mirror of https://github.com/CGAL/cgal
Merge pull request #6266 from afabri/CGAL-assertions_in_examples-GF
CGAL Examples: CGAL_assertion -> assert # Conflicts: # HalfedgeDS/examples/HalfedgeDS/hds_prog_compact2.cpp # Triangulation_2/examples/Triangulation_2/triangulation_print_OFF.h
This commit is contained in:
commit
5b42a501cc
|
|
@ -6,7 +6,6 @@
|
|||
#include <CGAL/Delaunay_triangulation_2.h>
|
||||
|
||||
#include <CGAL/algorithm.h>
|
||||
#include <CGAL/assertions.h>
|
||||
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
|
|
|
|||
|
|
@ -2,6 +2,7 @@
|
|||
// Constructing an arrangement of algebraic segments.
|
||||
|
||||
#include <iostream>
|
||||
#include <cassert>
|
||||
#include <CGAL/config.h>
|
||||
|
||||
#if (!CGAL_USE_CORE) && (!CGAL_USE_LEDA) && (!(CGAL_USE_GMP && CGAL_USE_MPFI))
|
||||
|
|
@ -52,7 +53,7 @@ int main() {
|
|||
std::vector<X_monotone_curve> segs;
|
||||
for(size_t i = 0; i < pre_segs.size(); ++i) {
|
||||
auto* curr_p = boost::get<X_monotone_curve>(&pre_segs[i]);
|
||||
CGAL_assertion(curr_p);
|
||||
assert(curr_p);
|
||||
segs.push_back(*curr_p);
|
||||
}
|
||||
// Construct an ellipse (C2) with the equation 2*x^2+5*y^2-7=0.
|
||||
|
|
|
|||
|
|
@ -29,7 +29,7 @@ int main() {
|
|||
// with (-3, 4) and (4, 3) as its endpoints. We want the arc to be
|
||||
// clockwise-oriented, so it passes through (0, 5) as well.
|
||||
Conic_arc c4(Rat_point(-3, 4), Rat_point(0, 5), Rat_point(4, 3));
|
||||
CGAL_assertion(c4.is_valid());
|
||||
|
||||
insert(arr, c4);
|
||||
|
||||
// Insert a full unit circle (C5) that is centered at (0, 4).
|
||||
|
|
@ -46,7 +46,7 @@ int main() {
|
|||
0, 0, 0, 0, 1, 3, // the line: y = -3.
|
||||
Point(1.41, -2), // approximation of the target.
|
||||
0, 0, 0, 0, 1, 2); // the line: y = -2.
|
||||
CGAL_assertion(c6.is_valid());
|
||||
|
||||
insert(arr, c6);
|
||||
|
||||
// Insert the right half of the circle centered at (4, 2.5) whose radius
|
||||
|
|
|
|||
|
|
@ -3,6 +3,7 @@
|
|||
// using the arrangement of the dual lines.
|
||||
|
||||
#include <cstdlib>
|
||||
#include <cassert>
|
||||
|
||||
#include "arr_linear.h"
|
||||
#include "read_objects.h"
|
||||
|
|
@ -74,7 +75,7 @@ int main(int argc, char* argv[]) {
|
|||
break;
|
||||
}
|
||||
}
|
||||
CGAL_assertion(found_collinear);
|
||||
assert(found_collinear);
|
||||
|
||||
return (0);
|
||||
}
|
||||
|
|
|
|||
|
|
@ -46,7 +46,6 @@ int main() {
|
|||
const Point q{_7_halves, 7};
|
||||
Point_location::result_type obj = pl.locate(q);
|
||||
auto* e = boost::get<Arr_with_hist::Halfedge_const_handle>(&obj);
|
||||
CGAL_assertion(e);
|
||||
|
||||
// Split the edge e to two edges e1 and e2;
|
||||
auto e1 = arr.split_edge(arr.non_const_handle(*e), q);
|
||||
|
|
|
|||
|
|
@ -1,6 +1,8 @@
|
|||
//! \file examples/Arrangement_on_surface_2/face_extension_overlay.cpp
|
||||
// A face overlay of two arrangements with extended face records.
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include <CGAL/basic.h>
|
||||
#include <CGAL/Arr_overlay_2.h>
|
||||
#include <CGAL/Arr_default_overlay_traits.h>
|
||||
|
|
@ -21,7 +23,8 @@ int main() {
|
|||
insert_non_intersecting_curve(arr1, Segment(Point(6, 2), Point(6, 6)));
|
||||
insert_non_intersecting_curve(arr1, Segment(Point(6, 6), Point(2, 6)));
|
||||
insert_non_intersecting_curve(arr1, Segment(Point(2, 6), Point(2, 2)));
|
||||
CGAL_assertion(arr1.number_of_faces() == 2);
|
||||
// 2 because the bounded and the unbounded one
|
||||
assert(arr1.number_of_faces() == 2);
|
||||
|
||||
// Mark just the bounded face.
|
||||
for (auto fit = arr1.faces_begin(); fit != arr1.faces_end(); ++fit)
|
||||
|
|
@ -33,7 +36,6 @@ int main() {
|
|||
insert_non_intersecting_curve(arr2, Segment(Point(7, 4), Point(4, 7)));
|
||||
insert_non_intersecting_curve(arr2, Segment(Point(4, 7), Point(1, 4)));
|
||||
insert_non_intersecting_curve(arr2, Segment(Point(1, 4), Point(4, 1)));
|
||||
CGAL_assertion(arr2.number_of_faces() == 2);
|
||||
|
||||
for (auto fit = arr2.faces_begin(); fit != arr2.faces_end(); ++fit)
|
||||
fit->set_data(fit != arr2.unbounded_face()); // mark the bounded face.
|
||||
|
|
|
|||
|
|
@ -33,7 +33,7 @@ int main() {
|
|||
Point q(4, 1);
|
||||
auto obj = pl.locate(q);
|
||||
auto* f = boost::get<Arrangement::Face_const_handle>(&obj);
|
||||
CGAL_assertion(f != nullptr);
|
||||
|
||||
std::cout << "The query point (" << q << ") is located in: ";
|
||||
print_face<Arrangement>(*f);
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,8 @@
|
|||
//! \file examples/Arrangement_on_surface_2/overlay_color.cpp
|
||||
// The overlay of two arrangement with extended dcel structures
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include <CGAL/basic.h>
|
||||
#include <CGAL/Arr_extended_dcel.h>
|
||||
#include <CGAL/Arr_overlay_2.h>
|
||||
|
|
@ -25,7 +27,7 @@ int main() {
|
|||
insert(arr1, Segment(Point(0, 0), Point(0, 4)));
|
||||
insert(arr1, Segment(Point(2, 0), Point(2, 4)));
|
||||
insert(arr1, Segment(Point(4, 0), Point(4, 4)));
|
||||
CGAL_assertion(arr1.number_of_faces() == 5);
|
||||
assert(arr1.number_of_faces() == 5);
|
||||
for (auto vit = arr1.vertices_begin(); vit != arr1.vertices_end(); ++vit)
|
||||
vit->set_data(vcol1);
|
||||
for (auto hit = arr1.halfedges_begin(); hit != arr1.halfedges_end(); ++hit)
|
||||
|
|
@ -41,7 +43,7 @@ int main() {
|
|||
insert(arr2, Segment(Point(0, 0), Point(0, 6)));
|
||||
insert(arr2, Segment(Point(3, 0), Point(3, 6)));
|
||||
insert(arr2, Segment(Point(6, 0), Point(6, 6)));
|
||||
CGAL_assertion(arr2.number_of_faces() == 5);
|
||||
assert(arr2.number_of_faces() == 5);
|
||||
for (auto vit = arr2.vertices_begin(); vit != arr2.vertices_end(); ++vit)
|
||||
vit->set_data(vcol2);
|
||||
for (auto hit = arr2.halfedges_begin(); hit != arr2.halfedges_end(); ++hit)
|
||||
|
|
|
|||
|
|
@ -1,3 +1,4 @@
|
|||
#include <cassert>
|
||||
#include <CGAL/Arr_point_location_result.h>
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
|
@ -106,7 +107,7 @@ void shoot_vertical_ray(const VerticalRayShooting& vrs,
|
|||
else if ((e = boost::get<Halfedge_const_handle>(&obj)) ) // hit an edge
|
||||
std::cout << "an edge: " << (*e)->curve() << std::endl;
|
||||
else if ((f = boost::get<Face_const_handle>(&obj))) { // hit nothing
|
||||
CGAL_assertion((*f)->is_unbounded());
|
||||
assert((*f)->is_unbounded());
|
||||
std::cout << "nothing." << std::endl;
|
||||
}
|
||||
else CGAL_error_msg("Invalid object.");
|
||||
|
|
|
|||
|
|
@ -59,7 +59,6 @@ int main() {
|
|||
std::vector<Make_x_monotone_result> obj_vector;
|
||||
bezier_traits.make_x_monotone_2_object()(B, std::back_inserter(obj_vector));
|
||||
auto* x_seg_p = boost::get<Bezier_x_monotone_curve>(&obj_vector[0]);
|
||||
CGAL_assertion(x_seg_p);
|
||||
x_curves.push_back(*x_seg_p);
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -5,6 +5,7 @@
|
|||
// #define CGAL_ARRANGEMENT_ON_SURFACE_INSERT_VERBOSE 1
|
||||
// #define CGAL_ARR_CONSTRUCTION_SL_VISITOR_VERBOSE 1
|
||||
|
||||
#include <cassert>
|
||||
#include <vector>
|
||||
|
||||
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
|
||||
|
|
@ -57,26 +58,26 @@ int main() {
|
|||
X_monotone_curve_2 xcv_sp1 = ctr_xcv(sp, p1);
|
||||
X_monotone_curve_2 xcv_sp2 = ctr_xcv(sp, p2);
|
||||
X_monotone_curve_2 xcv_sp3 = ctr_xcv(sp, p3);
|
||||
CGAL_assertion(xcv_sp1.is_vertical());
|
||||
CGAL_assertion(xcv_sp2.is_vertical());
|
||||
CGAL_assertion(xcv_sp3.is_vertical());
|
||||
assert(xcv_sp1.is_vertical());
|
||||
assert(xcv_sp2.is_vertical());
|
||||
assert(xcv_sp3.is_vertical());
|
||||
xcvs.push_back(xcv_sp1); // 0
|
||||
xcvs.push_back(xcv_sp2); // 1
|
||||
xcvs.push_back(xcv_sp3); // 2
|
||||
|
||||
X_monotone_curve_2 xcv_12 = ctr_xcv(p1, p2);
|
||||
X_monotone_curve_2 xcv_23 = ctr_xcv(p2, p3);
|
||||
CGAL_assertion(!xcv_12.is_vertical());
|
||||
CGAL_assertion(!xcv_23.is_vertical());
|
||||
assert(!xcv_12.is_vertical());
|
||||
assert(!xcv_23.is_vertical());
|
||||
xcvs.push_back(xcv_12); // 3
|
||||
xcvs.push_back(xcv_23); // 4
|
||||
|
||||
X_monotone_curve_2 xcv_np1 = ctr_xcv(np, p1);
|
||||
X_monotone_curve_2 xcv_np2 = ctr_xcv(np, p2);
|
||||
X_monotone_curve_2 xcv_np3 = ctr_xcv(np, p3);
|
||||
CGAL_assertion(xcv_np1.is_vertical());
|
||||
CGAL_assertion(xcv_np2.is_vertical());
|
||||
CGAL_assertion(xcv_np3.is_vertical());
|
||||
assert(xcv_np1.is_vertical());
|
||||
assert(xcv_np2.is_vertical());
|
||||
assert(xcv_np3.is_vertical());
|
||||
xcvs.push_back(xcv_np1); // 5
|
||||
xcvs.push_back(xcv_np2); // 6
|
||||
xcvs.push_back(xcv_np3); // 7
|
||||
|
|
|
|||
|
|
@ -1,13 +1,15 @@
|
|||
#ifndef IS_IN_X_RANGE_H
|
||||
#define IS_IN_X_RANGE_H
|
||||
|
||||
#include <cassert>
|
||||
|
||||
// Check whether the given point is in the x-range of the given curve that
|
||||
// represents a great-circle arc.
