mirror of https://github.com/CGAL/cgal
replace is well defined by a simple (less confusing) "is defined"
This commit is contained in:
parent
5f4f11e2df
commit
59d256f06d
|
|
@ -27,7 +27,7 @@ with remainder.
|
|||
second_argument_type y);}{}
|
||||
|
||||
\ccMethod{template <class NT1, class NT2> result_type operator()(NT1 x, NT2 y);}
|
||||
{This operator is well defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
{This operator is defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
with coercion type \ccc{AlgebraicStructureTraits::Type}. }
|
||||
|
||||
%\ccHasModels
|
||||
|
|
|
|||
|
|
@ -106,7 +106,7 @@ The following table illustrates the behavior for integers:
|
|||
|
||||
\ccMethod{template <class NT1, class NT2> result_type
|
||||
operator()(NT1 x, NT2 y, third_argument_type q, fourth_argument_type r);}
|
||||
{This operator is well defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
{This operator is defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
with coercion type \ccc{AlgebraicStructureTraits::Type}. }
|
||||
|
||||
%\ccHasModels
|
||||
|
|
|
|||
|
|
@ -37,7 +37,7 @@ Thus, $0$ is divided by every element of the Ring, in particular by itself.
|
|||
{ returns $gcd(x,y)$. }
|
||||
|
||||
\ccMethod{template <class NT1, class NT2> result_type operator()(NT1 x, NT2 y);}
|
||||
{This operator is well defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
{This operator is defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
with coercion type \ccc{AlgebraicStructureTraits::Type}. }
|
||||
|
||||
%\ccHasModels
|
||||
|
|
|
|||
|
|
@ -34,7 +34,7 @@ $z$ is uniquely defined if it exists.
|
|||
|
||||
|
||||
\ccMethod{template <class NT1, class NT2> result_type operator()(NT1 x, NT2 y);}
|
||||
{This operator is well defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
{This operator is defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
with coercion type \ccc{AlgebraicStructureTraits::Type}. }
|
||||
|
||||
%\ccHasModels
|
||||
|
|
|
|||
|
|
@ -26,7 +26,7 @@
|
|||
second_argument_type y);}{}
|
||||
|
||||
\ccMethod{template <class NT1, class NT2> result_type operator()(NT1 x, NT2 y);}
|
||||
{This operator is well defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
{This operator is defined if \ccc{NT1} and \ccc{NT2} are \ccc{ExplicitInteroperable}
|
||||
with coercion type \ccc{AlgebraicStructureTraits::Type}. }
|
||||
|
||||
%\ccHasModels
|
||||
|
|
|
|||
|
|
@ -27,7 +27,7 @@
|
|||
|
||||
\ccMethod{template <class NT1, class NT2>
|
||||
result_type operator()(NT1 x, NT2 y);}{
|
||||
This operator is well defined if \ccc{NT1} and \ccc{NT2} are
|
||||
This operator is defined if \ccc{NT1} and \ccc{NT2} are
|
||||
\ccc{ExplicitInteroperable} with coercion type
|
||||
\ccc{RealEmbeddableTraits::Type}. }
|
||||
|
||||
|
|
|
|||
|
|
@ -4,6 +4,9 @@
|
|||
|
||||
\ccc{AdaptableUnaryFunction} computes a double approximation of a real
|
||||
embeddable number.
|
||||
|
||||
Remark: In order to control the quality of approximation one has to resort
|
||||
to methods that are specific to NT. There are no general guarantees whatsoever.
|
||||
|
||||
\ccRefines
|
||||
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
The template function \ccRefName\ returns the absolute value of a number.
|
||||
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{RealEmbeddable} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -8,7 +8,7 @@ the second, i.e. it returns \ccc{CGAL::LARGER} if $x$ is larger then $y$.
|
|||
In case the argument types \ccc{NT1} and \ccc{NT2} differ,
|
||||
\ccRefName\ is performed with the semantic of the type determined via
|
||||
\ccc{Coercion_traits}.
|
||||
The function is guaranteed to be well defined in case this type
|
||||
The function is defined if this type
|
||||
is a model of the \ccc{RealEmbeddable} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ Thus, the \ccc{result_type} is well defined if \ccc{NT1} and \ccc{NT2}
|
|||
are a model of \ccc{ExplicitInteroperable}. \\
|
||||
The actual \ccRefName\ is performed with the semantic of that type.
|
||||
|
||||
The function is guaranteed to be well defined in case \ccc{result_type}
|
||||
The function is defined if \ccc{result_type}
|
||||
is a model of the \ccc{EuclideanRing} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ Thus, the \ccc{result_type} is well defined if \ccc{NT1} and \ccc{NT2}
|
|||
are a model of \ccc{ExplicitInteroperable}. \\
|
||||
The actual \ccRefName\ is performed with the semantic of that type.
