);
CGAL_assertion(adart1!=CMap::null_dart_handle &&
adart2!=CMap::null_dart_handle);
if ( !adart1->template is_free<1>() ||
!adart2->template is_free<0>() )
return false;
return true;
}
};
// Specialization for i=0 and dim=2.
template<typename CMap>
struct Is_sewable_functor<CMap, 0, 2>
{
static bool run( const CMap* amap,
typename CMap::Dart_const_handle adart1,
typename CMap::Dart_const_handle adart2 )
{
CGAL_assertion(adart1!=NULL && adart2!=NULL);
CGAL_assertion(adart1!=CMap::null_dart_handle &&
adart2!=CMap::null_dart_handle);
if ( !adart1->template is_free<0>() ||
!adart2->template is_free<1>() )
return false;
return true;
}
};
// Specialization for i=1 and dim=2.
template<typename CMap>
struct Is_sewable_functor<CMap, 1, 2>
{
static bool run( const CMap* amap,
typename CMap::Dart_const_handle adart1,
typename CMap::Dart_const_handle adart2 )
{
CGAL_assertion(adart1!=NULL && adart2!=NULL);
CGAL_assertion(adart1!=CMap::null_dart_handle &&
adart2!=CMap::null_dart_handle);
if ( !adart1->template is_free<1>() ||
!adart2->template is_free<0>() )
return false;
return true;
}
};
// Specialization for i=2 and dim=2.
template<typename CMap>
struct Is_sewable_functor<CMap, 2, 2>
{
static bool run( const CMap* amap,
typename CMap::Dart_const_handle adart1,
typename CMap::Dart_const_handle adart2 )
{
CGAL_assertion(adart1!=NULL && adart2!=NULL);
CGAL_assertion(adart1!=CMap::null_dart_handle &&
adart2!=CMap::null_dart_handle);
if ( !adart1->template is_free<2>() ||
!adart2->template is_free<2>() || adart1==adart2 )
return false;
return true;
}
};
// Specialization for i=0 and dim=3.
template<typename CMap>
struct Is_sewable_functor<CMap, 0, 3>
{
static bool run( const CMap* amap,
typename CMap::Dart_const_handle adart1,
typename CMap::Dart_const_handle adart2 )
{
CGAL_assertion(adart1!=NULL && adart2!=NULL);
CGAL_assertion(adart1!=CMap::null_dart_handle &&
adart2!=CMap::null_dart_handle);
if ( !adart1->template is_free<0>() ||
!adart2->template is_free<1>() )
return false;
if ( adart1->template is_free<3>() )
{
if ( !adart2->template is_free<3>() ) return false;
return true;
}
// Here adart1 is not 3-free
if ( adart2->template is_free<3>() ) return false;
CGAL_assertion( adart1->template beta<3>()->template is_free<1>() &&
adart2->template beta<3>()->template is_free<0>() );
return true;
}
};
// Specialization for i=1 and dim=3.
template<typename CMap>
struct Is_sewable_functor<CMap, 1, 3>
{
static bool run( const CMap* amap,
typename CMap::Dart_const_handle adart1,
typename CMap::Dart_const_handle adart2 )
{
CGAL_assertion(adart1!=NULL && adart2!=NULL);
CGAL_assertion(adart1!=CMap::null_dart_handle &&
adart2!=CMap::null_dart_handle);
if ( !adart1->template is_free<1>() ||
!adart2->template is_free<0>() )
return false;
if ( adart1->template is_free<3>() )
{
if ( !adart2->template is_free<3>() ) return false;
return true;
}
// Here adart1 is not 3-free
if ( adart2->template is_free<3>() ) return false;
CGAL_assertion( adart1->template beta<3>()->template is_free<0>() &&
adart2->template beta<3>()->template is_free<1>() );
return true;
}
};
// Specialization for i=2 and dim=3.
template<typename CMap>
struct Is_sewable_functor<CMap, 2, 3>
{
static bool run( const CMap* amap,
typename CMap::Dart_const_handle adart1,
typename CMap::Dart_const_handle adart2 )
{
CGAL_assertion(adart1!=NULL && adart2!=NULL);
CGAL_assertion(adart1!=CMap::null_dart_handle &&
adart2!=CMap::null_dart_handle);
if ( !adart1->template is_free<2>() ||
!adart2->template is_free<2>() || adart1==adart2 )
return false;
return true;
}
};
// Specialization for i=3 and dim=3.
template<typename CMap>
struct Is_sewable_functor<CMap, 3, 3>
{
static bool run( const CMap* amap,
typename CMap::Dart_const_handle adart1,
typename CMap::Dart_const_handle adart2 )
{
CGAL_assertion(adart1!=NULL && adart2!=NULL);
CGAL_assertion(adart1!=CMap::null_dart_handle &&
adart2!=CMap::null_dart_handle);
if ( !adart1->template is_free<3>() ||
!adart2->template is_free<3>() )
return false;
CMap_dart_const_iterator_basic_of_orbit<CMap,1> I1(*amap, adart1);
CMap_dart_const_iterator_basic_of_orbit<CMap,0> I2(*amap, adart2);
bool res=true;
while (res && I1.cont() && I2.cont())
{
CGAL_assertion( I1->template is_free<3>() ||
I2->template is_free<3>() );
// We can remove this constraint which is not required for
// combinatorial map definition, but which is quite "normal" as it avoid
// fold cells.
if ( I1==adart2 || I2==adart1 ) res=false;
else if ( I1.prev_operation()!=I2.prev_operation() ) res=false;
++I1; ++I2;
}
if ( I1.cont()!=I2.cont() )
res=false;
return res;
}
};
} //namespace internal
} //namespace CGAL
#endif // CGAL_COMBINATORIAL_MAP_SEWABLE_H
//******************************************************************************

View File

@ -26,6 +26,13 @@
#include <boost/type_traits/is_same.hpp>
/** Some utilities allowing to manage attributes. Indeed, as they as stores
* in tuples, we need to define functors with variadic templated arguments
* to deal with these attributes.
*
* The class Combinatorial_map_helper<CMap> defines:
*
*/
namespace CGAL
{
namespace internal
@ -659,6 +666,6 @@ namespace CGAL
} //namespace internal
} //namespace CGAL
} //namespace CGAL
#endif //CGAL_INTERNAL_COMBINATORIAL_MAP_UTILITY_H