|
||||
template <typename GeometryTraits>
|
||||
bool is_in_x_range(const typename GeometryTraits::X_monotone_curve_2& c,
|
||||
const typename GeometryTraits::Point_2& p,
|
||||
const GeometryTraits& traits) {
|
||||
CGAL_assertion(! traits.is_on_y_identification_2_object()(p));
|
||||
assert(! traits.is_on_y_identification_2_object()(p));
|
||||
|
||||
if (traits.is_on_y_identification_2_object()(c)) return false;
|
||||
|
||||
|
|
|
|||
|
|
@ -45,7 +45,6 @@ int main() {
|
|||
if (vh) std::cout << '(' << (*vh)->point() << ')';
|
||||
else {
|
||||
auto* hh = boost::get<Halfedge_const_handle>(&*(curr.first));
|
||||
CGAL_assertion(hh);
|
||||
if (! (*hh)->is_fictitious())
|
||||
std::cout << '[' << (*hh)->curve() << ']';
|
||||
else std::cout << "NONE";
|
||||
|
|
@ -59,7 +58,6 @@ int main() {
|
|||
if (vh) std::cout << '(' << (*vh)->point() << ")\n";
|
||||
else {
|
||||
auto* hh = boost::get<Halfedge_const_handle>(&*(curr.second));
|
||||
CGAL_assertion(hh);
|
||||
if (! (*hh)->is_fictitious())
|
||||
std::cout << '[' << (*hh)->curve() << "]\n";
|
||||
else std::cout << "NONE\n";
|
||||
|
|
|
|||
|
|
@ -2,6 +2,8 @@
|
|||
// Constructing an arrangement of unbounded linear objects using the insertion
|
||||
// function for non-intersecting curves.
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include "arr_linear.h"
|
||||
#include "arr_print.h"
|
||||
|
||||
|
|
@ -13,7 +15,7 @@ int main() {
|
|||
X_monotone_curve c1 = Line(Point(-1, 0), Point(1, 0));
|
||||
arr.insert_in_face_interior(c1, arr.unbounded_face());
|
||||
Vertex_handle v = insert_point(arr, Point(0,0));
|
||||
CGAL_assertion(! v->is_at_open_boundary());
|
||||
assert(! v->is_at_open_boundary());
|
||||
|
||||
// Add two more rays using the specialized insertion functions.
|
||||
arr.insert_from_right_vertex(Ray(Point(0, 0), Point(-1, 1)), v); // c2
|
||||
|
|
|
|||
|
|
@ -7,6 +7,7 @@
|
|||
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Simple_cartesian<double> K;
|
||||
typedef CGAL::Surface_mesh<K::Point_3> SM;
|
||||
|
|
@ -39,7 +40,7 @@ int main(int argc, char** argv)
|
|||
// Extract the part n°0 of the partition into a new, independent mesh
|
||||
typedef CGAL::Face_filtered_graph<SM> Filtered_graph;
|
||||
Filtered_graph filtered_sm(sm, 0 /*id of th part*/, face_pid_map);
|
||||
CGAL_assertion(filtered_sm.is_selection_valid());
|
||||
assert(filtered_sm.is_selection_valid());
|
||||
SM part_sm;
|
||||
CGAL::copy_face_graph(filtered_sm, part_sm);
|
||||
|
||||
|
|
|
|||
|
|
@ -8,6 +8,7 @@
|
|||
#include <CGAL/Lazy_exact_nt.h>
|
||||
|
||||
#include <list>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
|
||||
typedef Kernel::Point_2 Point_2;
|
||||
|
|
@ -28,7 +29,7 @@ Polygon_2 construct_polygon (const Circle_2& circle)
|
|||
Curve_2 curve (circle);
|
||||
std::list<CGAL::Object> objects;
|
||||
traits.make_x_monotone_2_object() (curve, std::back_inserter(objects));
|
||||
CGAL_assertion (objects.size() == 2);
|
||||
assert(objects.size() == 2);
|
||||
|
||||
// Construct the polygon.
|
||||
Polygon_2 pgn;
|
||||
|
|
|
|||
|
|
@ -10,6 +10,7 @@
|
|||
#include <list>
|
||||
#include <cstdlib>
|
||||
#include <cmath>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
|
||||
typedef Kernel::Point_2 Point_2;
|
||||
|
|
@ -29,7 +30,7 @@ Polygon_2 construct_polygon (const Circle_2& circle)
|
|||
Curve_2 curve (circle);
|
||||
std::list<CGAL::Object> objects;
|
||||
traits.make_x_monotone_2_object() (curve, std::back_inserter(objects));
|
||||
CGAL_assertion (objects.size() == 2);
|
||||
assert(objects.size() == 2);
|
||||
|
||||
// Construct the polygon.
|
||||
Polygon_2 pgn;
|
||||
|
|
|
|||
|
|
@ -5,6 +5,7 @@
|
|||
#include <CGAL/Exact_rational.h>
|
||||
#include <CGAL/Min_sphere_of_spheres_d.h>
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
|
||||
const int N = 1000; // number of spheres
|
||||
const int LOW = 0, HIGH = 10000; // range of coordinates and radii
|
||||
|
|
@ -29,5 +30,5 @@ int main () {
|
|||
}
|
||||
|
||||
Min_sphere ms(S.begin(),S.end()); // check in the spheres
|
||||
CGAL_assertion(ms.is_valid());
|
||||
assert(ms.is_valid());
|
||||
}
|
||||
|
|
|
|||
|
|
@ -5,6 +5,7 @@
|
|||
#include <CGAL/Exact_rational.h>
|
||||
#include <CGAL/Min_sphere_of_spheres_d.h>
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
|
||||
const int N = 1000; // number of spheres
|
||||
const int LOW = 0, HIGH = 10000; // range of coordinates and radii
|
||||
|
|
@ -30,5 +31,5 @@ int main () {
|
|||
}
|
||||
|
||||
Min_sphere ms(S.begin(),S.end()); // check in the spheres
|
||||
CGAL_assertion(ms.is_valid());
|
||||
assert(ms.is_valid());
|
||||
}
|
||||
|
|
|
|||
|
|
@ -5,6 +5,7 @@
|
|||
#include <CGAL/Exact_rational.h>
|
||||
#include <CGAL/Min_sphere_of_spheres_d.h>
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
|
||||
const int N = 1000; // number of spheres
|
||||
const int D = 3; // dimension of points
|
||||
|
|
@ -31,5 +32,5 @@ int main () {
|
|||
}
|
||||
|
||||
Min_sphere ms(S.begin(),S.end()); // check in the spheres
|
||||
CGAL_assertion(ms.is_valid());
|
||||
assert(ms.is_valid());
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include <CGAL/Combinatorial_map.h>
|
||||
#include <iostream>
|
||||
#include <cstdlib>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Combinatorial_map<3> CMap_3;
|
||||
typedef CMap_3::Dart_handle Dart_handle;
|
||||
|
|
@ -13,19 +14,19 @@ int main()
|
|||
Dart_handle dh1 = cm.make_combinatorial_hexahedron();
|
||||
|
||||
// Add two edges along two opposite facets.
|
||||
CGAL_assertion( cm.is_insertable_cell_1_in_cell_2
|
||||
assert( cm.is_insertable_cell_1_in_cell_2
|
||||
(cm.beta(dh1,1),cm.beta(dh1,0)) );
|
||||
|
||||
cm.insert_cell_1_in_cell_2(cm.beta(dh1,1), cm.beta(dh1,0));
|
||||
CGAL_assertion( cm.is_valid() );
|
||||
assert( cm.is_valid() );
|
||||
|
||||
Dart_handle dh2=cm.beta(dh1,2,1,1,2);
|
||||
|
||||
CGAL_assertion( cm.is_insertable_cell_1_in_cell_2
|
||||
assert( cm.is_insertable_cell_1_in_cell_2
|
||||
(dh2,cm.beta(dh2,1,1)) );
|
||||
|
||||
cm.insert_cell_1_in_cell_2(dh2, cm.beta(dh2,1,1));
|
||||
CGAL_assertion( cm.is_valid() );
|
||||
assert( cm.is_valid() );
|
||||
|
||||
// Insert a facet along these two new edges plus two initial edges
|
||||
// of the hexahedron.
|
||||
|
|
@ -35,28 +36,28 @@ int main()
|
|||
path.push_back(cm.beta(dh2,0));
|
||||
path.push_back(cm.beta(dh2,2,1));
|
||||
|
||||
CGAL_assertion( (cm.is_insertable_cell_2_in_cell_3
|
||||
assert( (cm.is_insertable_cell_2_in_cell_3
|
||||
(path.begin(),path.end())) );
|
||||
|
||||
Dart_handle dh3=cm.insert_cell_2_in_cell_3(path.begin(),path.end());
|
||||
CGAL_assertion( cm.is_valid() );
|
||||
assert( cm.is_valid() );
|
||||
|
||||
// Display the combinatorial map characteristics.
|
||||
cm.display_characteristics(std::cout) << ", valid=" <<
|
||||
cm.is_valid() << std::endl;
|
||||
|
||||
// We use the removal operations to get back to the initial hexahedron.
|
||||
CGAL_assertion( (cm.is_removable<2>(dh3)) );
|
||||
assert( (cm.is_removable<2>(dh3)) );
|
||||
cm.remove_cell<2>(dh3);
|
||||
CGAL_assertion( cm.is_valid() );
|
||||
assert( cm.is_valid() );
|
||||
|
||||
CGAL_assertion( (cm.is_removable<1>(cm.beta(dh1,1))) );
|
||||
assert( (cm.is_removable<1>(cm.beta(dh1,1))) );
|
||||
cm.remove_cell<1>(cm.beta(dh1,1));
|
||||
CGAL_assertion( cm.is_valid() );
|
||||
assert( cm.is_valid() );
|
||||
|
||||
CGAL_assertion( (cm.is_removable<1>(cm.beta(dh2,0))) );
|
||||
assert( (cm.is_removable<1>(cm.beta(dh2,0))) );
|
||||
cm.remove_cell<1>(cm.beta(dh2,0));
|
||||
CGAL_assertion( cm.is_valid() );
|
||||
assert( cm.is_valid() );
|
||||
|
||||
// Display the combinatorial map characteristics.