|
||||
|
||||
The function is guaranteed to be well defined in case \ccc{result_type}
|
||||
The function is defined if \ccc{result_type}
|
||||
is a model of the \ccc{EuclideanRing} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ Thus, the \ccc{result_type} is well defined if \ccc{NT1} and \ccc{NT2}
|
|||
are a model of \ccc{ExplicitInteroperable}. \\
|
||||
The actual \ccRefName\ is performed with the semantic of that type.
|
||||
|
||||
The function is guaranteed to be well defined in case \ccc{result_type}
|
||||
The function is defined if \ccc{result_type}
|
||||
is a model of the \ccc{UniqueFactorizationDomain} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -14,7 +14,7 @@ Thus, the \ccc{result_type} is well defined if \ccc{NT1} and \ccc{NT2}
|
|||
are a model of \ccc{ExplicitInteroperable}. \\
|
||||
The actual \ccRefName\ is performed with the semantic of that type.
|
||||
|
||||
The function is guaranteed to be well defined in case \ccc{result_type}
|
||||
The function is defined if \ccc{result_type}
|
||||
is a model of the \ccc{IntegralDomain} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
The function \ccRefName\ returns the inverse element with respect to multiplication.
|
||||
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{Field} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
\ccDefinition
|
||||
|
||||
The template function \ccRefName\ determines if a value is negative or not.
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{RealEmbeddable} concept.
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
\ccDefinition
|
||||
|
||||
The function \ccRefName\ determines if a value is equal to 1 or not.\\
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{IntegralDomainWithoutDivision} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
\ccDefinition
|
||||
|
||||
The template function \ccRefName\ determines if a value is positive or not.
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{RealEmbeddable} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
\ccDefinition
|
||||
|
||||
The function \ccRefName\ determines if a value is equal to 0 or not.\\
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{RealEmbeddable} or of
|
||||
the \ccc{IntegralDomainWithoutDivision} concept.
|
||||
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
The function \ccRefName\ returns the k-th root of a value.
|
||||
|
||||
The function is guaranteed to be well defined in case the second argument type
|
||||
The function is defined if the second argument type
|
||||
is a model of the \ccc{FieldWithKthRoot} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -10,7 +10,7 @@ Thus, the \ccc{result_type} is well defined if \ccc{NT1} and \ccc{NT2}
|
|||
are a model of \ccc{ExplicitInteroperable}. \\
|
||||
The actual \ccRefName\ is performed with the semantic of that type.
|
||||
|
||||
The function is guaranteed to be well defined in case \ccc{result_type}
|
||||
The function is defined if \ccc{result_type}
|
||||
is a model of the \ccc{EuclideanRing} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
The function \ccRefName\ computes a real root of a square-free univariate
|
||||
polynomial.
|
||||
|
||||
The function is guaranteed to be well defined in case the value type, \ccc{NT},
|
||||
The function is defined if the value type, \ccc{NT},
|
||||
of the iterator range is a model of the \ccc{FieldWithRootOf} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
The template function \ccRefName\ returns the sign of a number.
|
||||
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{RealEmbeddable} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
The function \ccRefName\ may simplify a given object.
|
||||
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{IntegralDomainWithoutDivision} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
The function \ccRefName\ returns the square root of a value.
|
||||
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{FieldWithSqrt} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
\ccDefinition
|
||||
|
||||
The function \ccRefName\ returns the square of a number.\\
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{IntegralDomainWithoutDivision} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -3,9 +3,11 @@
|
|||
\ccDefinition
|
||||
|
||||
The template function \ccRefName\ returns an double approximation of a number.
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{RealEmbeddable} concept.
|
||||
|
||||
Remark: In order to control the quality of approximation one has to resort to methods that are specific to NT. There are no general guarantees whatsoever.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
||||
\ccFunction{template <class NT> double to_double(const NT& x);}
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
The template function \ccRefName\ computes for a given real embeddable
|
||||
number $x$ a double interval containing $x$.
|
||||
This interval is represented by a \ccc{std::pair<double,double>}.
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{RealEmbeddable} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@
|
|||
The function \ccRefName\ computes the unit part of a given ring
|
||||
element.
|
||||
|
||||
The function is guaranteed to be well defined in case the argument type
|
||||
The function is defined if the argument type
|
||||
is a model of the \ccc{IntegralDomainWithoutDivision} concept.
|
||||
|
||||
\ccInclude{CGAL/number_utils.h}
|
||||
|
|
|
|||
Loading…
Reference in New Issue