|
||||
cm.display_characteristics(std::cout) << ", valid="
|
||||
|
|
@ -64,4 +65,3 @@ int main()
|
|||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -8,6 +8,7 @@
|
|||
#include <CGAL/Arrangement_2.h>
|
||||
#include <CGAL/Envelope_diagram_1.h>
|
||||
#include <CGAL/envelope_2.h>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Exact_rational Number_type;
|
||||
typedef CGAL::Cartesian<Number_type> Kernel;
|
||||
|
|
@ -42,7 +43,7 @@ void print_diagram (const Diagram_1& diag)
|
|||
|
||||
e = v->right();
|
||||
}
|
||||
CGAL_assertion (e->is_empty());
|
||||
assert(e->is_empty());
|
||||
std::cout << "Edge: [empty]" << std::endl;
|
||||
|
||||
return;
|
||||
|
|
|
|||
|
|
@ -10,6 +10,7 @@
|
|||
|
||||
#include <list>
|
||||
#include <iostream>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Exact_rational Number_type;
|
||||
typedef CGAL::Cartesian<Number_type> Kernel;
|
||||
|
|
@ -74,7 +75,7 @@ int main ()
|
|||
|
||||
e = v->right();
|
||||
}
|
||||
CGAL_assertion (e->is_empty());
|
||||
assert(e->is_empty());
|
||||
std::cout << "Edge: [empty]" << std::endl;
|
||||
|
||||
return (0);
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include <CGAL/Generalized_map.h>
|
||||
#include <iostream>
|
||||
#include <cstdlib>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Generalized_map<3> GMap_3;
|
||||
typedef GMap_3::Dart_handle Dart_handle;
|
||||
|
|
@ -26,9 +27,9 @@ int main()
|
|||
Dart_handle dh1 = gm.make_combinatorial_tetrahedron();
|
||||
Dart_handle dh2 = gm.make_combinatorial_tetrahedron();
|
||||
|
||||
CGAL_assertion( gm.is_valid() );
|
||||
CGAL_assertion( gm.is_volume_combinatorial_tetrahedron(dh1) );
|
||||
CGAL_assertion( gm.is_volume_combinatorial_tetrahedron(dh2) );
|
||||
assert( gm.is_valid() );
|
||||
assert( gm.is_volume_combinatorial_tetrahedron(dh1) );
|
||||
assert( gm.is_volume_combinatorial_tetrahedron(dh2) );
|
||||
|
||||
// 3) 3-sew them.
|
||||
gm.sew<3>(dh1, dh2);
|
||||
|
|
@ -59,4 +60,3 @@ int main()
|
|||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include <CGAL/Generalized_map.h>
|
||||
#include <iostream>
|
||||
#include <cstdlib>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Generalized_map<3> GMap_3;
|
||||
typedef GMap_3::Dart_handle Dart_handle;
|
||||
|
|
@ -14,11 +15,11 @@ int main()
|
|||
|
||||
// Add two edges along two opposite facets.
|
||||
gm.insert_cell_1_in_cell_2(d1,gm.alpha<0,1,0>(d1));
|
||||
CGAL_assertion( gm.is_valid() );
|
||||
assert( gm.is_valid() );
|
||||
|
||||
Dart_handle d2=gm.alpha<2,1,0,1,2>(d1);
|
||||
gm.insert_cell_1_in_cell_2(d2,gm.alpha<0,1,0>(d2));
|
||||
CGAL_assertion( gm.is_valid() );
|
||||
assert( gm.is_valid() );
|
||||
|
||||
// Insert a facet along these two new edges plus two initial edges
|
||||
// of the hexahedron.
|
||||
|
|
@ -29,7 +30,7 @@ int main()
|
|||
path.push_back(gm.alpha<2,1>(d2));
|
||||
|
||||
Dart_handle d3=gm.insert_cell_2_in_cell_3(path.begin(),path.end());
|
||||
CGAL_assertion( gm.is_valid() );
|
||||
assert( gm.is_valid() );
|
||||
|
||||
// Display the generalized map characteristics.
|
||||
gm.display_characteristics(std::cout) << ", valid=" <<
|
||||
|
|
@ -37,14 +38,14 @@ int main()
|
|||
|
||||
// We use the removal operations to get back to the initial hexahedron.
|
||||
gm.remove_cell<2>(d3);
|
||||
CGAL_assertion( gm.is_valid() );
|
||||
assert( gm.is_valid() );
|
||||
|
||||
gm.remove_cell<1>(gm.alpha<1>(d1));
|
||||
CGAL_assertion( gm.is_valid() );
|
||||
assert( gm.is_valid() );
|
||||
|
||||
gm.remove_cell<1>(gm.alpha<1>(d2));
|
||||
CGAL_assertion( gm.is_valid() );
|
||||
CGAL_assertion( gm.is_volume_combinatorial_hexahedron(d1) );
|
||||
assert( gm.is_valid() );
|
||||
assert( gm.is_volume_combinatorial_hexahedron(d1) );
|
||||
|
||||
// Display the generalized map characteristics.
|
||||
gm.display_characteristics(std::cout) << ", valid="
|
||||
|
|
@ -52,4 +53,3 @@ int main()
|
|||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include <CGAL/Generalized_map.h>
|
||||
#include <iostream>
|
||||
#include <cstdlib>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Generalized_map<4> GMap_4;
|
||||
typedef GMap_4::Dart_handle Dart_handle;
|
||||
|
|
@ -11,7 +12,7 @@ int main()
|
|||
Dart_handle d1 = gm.make_combinatorial_tetrahedron();
|
||||
Dart_handle d2 = gm.make_combinatorial_tetrahedron();
|
||||
|
||||
CGAL_assertion(gm.is_valid());
|
||||
assert(gm.is_valid());
|
||||
|
||||
gm.sew<4>(d1,d2);
|
||||
|
||||
|
|
|
|||
|
|
@ -8,6 +8,7 @@
|
|||
#include <CGAL/function_objects.h>
|
||||
#include <CGAL/Join_input_iterator.h>
|
||||
#include <CGAL/Counting_iterator.h>
|
||||
#include <cassert>
|
||||
|
||||
using namespace CGAL;
|
||||
|
||||
|
|
@ -41,16 +42,16 @@ int main() {
|
|||
Count_iterator t2_end( t2, 50);
|
||||
std::copy( t2_begin, t2_end, std::back_inserter(segs));
|
||||
|
||||
CGAL_assertion( segs.size() == 100);
|
||||
assert( segs.size() == 100);
|
||||
for ( Vector::iterator i = segs.begin(); i != segs.end(); i++){
|
||||
CGAL_assertion( i->source().x() <= 250);
|
||||
CGAL_assertion( i->source().x() >= -250);
|
||||
CGAL_assertion( i->source().y() <= 250);
|
||||
CGAL_assertion( i->source().y() >= -250);
|
||||
CGAL_assertion( i->target().x() <= 250);
|
||||
CGAL_assertion( i->target().x() >= -250);
|
||||
CGAL_assertion( i->target().y() <= 250);
|
||||
CGAL_assertion( i->target().y() >= -250);
|
||||
assert( i->source().x() <= 250);
|
||||
assert( i->source().x() >= -250);
|
||||
assert( i->source().y() <= 250);
|
||||
assert( i->source().y() >= -250);
|
||||
assert( i->target().x() <= 250);
|
||||
assert( i->target().x() >= -250);
|
||||
assert( i->target().y() <= 250);
|
||||
assert( i->target().y() >= -250);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include <CGAL/HalfedgeDS_items_2.h>
|
||||
#include <CGAL/HalfedgeDS_default.h>
|
||||
#include <CGAL/IO/Color.h>
|
||||
#include <cassert>
|
||||
|
||||
// A face type with a color member variable.
|
||||
template <class Refs>
|
||||
|
|
@ -30,6 +31,6 @@ int main() {
|
|||
HDS hds;
|
||||
Face_handle f = hds.faces_push_back( Face( CGAL::IO::red()));
|
||||
f->color = CGAL::IO::blue();
|
||||
CGAL_assertion( f->color == CGAL::IO::blue());
|
||||
assert( f->color == CGAL::IO::blue());
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -2,6 +2,7 @@
|
|||
#include <CGAL/HalfedgeDS_vector.h>
|
||||
#include <CGAL/HalfedgeDS_decorator.h>
|
||||
#include <cstddef>
|
||||
#include <cassert>
|
||||
|
||||
// Define a new halfedge class. We assume that the Halfedge_handle can
|
||||
// be created from a pointer (e.g. the HalfedgeDS is based here on the
|
||||
|
|
@ -55,7 +56,7 @@ public:
|
|||
(nxt & (~ std::ptrdiff_t(1))));
|
||||
}
|
||||
void set_opposite( Halfedge_handle h) {
|
||||
CGAL_precondition(( &* h - 1 == &* HDS::halfedge_handle(this)) ||
|
||||
assert(( &* h - 1 == &* HDS::halfedge_handle(this)) ||
|
||||
( &* h + 1 == &* HDS::halfedge_handle(this)));
|
||||
if ( &* h - 1 == &* HDS::halfedge_handle(this))
|
||||
nxt |= 1;
|
||||
|
|
@ -63,7 +64,7 @@ public:
|
|||
nxt &= (~ std::ptrdiff_t(1));
|
||||
}
|
||||
void set_next( Halfedge_handle h) {
|
||||
CGAL_precondition( ((std::ptrdiff_t)(&*h) & 1) == 0);
|
||||
assert( ((std::ptrdiff_t)(&*h) & 1) == 0);
|
||||
nxt = ((std::ptrdiff_t)(&*h)) | (nxt & 1);
|
||||
}
|
||||
private: // Support for the Vertex_handle.
|
||||
|
|
@ -99,6 +100,6 @@ int main() {
|
|||
HDS hds(1,2,2);
|
||||
Decorator decorator(hds);
|
||||
decorator.create_loop();
|
||||
CGAL_assertion( decorator.is_valid());
|
||||
assert( decorator.is_valid());
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -2,6 +2,7 @@
|
|||
#include <CGAL/HalfedgeDS_list.h>
|
||||
#include <CGAL/HalfedgeDS_decorator.h>
|
||||
#include <cstddef>
|
||||
#include <cassert>
|
||||
|
||||
// Define a new halfedge class. We assume that the Halfedge_handle can
|
||||
// be created from a pointer (e.g. the HalfedgeDS is based here on the
|
||||
|
|
@ -54,7 +55,7 @@ public:
|
|||
(~ std::ptrdiff_t(1))));
|
||||
}
|
||||
void set_opposite( Halfedge_handle h) {
|
||||
CGAL_precondition(( std::prev(&*h) == &* HDS::halfedge_handle(this)) ||
|
||||
assert(( std::prev(&*h) == &* HDS::halfedge_handle(this)) ||
|
||||
( std::next(&*h)== &* HDS::halfedge_handle(this)));
|
||||
if ( std::prev(&*h) == &* HDS::halfedge_handle(this))
|
||||
nxt |= 1;
|
||||
|
|
@ -62,7 +63,7 @@ public:
|
|||
nxt &= (~ std::ptrdiff_t(1));
|
||||
}
|
||||
void set_next( Halfedge_handle h) {
|
||||
CGAL_precondition( ((std::ptrdiff_t)(&*h) & 1) == 0);
|
||||
assert( ((std::ptrdiff_t)(&*h) & 1) == 0);
|
||||
nxt = ((std::ptrdiff_t)(&*h)) | (nxt & 1);
|
||||
}
|
||||
private: // Support for the Vertex_handle.
|
||||
|
|
@ -98,6 +99,6 @@ int main() {
|
|||
HDS hds;
|
||||
Decorator decorator(hds);
|
||||
decorator.create_loop();
|
||||
CGAL_assertion( decorator.is_valid());
|
||||
assert( decorator.is_valid());
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,5 +1,6 @@
|
|||
#include <CGAL/HalfedgeDS_default.h>
|
||||
#include <CGAL/HalfedgeDS_decorator.h>
|
||||
#include <cassert>
|
||||
|
||||
struct Traits { typedef int Point_2; };
|
||||
typedef CGAL::HalfedgeDS_default<Traits> HDS;
|
||||
|
|
@ -9,6 +10,6 @@ int main() {
|
|||
HDS hds;
|
||||
Decorator decorator(hds);
|
||||
decorator.create_loop();
|
||||
CGAL_assertion( decorator.is_valid());
|
||||
assert( decorator.is_valid());
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include <CGAL/HalfedgeDS_default.h>
|
||||
#include <CGAL/HalfedgeDS_decorator.h>
|
||||
#include <CGAL/N_step_adaptor.h>
|
||||
#include <cassert>
|
||||
|
||||
struct Traits { typedef int Point_2; };
|
||||
typedef CGAL::HalfedgeDS_default<Traits> HDS;
|
||||
|
|
@ -13,10 +14,10 @@ int main() {
|
|||
Decorator decorator(hds);
|
||||
decorator.create_loop();
|
||||
decorator.create_segment();
|
||||
CGAL_assertion( decorator.is_valid());
|
||||
assert( decorator.is_valid());
|
||||
int n = 0;
|
||||
for ( Iterator e = hds.halfedges_begin(); e != hds.halfedges_end(); ++e)
|
||||
++n;
|
||||
CGAL_assertion( n == 2); // == 2 edges
|
||||
assert( n == 2); // == 2 edges
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include <CGAL/HalfedgeDS_min_items.h>
|
||||
#include <CGAL/HalfedgeDS_default.h>
|
||||
#include <CGAL/HalfedgeDS_decorator.h>
|
||||
#include <cassert>
|
||||
|
||||
// no traits needed, argument can be arbitrary dummy.
|
||||
typedef CGAL::HalfedgeDS_default<int, CGAL::HalfedgeDS_min_items> HDS;
|
||||
|
|
@ -10,6 +11,6 @@ int main() {
|
|||
HDS hds;
|
||||
Decorator decorator(hds);
|
||||
decorator.create_loop();
|
||||
CGAL_assertion( decorator.is_valid());
|
||||
assert( decorator.is_valid());
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include <CGAL/HalfedgeDS_min_items.h>
|
||||
#include <CGAL/HalfedgeDS_default.h>
|
||||
#include <CGAL/HalfedgeDS_decorator.h>
|
||||
#include <cassert>
|
||||
|
||||
// An items type using a halfedge with previous-pointer.
|
||||
struct My_items : public CGAL::HalfedgeDS_min_items {
|
||||
|
|
@ -22,6 +23,6 @@ int main() {
|
|||
HDS hds;
|
||||
Decorator decorator(hds);
|
||||
decorator.create_loop();
|
||||
CGAL_assertion( decorator.is_valid());
|
||||
assert( decorator.is_valid());
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,5 +1,6 @@
|
|||
#include <CGAL/HalfedgeDS_default.h>
|
||||
#include <CGAL/HalfedgeDS_decorator.h>
|
||||
#include <cassert>
|
||||
|
||||
struct Traits { typedef int Point_2; };
|
||||
typedef CGAL::HalfedgeDS_default<Traits> HDS;
|
||||
|
|
@ -11,10 +12,10 @@ int main() {
|
|||
Decorator decorator(hds);
|
||||
decorator.create_loop();
|
||||
decorator.create_segment();
|
||||
CGAL_assertion( decorator.is_valid());
|
||||
assert( decorator.is_valid());
|
||||
int n = 0;
|
||||
for ( Iterator i = hds.halfedges_begin(); i != hds.halfedges_end(); ++i )
|
||||
++n;
|
||||
CGAL_assertion( n == 4); // == 2 edges
|
||||
assert( n == 4); // == 2 edges
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include <CGAL/HalfedgeDS_items_2.h>
|
||||
#include <CGAL/HalfedgeDS_vector.h>
|
||||
#include <CGAL/HalfedgeDS_decorator.h>
|
||||
#include <cassert>
|
||||
|
||||
struct Traits { typedef int Point_2; };
|
||||
typedef CGAL::HalfedgeDS_vector< Traits, CGAL::HalfedgeDS_items_2> HDS;
|
||||
|
|
@ -10,6 +11,6 @@ int main() {
|
|||
HDS hds(1,2,2);
|
||||
Decorator decorator(hds);
|
||||
decorator.create_loop();
|
||||
CGAL_assertion( decorator.is_valid());
|
||||
assert( decorator.is_valid());
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include <CGAL/Linear_cell_complex_for_generalized_map.h>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Linear_cell_complex_for_generalized_map<4,5> LCC_4;
|
||||
typedef LCC_4::Dart_handle Dart_handle;
|
||||
|
|
@ -42,24 +43,24 @@ int main()
|
|||
|
||||
// Add one vertex on the middle of the edge containing dart d1.
|
||||
Dart_handle d3 = lcc.insert_barycenter_in_cell<1>(d1);
|
||||
CGAL_assertion( lcc.is_valid() );
|
||||
assert( lcc.is_valid() );
|
||||
|
||||
lcc.display_characteristics(std::cout);
|
||||
std::cout<<", valid="<<lcc.is_valid()<<std::endl;
|
||||
|
||||
// Add one edge to cut the face containing dart d3 in two.
|
||||
Dart_handle d4 = lcc.insert_cell_1_in_cell_2(d3, lcc.alpha(d1, 1, 0, 1));
|
||||
CGAL_assertion( lcc.is_valid() );
|
||||
assert( lcc.is_valid() );
|
||||
|
||||
lcc.display_characteristics(std::cout);
|
||||
std::cout<<", valid="<<lcc.is_valid()<<std::endl;
|
||||
|
||||
// We use removal operations to get back to the initial configuration.
|
||||
lcc.remove_cell<1>(d4);
|
||||
CGAL_assertion( lcc.is_valid() );
|
||||
assert( lcc.is_valid() );
|
||||
|
||||
lcc.remove_cell<0>(d3);
|
||||
CGAL_assertion( lcc.is_valid() );
|
||||
assert( lcc.is_valid() );
|
||||
|
||||
lcc.unsew<4>(d1);
|
||||
|
||||
|
|
@ -68,4 +69,3 @@ int main()
|
|||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -5,6 +5,7 @@
|
|||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <cassert>
|
||||
|
||||
|
||||
// This example works both with cmap and gmap as combinatorial data structure.
|
||||
|
|
@ -46,7 +47,7 @@ void display_voronoi(LCC_2& alcc, Dart_handle adart)
|
|||
toremove.pop();
|
||||
}
|
||||
|
||||
CGAL_assertion(alcc.is_without_boundary(1));
|
||||
assert(alcc.is_without_boundary(1));
|
||||
|
||||
std::cout<<"Voronoi subdvision, only finite faces:"<<std::endl<<" ";
|
||||
alcc.display_characteristics(std::cout) << ", valid="
|
||||
|
|
@ -122,7 +123,7 @@ int main(int narg, char** argv)
|
|||
|
||||
std::istream_iterator<Point> begin(iFile), end;
|
||||
T.insert(begin, end);
|
||||
CGAL_assertion(T.is_valid(false));
|
||||
assert(T.is_valid(false));
|
||||
|
||||
// 2) Convert the triangulation into a 2D lcc.
|
||||
LCC_2 lcc;
|
||||
|
|
@ -131,7 +132,7 @@ int main(int narg, char** argv)
|
|||
|
||||
Dart_handle dh=CGAL::import_from_triangulation_2<LCC_2, Triangulation>
|
||||
(lcc, T, &face_to_dart);
|
||||
CGAL_assertion(lcc.is_without_boundary());
|
||||
assert(lcc.is_without_boundary());
|
||||
|
||||
std::cout<<"Delaunay triangulation :"<<std::endl<<" ";
|
||||
lcc.display_characteristics(std::cout) << ", valid="
|
||||
|
|
@ -141,7 +142,7 @@ int main(int narg, char** argv)
|
|||
LCC_2 dual_lcc;
|
||||
Dart_handle ddh=lcc.dual(dual_lcc, dh);
|
||||
// Here, dual_lcc is the 2D Voronoi diagram.
|
||||
CGAL_assertion(dual_lcc.is_without_boundary());
|
||||
assert(dual_lcc.is_without_boundary());
|
||||
|
||||
// 4) We update the geometry of dual_lcc by using the std::map
|
||||
// face_to_dart.
|
||||
|
|
@ -159,4 +160,3 @@ int main(int narg, char** argv)
|
|||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -4,6 +4,7 @@
|
|||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <cassert>
|
||||
|
||||
/* // If you want to use exact constructions.
|
||||
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
|
||||
|
|
@ -48,7 +49,7 @@ void display_voronoi(LCC_3& alcc, Dart_handle adart)
|
|||
toremove.pop();
|
||||
}
|
||||
|
||||
CGAL_assertion(alcc.is_without_boundary(1) && alcc.is_without_boundary(2));
|
||||
assert(alcc.is_without_boundary(1) && alcc.is_without_boundary(2));
|
||||
|
||||
std::cout<<"Voronoi subdvision, only finite volumes:"<<std::endl<<" ";
|
||||
alcc.display_characteristics(std::cout) << ", valid="
|
||||
|
|
@ -126,7 +127,7 @@ int main(int narg, char** argv)
|
|||
|
||||
std::istream_iterator<Point> begin(iFile), end;
|
||||
T.insert(begin, end);
|
||||
CGAL_assertion(T.is_valid(false));
|
||||
assert(T.is_valid(false));
|
||||
|
||||
// 2) Convert the triangulation into a 3D lcc.
|
||||
LCC_3 lcc;
|
||||
|
|
@ -144,7 +145,7 @@ int main(int narg, char** argv)
|
|||
LCC_3 dual_lcc;
|
||||
Dart_handle ddh=lcc.dual(dual_lcc, dh);
|
||||
// Here, dual_lcc is the 3D Voronoi diagram.
|
||||
CGAL_assertion(dual_lcc.is_without_boundary());
|
||||
assert(dual_lcc.is_without_boundary());
|
||||
|
||||
// 4) We update the geometry of dual_lcc by using the std::map
|
||||
// face_to_dart.
|
||||
|
|
@ -161,4 +162,3 @@ int main(int narg, char** argv)
|
|||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -8,6 +8,7 @@
|
|||
#include <CGAL/make_mesh_3.h>
|
||||
|
||||
#include <cstdlib>
|
||||
#include <cassert>
|
||||
|
||||
// Domain
|
||||
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
|
||||
|
|
@ -54,8 +55,7 @@ const std::pair<int, int> incident_subdomains[] = {
|
|||
int main()
|
||||
{
|
||||
const std::size_t nb_patches = sizeof(filenames) / sizeof(const char*);
|
||||
CGAL_assertion(sizeof(incident_subdomains) ==
|
||||
nb_patches * sizeof(std::pair<int, int>));
|
||||
assert(sizeof(incident_subdomains) == nb_patches * sizeof(std::pair<int, int>));
|
||||
std::vector<Polyhedron> patches(nb_patches);
|
||||
for(std::size_t i = 0; i < nb_patches; ++i) {
|
||||
std::ifstream input(CGAL::data_file_path(filenames[i]));
|
||||
|
|
|
|||
|
|
@ -9,6 +9,7 @@
|
|||
#include <CGAL/Polyhedral_complex_mesh_domain_3.h>
|
||||
#include <CGAL/make_mesh_3.h>
|
||||
#include <cstdlib>
|
||||
#include <cassert>
|
||||
|
||||
// Domain
|
||||
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
|
||||
|
|
@ -63,7 +64,7 @@ int main()
|
|||
#endif
|
||||
|
||||
const std::size_t nb_patches = sizeof(filenames) / sizeof(const char*);
|
||||
CGAL_assertion(sizeof(incident_subdomains) ==
|
||||
assert(sizeof(incident_subdomains) ==
|
||||
nb_patches * sizeof(std::pair<int, int>));
|
||||
std::vector<Face_graph> patches(nb_patches);
|
||||
for(std::size_t i = 0; i < nb_patches; ++i) {
|
||||
|
|
|
|||
|
|
@ -2,6 +2,7 @@
|
|||
#define BOPS_LINEAR_H
|
||||
|
||||
#include <list>
|
||||
#include <cassert>
|
||||
|
||||
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
|
||||
#include <CGAL/Boolean_set_operations_2.h>
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ int main()
|
|||
|
||||
// Compute the Minkowski sum.
|
||||
Polygon_with_holes_2 sum = CGAL::minkowski_sum_2(P, Q);
|
||||
CGAL_assertion(sum.number_of_holes() == 0);
|
||||
assert(sum.number_of_holes() == 0);
|
||||
std::cout << "P (+) Q = " << sum.outer_boundary() << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include <CGAL/Exact_integer.h>
|
||||
#include <CGAL/Filtered_extended_homogeneous.h>
|
||||
#include <CGAL/Nef_polyhedron_2.h>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Exact_integer RT;
|
||||
typedef CGAL::Filtered_extended_homogeneous<RT> Extended_kernel;
|
||||
|
|
@ -15,13 +16,13 @@ int main() {
|
|||
Line l(2,4,2); // l : 2x + 4y + 2 = 0
|
||||
Nef_polyhedron N2(l,Nef_polyhedron::INCLUDED);
|
||||
Nef_polyhedron N3 = N2.complement();
|
||||
CGAL_assertion(N1 == N2.join(N3));
|
||||
assert(N1 == N2.join(N3));
|
||||
|
||||
Point p1(0,0), p2(10,10), p3(-20,15);
|
||||
Point triangle[3] = { p1, p2, p3 };
|
||||
Nef_polyhedron N4(triangle, triangle+3);
|
||||
Nef_polyhedron N5 = N2.intersection(N4);
|
||||
CGAL_assertion(N5 <= N2 && N5 <= N4);
|
||||
assert(N5 <= N2 && N5 <= N4);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include <CGAL/Exact_integer.h>
|
||||
#include <CGAL/Extended_homogeneous.h>
|
||||
#include <CGAL/Nef_polyhedron_3.h>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Exact_integer NT;
|
||||
typedef CGAL::Extended_homogeneous<NT> Kernel;
|
||||
|
|
@ -12,16 +13,16 @@ int main() {
|
|||
Nef_polyhedron N1(Plane_3(2,5,7,11), Nef_polyhedron::INCLUDED);
|
||||
Nef_polyhedron N2(Plane_3(2,5,7,11), Nef_polyhedron::EXCLUDED);
|
||||
|
||||
CGAL_assertion(N1 >= N2);
|
||||
CGAL_assertion(N2 <= N1);
|
||||
CGAL_assertion(N1 != N2);
|
||||
CGAL_assertion(N1 > N2);
|
||||
CGAL_assertion(N2 < N1);
|
||||
assert(N1 >= N2);
|
||||
assert(N2 <= N1);
|
||||
assert(N1 != N2);
|
||||
assert(N1 > N2);
|
||||
assert(N2 < N1);
|
||||
|
||||
N2 = N2.closure();
|
||||
CGAL_assertion(N1==N2);
|
||||
CGAL_assertion(N1>=N2);
|
||||
CGAL_assertion(N1<=N2);
|
||||
assert(N1==N2);
|
||||
assert(N1>=N2);
|
||||
assert(N1<=N2);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include <CGAL/Exact_integer.h>
|
||||
#include <CGAL/Extended_homogeneous.h>
|
||||
#include <CGAL/Nef_polyhedron_3.h>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Extended_homogeneous<CGAL::Exact_integer> Kernel;
|
||||
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron;
|
||||
|
|
@ -14,19 +15,19 @@ int main() {
|
|||
Nef_polyhedron N4(Plane_3( 1, 2, 5,-1), Nef_polyhedron::INCLUDED);
|
||||
Nef_polyhedron N5(Plane_3( 1, 2, 5,-1), Nef_polyhedron::EXCLUDED);
|
||||
|
||||
CGAL_assertion(N0 == N1);
|
||||
CGAL_assertion(N3 == N4);
|
||||
CGAL_assertion(N0 != N2);
|
||||
CGAL_assertion(N3 != N5);
|
||||
assert(N0 == N1);
|
||||
assert(N3 == N4);
|
||||
assert(N0 != N2);
|
||||
assert(N3 != N5);
|
||||
|
||||
CGAL_assertion(N4 >= N5);
|
||||
CGAL_assertion(N5 <= N4);
|
||||
CGAL_assertion(N4 > N5);
|
||||
CGAL_assertion(N5 < N4);
|
||||
assert(N4 >= N5);
|
||||
assert(N5 <= N4);
|
||||
assert(N4 > N5);
|
||||
assert(N5 < N4);
|
||||
|
||||
N5 = N5.closure();
|
||||
CGAL_assertion(N4 >= N5);
|
||||
CGAL_assertion(N4 <= N5);
|
||||
assert(N4 >= N5);
|
||||
assert(N4 <= N5);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include <CGAL/Exact_integer.h>
|
||||
#include <CGAL/Homogeneous.h>
|
||||
#include <CGAL/Nef_polyhedron_3.h>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Homogeneous<CGAL::Exact_integer> Kernel;
|
||||
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron;
|
||||
|
|
@ -9,7 +10,7 @@ int main() {
|
|||
Nef_polyhedron N0(Nef_polyhedron::EMPTY);
|
||||
Nef_polyhedron N1(Nef_polyhedron::COMPLETE);
|
||||
|
||||
CGAL_assertion (N0 == N1.complement());
|
||||
CGAL_assertion (N0 != N1);
|
||||
assert(N0 == N1.complement());
|
||||
assert(N0 != N1);
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include <CGAL/Exact_integer.h>
|
||||
#include <CGAL/Extended_homogeneous.h>
|
||||
#include <CGAL/Nef_polyhedron_3.h>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Extended_homogeneous<CGAL::Exact_integer> Kernel;
|
||||
typedef CGAL::Nef_polyhedron_3<Kernel> Nef_polyhedron;
|
||||
|
|
@ -22,11 +23,11 @@ int main() {
|
|||
Cube1 *= !I3;
|
||||
Nef_polyhedron Cube2 = N1 * N2 * N3 * N4 * N5 * N6;
|
||||
|
||||
CGAL_assertion(Cube1 == Cube2); // both are closed cube
|
||||
CGAL_assertion(Cube1 == Cube1.closure());
|
||||
CGAL_assertion(Cube1 == Cube1.regularization());
|
||||
CGAL_assertion((N1 - N1.boundary()) == N1.interior());
|
||||
CGAL_assertion(I1.closure() == I1.complement().interior().complement());
|
||||
CGAL_assertion(I1.regularization() == I1.interior().closure());
|
||||
assert(Cube1 == Cube2); // both are closed cube
|
||||
assert(Cube1 == Cube1.closure());
|
||||
assert(Cube1 == Cube1.regularization());
|
||||
assert((N1 - N1.boundary()) == N1.interior());
|
||||
assert(I1.closure() == I1.complement().interior().complement());
|
||||
assert(I1.regularization() == I1.interior().closure());
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include <CGAL/Exact_integer.h>
|
||||
#include <CGAL/Extended_homogeneous.h>
|
||||
#include <CGAL/Nef_polyhedron_3.h>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Exact_integer NT;
|
||||
typedef CGAL::Extended_homogeneous<NT> Kernel;
|
||||
|
|
@ -22,6 +23,6 @@ int main() {
|
|||
Nef_polyhedron Cube1(I2 *!I1);
|
||||
Cube1 *= !I3;
|
||||
Nef_polyhedron Cube2 = N1 * N2 * N3 * N4 * N5 * N6;
|
||||
CGAL_assertion (Cube1 == Cube2);
|
||||
assert(Cube1 == Cube2);
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -2,6 +2,7 @@
|
|||
#include <CGAL/Homogeneous.h>
|
||||
#include <CGAL/Nef_polyhedron_3.h>
|
||||
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Exact_integer NT;
|
||||
typedef CGAL::Homogeneous<NT> Kernel;
|
||||
|
|
@ -12,9 +13,9 @@ int main() {
|
|||
Nef_polyhedron N;
|
||||
std::cin >> N;
|
||||
|
||||
CGAL_assertion((N - N.boundary()) == N.interior());
|
||||
CGAL_assertion(N.closure() == N.complement().interior().complement());
|
||||
CGAL_assertion(N.regularization() == N.interior().closure());
|
||||
assert((N - N.boundary()) == N.interior());
|
||||
assert(N.closure() == N.complement().interior().complement());
|
||||
assert(N.regularization() == N.interior().closure());
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -2,6 +2,7 @@
|
|||
#include <CGAL/Extended_homogeneous.h>
|
||||
#include <CGAL/Nef_polyhedron_3.h>
|
||||
#include <CGAL/IO/Nef_polyhedron_iostream_3.h>
|
||||
#include <cassert>
|
||||
|
||||
|
||||
typedef CGAL::Extended_homogeneous<CGAL::Exact_integer> Kernel;
|
||||
|
|
@ -21,11 +22,11 @@ int main() {
|
|||
Aff_transformation_3 scale(CGAL::SCALING, 3, 2);
|
||||
|
||||
N.transform(transl);
|
||||
CGAL_assertion(N == Nef_polyhedron(Plane_3(0,1,0,-7)));
|
||||
assert(N == Nef_polyhedron(Plane_3(0,1,0,-7)));
|
||||
N.transform(rotx90);
|
||||
CGAL_assertion(N == Nef_polyhedron(Plane_3(0,0,1,-7)));
|
||||
assert(N == Nef_polyhedron(Plane_3(0,0,1,-7)));
|
||||
N.transform(scale);
|
||||
CGAL_assertion(N == Nef_polyhedron(Plane_3(0,0,2,-21)));
|
||||
assert(N == Nef_polyhedron(Plane_3(0,0,2,-21)));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include <CGAL/Exact_integer.h>
|
||||
#include <CGAL/Homogeneous.h>
|
||||
#include <CGAL/Nef_polyhedron_S2.h>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Exact_integer RT;
|
||||
typedef CGAL::Homogeneous<RT> Kernel;
|
||||
|
|
@ -16,7 +17,7 @@ int main() {
|
|||
Sphere_circle c(1,1,1); // c : x + y + z = 0
|
||||
Nef_polyhedron N2(c, Nef_polyhedron::INCLUDED);
|
||||
Nef_polyhedron N3(N2.complement());
|
||||
CGAL_assertion(N1 == N2.join(N3));
|
||||
assert(N1 == N2.join(N3));
|
||||
Sphere_point p1(1,0,0), p2(0,1,0), p3(0,0,1);
|
||||
Sphere_segment s1(p1,p2), s2(p2,p3), s3(p3,p1);
|
||||
Sphere_segment triangle[3] = { s1, s2, s3 };
|
||||
|
|
@ -24,7 +25,7 @@ int main() {
|
|||
Nef_polyhedron N5;
|
||||
N5 += N2;
|
||||
N5 = N5.intersection(N4);
|
||||
CGAL_assertion(N5 <= N2 && N5 != N4);
|
||||
assert(N5 <= N2 && N5 != N4);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -23,7 +23,6 @@ int main(int argc, char* argv[])
|
|||
{
|
||||
while (ifs >> p)
|
||||
{ T.insert(p); }
|
||||
CGAL_assertion(T.is_valid());
|
||||
|
||||
if( T.is_triangulation_in_1_sheet())
|
||||
{ T.convert_to_9_sheeted_covering(); }
|
||||
|
|
|
|||
|
|
@ -31,8 +31,6 @@ int main()
|
|||
Delaunay T;
|
||||
T.insert( points.begin(), points.end() );
|
||||
|
||||
CGAL_assertion( T.number_of_vertices() == 6 );
|
||||
|
||||
// check that the info was correctly set.
|
||||
Delaunay::Finite_vertices_iterator vit;
|
||||
for (vit = T.finite_vertices_begin(); vit != T.finite_vertices_end(); ++vit)
|
||||
|
|
|
|||
|
|
@ -46,8 +46,6 @@ int main()
|
|||
T.insert( boost::make_transform_iterator(points.begin(), Auto_count()),
|
||||
boost::make_transform_iterator(points.end(), Auto_count() ) );
|
||||
|
||||
CGAL_assertion( T.number_of_vertices() == 6 );
|
||||
|
||||
// check that the info was correctly set.
|
||||
Delaunay::Finite_vertices_iterator vit;
|
||||
for (vit = T.finite_vertices_begin(); vit != T.finite_vertices_end(); ++vit)
|
||||
|
|
|
|||
|
|
@ -41,9 +41,6 @@ int main()
|
|||
T.insert( boost::make_zip_iterator(boost::make_tuple( points.begin(), indices.begin() )),
|
||||
boost::make_zip_iterator(boost::make_tuple( points.end(), indices.end() ) ) );
|
||||
|
||||
CGAL_assertion( T.number_of_vertices() == 6 );
|
||||
|
||||
|
||||
// check that the info was correctly set.
|
||||
Delaunay::Finite_vertices_iterator vit;
|
||||
for (vit = T.finite_vertices_begin(); vit != T.finite_vertices_end(); ++vit)
|
||||
|
|
|
|||
|
|
@ -10,6 +10,7 @@
|
|||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
|
||||
|
||||
|
|
@ -42,7 +43,7 @@ int main(int argc, char* argv[])
|
|||
CGAL::parameters::vertex_point_map(get(CGAL::vertex_point, mesh))
|
||||
.geom_traits(Kernel())));
|
||||
|
||||
CGAL_assertion(CGAL::is_valid_polygon_mesh(mesh));
|
||||
assert(CGAL::is_valid_polygon_mesh(mesh));
|
||||
|
||||
std::cout << "* FILL HOLE NUMBER " << ++nb_holes << std::endl;
|
||||
std::cout << " Number of facets in constructed patch: " << patch_facets.size() << std::endl;
|
||||
|
|
@ -51,7 +52,7 @@ int main(int argc, char* argv[])
|
|||
}
|
||||
}
|
||||
|
||||
CGAL_assertion(CGAL::is_valid_polygon_mesh(mesh));
|
||||
assert(CGAL::is_valid_polygon_mesh(mesh));
|
||||
std::cout << std::endl;
|
||||
std::cout << nb_holes << " holes have been filled" << std::endl;
|
||||
|
||||
|
|
|
|||
|
|
@ -5,6 +5,7 @@
|
|||
|
||||
#include <vector>
|
||||
#include <iterator>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
|
||||
typedef Kernel::Point_3 Point;
|
||||
|
|
@ -44,7 +45,7 @@ int main()
|
|||
std::vector<Triangle_int> patch_will_be_empty;
|
||||
CGAL::Polygon_mesh_processing::triangulate_hole_polyline(polyline_collinear,
|
||||
back_inserter(patch_will_be_empty));
|
||||
CGAL_assertion(patch_will_be_empty.empty());
|
||||
assert(patch_will_be_empty.empty());
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,7 @@
|
|||
#include <CGAL/Simple_cartesian.h>
|
||||
#include <CGAL/Polyhedron_incremental_builder_3.h>
|
||||
#include <CGAL/Polyhedron_3.h>
|
||||
#include <cassert>
|
||||
|
||||
// A modifier creating a triangle with the incremental builder.
|
||||
template <class HDS>
|
||||
|
|
@ -33,6 +34,6 @@ int main() {
|
|||
Polyhedron P;
|
||||
Build_triangle<HalfedgeDS> triangle;
|
||||
P.delegate( triangle);
|
||||
CGAL_assertion( P.is_triangle( P.halfedges_begin()));
|
||||
assert( P.is_triangle( P.halfedges_begin()));
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -26,7 +26,6 @@ int main() {
|
|||
for ( Facet_iterator i = P.facets_begin(); i != P.facets_end(); ++i) {
|
||||
Halfedge_facet_circulator j = i->facet_begin();
|
||||
// Facets in polyhedral surfaces are at least triangles.
|
||||
CGAL_assertion( CGAL::circulator_size(j) >= 3);
|
||||
std::cout << CGAL::circulator_size(j) << ' ';
|
||||
do {
|
||||
std::cout << ' ' << std::distance(P.vertices_begin(), j->vertex());
|
||||
|
|
|
|||
|
|
@ -5,6 +5,7 @@
|
|||
#include <vector>
|
||||
#include <cmath>
|
||||
#include <fstream>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Simple_cartesian<double> Kernel;
|
||||
typedef Kernel::Vector_3 Vector;
|
||||
|
|
@ -27,7 +28,7 @@ void create_center_vertex( Polyhedron& P, Facet_iterator f) {
|
|||
vec = vec + ( h->vertex()->point() - CGAL::ORIGIN);
|
||||
++ order;
|
||||
} while ( ++h != f->facet_begin());
|
||||
CGAL_assertion( order >= 3); // guaranteed by definition of polyhedron
|
||||
assert( order >= 3); // guaranteed by definition of polyhedron
|
||||
Point center = CGAL::ORIGIN + (vec / static_cast<double>(order));
|
||||
Halfedge_handle new_center = P.create_center_vertex( f->halfedge());
|
||||
new_center->vertex()->point() = center;
|
||||
|
|
@ -44,7 +45,7 @@ struct Smooth_old_vertex {
|
|||
vec = vec + ( h->opposite()->vertex()->point() - CGAL::ORIGIN)
|
||||
* alpha / static_cast<double>(degree);
|
||||
++ h;
|
||||
CGAL_assertion( h != v.vertex_begin()); // even degree guaranteed
|
||||
assert( h != v.vertex_begin()); // even degree guaranteed
|
||||
++ h;
|
||||
} while ( h != v.vertex_begin());
|
||||
return (CGAL::ORIGIN + vec);
|
||||
|
|
|
|||
|
|
@ -7,6 +7,7 @@
|
|||
#include <cctype>
|
||||
#include <cmath>
|
||||
#include <fstream>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Simple_cartesian<double> Kernel;
|
||||
typedef Kernel::Vector_3 Vector;
|
||||
|
|
@ -29,7 +30,7 @@ void create_center_vertex( Polyhedron& P, Facet_iterator f) {
|
|||
vec = vec + ( h->vertex()->point() - CGAL::ORIGIN);
|
||||
++ order;
|
||||
} while ( ++h != f->facet_begin());
|
||||
CGAL_assertion( order >= 3); // guaranteed by definition of polyhedron
|
||||
assert( order >= 3); // guaranteed by definition of polyhedron
|
||||
Point center = CGAL::ORIGIN + (vec / static_cast<double>(order));
|
||||
Halfedge_handle new_center = P.create_center_vertex( f->halfedge());
|
||||
new_center->vertex()->point() = center;
|
||||
|
|
@ -55,7 +56,7 @@ struct Smooth_old_vertex {
|
|||
vec = vec + ( h->opposite()->vertex()->point() - CGAL::ORIGIN)
|
||||
* alpha / static_cast<double>(degree);
|
||||
++ h;
|
||||
CGAL_assertion( h != v.vertex_begin()); // even degree guaranteed
|
||||
assert( h != v.vertex_begin()); // even degree guaranteed
|
||||
++ h;
|
||||
} while ( h != v.vertex_begin());
|
||||
return (CGAL::ORIGIN + vec);
|
||||
|
|
@ -101,11 +102,10 @@ void subdiv( Polyhedron& P) {
|
|||
++e; // careful, incr. before flip since flip destroys current edge
|
||||
flip_edge( P, h);
|
||||
};
|
||||
CGAL_postcondition( P.is_valid());
|
||||
}
|
||||
|
||||
void trisect_border_halfedge( Polyhedron& P, Halfedge_handle e) {
|
||||
CGAL_precondition( e->is_border());
|
||||
assert( e->is_border());
|
||||
// Create two new vertices on e.
|
||||
e = e->prev();
|
||||
P.split_vertex( e, e->next()->opposite());
|
||||
|
|
@ -121,7 +121,7 @@ void trisect_border_halfedge( Polyhedron& P, Halfedge_handle e) {
|
|||
|
||||
template <class OutputIterator>
|
||||
void smooth_border_vertices( Halfedge_handle e, OutputIterator out) {
|
||||
CGAL_precondition( e->is_border());
|
||||
assert( e->is_border());
|
||||
// We know that the vertex at this edge is from the unrefined mesh.
|
||||
// Get the locus vectors of the unrefined vertices in the neighborhood.
|
||||
Vector v0 = e->prev()->prev()->opposite()->vertex()->point() -CGAL::ORIGIN;
|
||||
|
|
@ -166,8 +166,6 @@ void subdiv_border( Polyhedron& P) {
|
|||
e->next()->vertex()->point() = *i++;
|
||||
}
|
||||
} while ( e++ != last_e);
|
||||
CGAL_assertion( i == pts.end());
|
||||
CGAL_postcondition( P.is_valid());
|
||||
}
|
||||
|
||||
using namespace std;
|
||||
|
|
|
|||
|
|
@ -6,6 +6,7 @@
|
|||
#include <algorithm>
|
||||
#include <vector>
|
||||
#include <fstream>
|
||||
#include <cassert>
|
||||
|
||||
using std::cerr;
|
||||
using std::endl;
|
||||
|
|
@ -63,7 +64,7 @@ struct Intersect_facets {
|
|||
}
|
||||
if ( v != Halfedge_const_handle()) {
|
||||
// found shared vertex:
|
||||
CGAL_assertion( h->vertex() == v->vertex());
|
||||
assert( h->vertex() == v->vertex());
|
||||
// geomtric check if the opposite segments intersect the triangles
|
||||
Triangle t1( h->vertex()->point(),
|
||||
h->next()->vertex()->point(),
|
||||
|
|
|
|||
|
|
@ -35,8 +35,6 @@ int main( int argc, char *argv[] ) {
|
|||
// read the sites from the stream and insert them in the diagram
|
||||
while ( ifs >> site ) {
|
||||
sdg.insert( site );
|
||||
CGAL_SDG_DEBUG( sdg.file_output_verbose(std::cout); );
|
||||
CGAL_assertion( sdg.is_valid(false, 1) );
|
||||
}
|
||||
|
||||
ifs.close();
|
||||
|
|
|
|||
|
|
@ -32,8 +32,6 @@ int main( int argc, char *argv[] ) {
|
|||
// read the sites from the stream and insert them in the diagram
|
||||
while ( ifs >> site ) {
|
||||
sdg.insert( site );
|
||||
CGAL_SDG_DEBUG( sdg.file_output_verbose(std::cout); );
|
||||
CGAL_assertion( sdg.is_valid(false, 1) );
|
||||
}
|
||||
|
||||
ifs.close();
|
||||
|
|
|
|||
|
|
@ -67,7 +67,6 @@ void iv_file_scanner( istream& in)
|
|||
// point coordinate list starts here
|
||||
offset = points.size();
|
||||
in >> c;
|
||||
CGAL_assertion( c == '[');
|
||||
in >> c;
|
||||
while ( in && ( c != ']')) {
|
||||
in.putback( c);
|
||||
|
|
@ -99,7 +98,6 @@ void iv_file_scanner( istream& in)
|
|||
// indices start here
|
||||
std::size_t face_offset = facets.size();
|
||||
in >> c;
|
||||
CGAL_assertion( c == '[');
|
||||
facets.push_back( Facet());
|
||||
Facet* facet = &facets.back();
|
||||
in >> c;
|
||||
|
|
@ -133,7 +131,6 @@ void iv_file_scanner( istream& in)
|
|||
// indices start here
|
||||
std::size_t face_offset = facets.size();
|
||||
in >> c;
|
||||
CGAL_assertion( c == '[');
|
||||
facets.push_back( Facet());
|
||||
Facet* facet = &facets.back();
|
||||
in >> c;
|
||||
|
|
|
|||
|
|
@ -20,6 +20,8 @@
|
|||
#include <CGAL/Surface_mesh.h>
|
||||
#include <CGAL/Random.h>
|
||||
|
||||
#include <cassert>
|
||||
|
||||
template<class SM>
|
||||
class SimpleSurfaceMeshWithSmallFacesViewerQt : public CGAL::Basic_viewer_qt
|
||||
{
|
||||
|
|
@ -54,7 +56,7 @@ public:
|
|||
bool exist;
|
||||
typename SM::template Property_map<face_descriptor, FT> faces_size;
|
||||
boost::tie(faces_size, exist)=sm.template property_map<face_descriptor, FT>("f:size");
|
||||
CGAL_assertion(exist);
|
||||
assert(exist);
|
||||
|
||||
m_min_size=faces_size[*(sm.faces().begin())];
|
||||
m_max_size=m_min_size;
|
||||
|
|
@ -84,7 +86,7 @@ protected:
|
|||
bool exist;
|
||||
typename SM::template Property_map<face_descriptor, FT> faces_size;
|
||||
boost::tie(faces_size, exist)=sm.template property_map<face_descriptor, FT>("f:size");
|
||||
CGAL_assertion(exist);
|
||||
assert(exist);
|
||||
|
||||
// It it is smaller, color the face in red.
|
||||
if (get(faces_size, fh)<m_min_size+((m_max_size-m_min_size)/(100-m_threshold)))
|
||||
|
|
|
|||
|
|
@ -4,6 +4,7 @@
|
|||
#include <CGAL/Polygon_mesh_processing/triangulate_faces.h>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <cassert>
|
||||
#include "draw_surface_mesh_small_faces.h"
|
||||
|
||||
typedef CGAL::Simple_cartesian<double> K;
|
||||
|
|
@ -28,7 +29,7 @@ int main(int argc, char* argv[])
|
|||
Mesh::Property_map<face_descriptor, FT> faces_size;
|
||||
bool created;
|
||||
boost::tie(faces_size, created)=sm.add_property_map<face_descriptor, FT>("f:size",0.);
|
||||
CGAL_assertion(created);
|
||||
assert(created);
|
||||
|
||||
for(face_descriptor fd : sm.faces())
|
||||
{ faces_size[fd]=CGAL::Polygon_mesh_processing::face_area(fd, sm); }
|
||||
|
|
@ -39,4 +40,3 @@ int main(int argc, char* argv[])
|
|||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +1,8 @@
|
|||
//! \file examples/Arrangement_on_surface_2/plane_sweep.cpp
|
||||
//! \file examples/Surface_sweep_2/plane_sweep.cpp
|
||||
// Computing intersection points among curves using the surface-sweep alg.
|
||||
|
||||
#include <list>
|
||||
#include <cassert>
|
||||
|
||||
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
|
||||
#include <CGAL/Arr_segment_traits_2.h>
|
||||
|
|
@ -39,7 +40,7 @@ int main()
|
|||
std::cout << "Found " << sub_segs.size()
|
||||
<< " interior-disjoint sub-segments." << std::endl;
|
||||
|
||||
CGAL_assertion(CGAL::do_curves_intersect (segments, segments + 4));
|
||||
assert(CGAL::do_curves_intersect (segments, segments + 4));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -14,6 +14,7 @@
|
|||
|
||||
#include <boost/unordered_set.hpp>
|
||||
#include <utility>
|
||||
#include <cassert>
|
||||
|
||||
namespace CGAL
|
||||
{
|
||||
|
|
@ -42,7 +43,7 @@ namespace Tetrahedral_remeshing
|
|||
else
|
||||
c->set_subdomain_index(2);
|
||||
}
|
||||
CGAL_assertion(tr.is_valid(true));
|
||||
assert(tr.is_valid(true));
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -66,7 +67,7 @@ namespace Tetrahedral_remeshing
|
|||
for (typename Tr::Cell_handle c : tr.finite_cell_handles())
|
||||
c->set_subdomain_index(1);
|
||||
|
||||
CGAL_assertion(tr.is_valid(true));
|
||||
assert(tr.is_valid(true));
|
||||
}
|
||||
|
||||
template<typename Tr>
|
||||
|
|
@ -185,7 +186,7 @@ namespace Tetrahedral_remeshing
|
|||
add_edge(v2, v6, tr, constraints);
|
||||
add_edge(v3, v7, tr, constraints);
|
||||
|
||||
CGAL_assertion(tr.is_valid(true));
|
||||
assert(tr.is_valid(true));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
@ -9,6 +9,7 @@
|
|||
|
||||
#include <iostream>
|
||||
#include <utility>
|
||||
#include <cassert>
|
||||
|
||||
#include "tetrahedral_remeshing_generate_input.h"
|
||||
|
||||
|
|
@ -45,8 +46,8 @@ public:
|
|||
const key_type& k,
|
||||
const bool b)
|
||||
{
|
||||
CGAL_assertion(map.m_set_ptr != nullptr);
|
||||
CGAL_assertion(k.first < k.second);
|
||||
assert(map.m_set_ptr != nullptr);
|
||||
assert(k.first < k.second);
|
||||
if (b) map.m_set_ptr->insert(k);
|
||||
else map.m_set_ptr->erase(k);
|
||||
}
|
||||
|
|
@ -54,8 +55,8 @@ public:
|
|||
friend value_type get(const Constrained_edges_property_map& map,
|
||||
const key_type& k)
|
||||
{
|
||||
CGAL_assertion(map.m_set_ptr != nullptr);
|
||||
CGAL_assertion(k.first < k.second);
|
||||
assert(map.m_set_ptr != nullptr);
|
||||
assert(k.first < k.second);
|
||||
return (map.m_set_ptr->count(k) > 0);
|
||||
}
|
||||
};
|
||||
|
|
@ -80,7 +81,6 @@ int main(int argc, char* argv[])
|
|||
|
||||
CGAL::Tetrahedral_remeshing::generate_input_cube(nbv, t3, constraints);
|
||||
make_constraints_from_cube_edges(t3, constraints);
|
||||
CGAL_assertion(t3.is_valid());
|
||||
|
||||
CGAL::tetrahedral_isotropic_remeshing(t3, target_edge_length,
|
||||
CGAL::parameters::edge_is_constrained_map(
|
||||
|
|
@ -89,4 +89,3 @@ int main(int argc, char* argv[])
|
|||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
#include <CGAL/Triangulation_data_structure.h>
|
||||
#include <CGAL/Combination_enumerator.h>
|
||||
#include <CGAL/assertions.h>
|
||||
#include <cassert>
|
||||
|
||||
#include <iostream>
|
||||
#include <iterator>
|
||||
|
|
@ -96,7 +96,7 @@ void find_face_from_vertices( const TDS & tds,
|
|||
}
|
||||
}
|
||||
std::cerr << "Could not build a face from vertices"<<std::endl;
|
||||
CGAL_assertion(false);
|
||||
assert(false);
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -112,9 +112,9 @@ int main()
|
|||
tds.insert_increase_dimension(one_vertex);
|
||||
// we get a triangulation of space of dim sdim homeomorphic to
|
||||
// the boundary of simplex of dimension sdim+1 with sdim+2 vertices
|
||||
CGAL_assertion( sdim == tds.current_dimension() );
|
||||
CGAL_assertion( 2+sdim == tds.number_of_vertices() );
|
||||
CGAL_assertion( 2+sdim == tds.number_of_full_cells() );
|
||||
assert( sdim == tds.current_dimension() );
|
||||
assert( 2+sdim == tds.number_of_vertices() );
|
||||
assert( 2+sdim == tds.number_of_full_cells() );
|
||||
|
||||
barycentric_subdivide(tds, tds.full_cells_begin());
|
||||
|
||||
|
|
@ -122,7 +122,7 @@ int main()
|
|||
// |tds.current_dimension()+1|. Eg, 1440 for dimension 5.
|
||||
std::cout << "Triangulation has "
|
||||
<< tds.number_of_full_cells() << " full cells";
|
||||
CGAL_assertion( tds.is_valid() );
|
||||
assert( tds.is_valid() );
|
||||
std::cout << " and is valid!"<<std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -3,7 +3,7 @@
|
|||
#include <CGAL/Delaunay_triangulation.h>
|
||||
#include <CGAL/algorithm.h>
|
||||
#include <CGAL/Timer.h>
|
||||
#include <CGAL/assertions.h>
|
||||
#include <cassert>
|
||||
|
||||
#include <iostream>
|
||||
#include <iterator>
|
||||
|
|
@ -28,7 +28,7 @@ int main(int argc, char **argv)
|
|||
std::copy_n(rand_it, N, std::back_inserter(points));
|
||||
|
||||
T t(D);
|
||||
CGAL_assertion(t.empty());
|
||||
assert(t.empty());
|
||||
|
||||
// insert the points in the triangulation, only if they are outside the
|
||||
// convex hull
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
#include <CGAL/Epick_d.h>
|
||||
#include <CGAL/point_generators_d.h>
|
||||
#include <CGAL/Regular_triangulation.h>
|
||||
#include <CGAL/assertions.h>
|
||||
#include <cassert>
|
||||
|
||||
#include <iostream>
|
||||
#include <iterator>
|
||||
|
|
@ -27,11 +27,11 @@ int main()
|
|||
points.push_back(Weighted_point(*rand_it++, rng.get_double(0., 10.)));
|
||||
|
||||
T t(D);
|
||||
CGAL_assertion(t.empty());
|
||||
assert(t.empty());
|
||||
|
||||
// Insert the points in the triangulation
|
||||
t.insert(points.begin(), points.end());
|
||||
CGAL_assertion( t.is_valid() );
|
||||
assert( t.is_valid() );
|
||||
std::cout << "Regular triangulation successfully computed: "
|
||||
<< t.number_of_vertices() << " vertices, "
|
||||
<< t.number_of_finite_full_cells() << " finite cells."
|
||||
|
|
|
|||
|
|
@ -4,11 +4,11 @@
|
|||
#include <CGAL/point_generators_d.h>
|
||||
#include <CGAL/Triangulation.h>
|
||||
#include <CGAL/algorithm.h>
|
||||
#include <CGAL/assertions.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <iterator>
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Epick_d< CGAL::Dynamic_dimension_tag > K;
|
||||
typedef CGAL::Triangulation<K> Triangulation;
|
||||
|
|
@ -23,9 +23,9 @@ int main()
|
|||
std::copy_n(rand_it, N, std::back_inserter(points));
|
||||
|
||||
Triangulation t(D); // create triangulation
|
||||
CGAL_assertion(t.empty());
|
||||
assert(t.empty());
|
||||
t.insert(points.begin(), points.end()); // compute triangulation
|
||||
CGAL_assertion( t.is_valid() );
|
||||
assert( t.is_valid() );
|
||||
// - - - - - - - - - - - - - - - - - - - - - - - - STEP 2
|
||||
typedef Triangulation::Face Face;
|
||||
typedef std::vector<Face> Faces;
|
||||
|
|
@ -41,4 +41,3 @@ int main()
|
|||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
#include <CGAL/Triangulation_data_structure.h>
|
||||
#include <CGAL/assertions.h>
|
||||
#include <cassert>
|
||||
|
||||
#include <vector>
|
||||
|
||||
|
|
@ -11,17 +11,17 @@ int main()
|
|||
typedef TDS::Vertex_handle Vertex_handle;
|
||||
TDS D(ddim); // the argument is taken into account.
|
||||
|
||||
CGAL_assertion( ddim == D.maximal_dimension() );
|
||||
CGAL_assertion( -2 == D.current_dimension() );
|
||||
CGAL_assertion( D.is_valid() );
|
||||
assert( ddim == D.maximal_dimension() );
|
||||
assert( -2 == D.current_dimension() );
|
||||
assert( D.is_valid() );
|
||||
std::vector<Vertex_handle> V(5);
|
||||
V[0] = D.insert_increase_dimension();
|
||||
V[1] = D.insert_increase_dimension(V[0]);
|
||||
V[2] = D.insert_increase_dimension(V[0]);
|
||||
V[3] = D.insert_increase_dimension(V[0]);
|
||||
V[4] = D.insert_in_full_cell(V[3]->full_cell());
|
||||
CGAL_assertion( 6 == D.number_of_full_cells() );
|
||||
CGAL_assertion( 2 == D.current_dimension() );
|
||||
CGAL_assertion( D.is_valid() );
|
||||
assert( 6 == D.number_of_full_cells() );
|
||||
assert( 2 == D.current_dimension() );
|
||||
assert( D.is_valid() );
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,42 +1,42 @@
|
|||
#include <CGAL/Triangulation_data_structure.h>
|
||||
#include <CGAL/assertions.h>
|
||||
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
typedef CGAL::Triangulation_data_structure<CGAL::Dimension_tag<7> > TDS;
|
||||
|
||||
TDS S;
|
||||
CGAL_assertion( 7 == S.maximal_dimension() );
|
||||
CGAL_assertion( -2 == S.current_dimension() );
|
||||
CGAL_assertion( S.is_valid() );
|
||||
assert( 7 == S.maximal_dimension() );
|
||||
assert( -2 == S.current_dimension() );
|
||||
assert( S.is_valid() );
|
||||
|
||||
std::vector<TDS::Vertex_handle> V(10);
|
||||
V[0] = S.insert_increase_dimension(); //insert first vertex
|
||||
CGAL_assertion( -1 == S.current_dimension() );
|
||||
assert( -1 == S.current_dimension() );
|
||||
|
||||
for( int i = 1; i <= 5; ++i )
|
||||
V[i] = S.insert_increase_dimension(V[0]);
|
||||
// the first 6 vertices have created a triangulation
|
||||
// of the 4-dimensional topological sphere
|
||||
// (the boundary of a five dimensional simplex).
|
||||
CGAL_assertion( 4 == S.current_dimension() );
|
||||
CGAL_assertion( 6 == S.number_of_vertices() );
|
||||
CGAL_assertion( 6 == S.number_of_full_cells() );
|
||||
assert( 4 == S.current_dimension() );
|
||||
assert( 6 == S.number_of_vertices() );
|
||||
assert( 6 == S.number_of_full_cells() );
|
||||
|
||||
TDS::Full_cell_handle c = V[5]->full_cell();
|
||||
V[6] = S.insert_in_full_cell(c);
|
||||
// full cell c is split in 5
|
||||
CGAL_assertion( 7 == S.number_of_vertices() );
|
||||
CGAL_assertion( 10 == S.number_of_full_cells() );
|
||||
assert( 7 == S.number_of_vertices() );
|
||||
assert( 10 == S.number_of_full_cells() );
|
||||
|
||||
c = V[3]->full_cell();
|
||||
TDS::Facet ft(c, 2); // the Facet opposite to vertex 2 in c
|
||||
V[7] = S.insert_in_facet(ft);
|
||||
// facet ft is split in 4 and the two incident cells are split accordingly
|
||||
CGAL_assertion( 8 == S.number_of_vertices() );
|
||||
CGAL_assertion( 16 == S.number_of_full_cells() );
|
||||
assert( 8 == S.number_of_vertices() );
|
||||
assert( 16 == S.number_of_full_cells() );
|
||||
|
||||
c = V[3]->full_cell();
|
||||
TDS::Face face(c);
|
||||
|
|
@ -45,7 +45,7 @@ int main()
|
|||
face.set_index(1, 4); // and vertex 4
|
||||
V[8] = S.insert_in_face(face);
|
||||
// face is split in 2, and all incident full cells also
|
||||
CGAL_assertion( S.is_valid() );
|
||||
assert( S.is_valid() );
|
||||
|
||||
TDS::Full_cell_handle hole[2];
|
||||
hole[0] = V[8]->full_cell();
|
||||
|
|
@ -54,6 +54,6 @@ int main()
|
|||
ft = TDS::Facet(hole[0], 1); // a face on the boundary of hole[0]
|
||||
V[9] = S.insert_in_hole(hole, hole+2, ft);
|
||||
// the hole is triangulated by linking a new vertex to its boundary
|
||||
CGAL_assertion( S.is_valid() );
|
||||
assert( S.is_valid() );
|
||||
return 0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -3,6 +3,7 @@
|
|||
#include <CGAL/Delaunay_triangulation_2.h>
|
||||
|
||||
#include <CGAL/point_generators_2.h>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Exact_predicates_inexact_constructions_kernel EPIC;
|
||||
typedef CGAL::Exact_predicates_exact_constructions_kernel EPEC;
|
||||
|
|
@ -44,5 +45,5 @@ int main()
|
|||
dt2_epec.set_infinite_vertex(
|
||||
dt2_epec.tds().copy_tds( dt2_epic.tds(),dt2_epic.infinite_vertex(), Convert_vertex(), Convert_face() ) );
|
||||
|
||||
CGAL_assertion( dt2_epec.is_valid() );
|
||||
assert( dt2_epec.is_valid() );
|
||||
}
|
||||
|
|
|
|||
|
|
@ -24,8 +24,6 @@ int main()
|
|||
Delaunay T;
|
||||
T.insert( points.begin(),points.end() );
|
||||
|
||||
CGAL_assertion( T.number_of_vertices() == 6 );
|
||||
|
||||
// check that the info was correctly set.
|
||||
Delaunay::Finite_vertices_iterator vit;
|
||||
for (Vertex_handle v : T.finite_vertex_handles())
|
||||
|
|
|
|||
|
|
@ -28,8 +28,6 @@ int main()
|
|||
Regular rt;
|
||||
rt.insert( points.begin(),points.end() );
|
||||
|
||||
CGAL_assertion( rt.number_of_vertices() == 6 );
|
||||
|
||||
// check that the info was correctly set.
|
||||
for (Vertex_handle v : rt.finite_vertex_handles())
|
||||
if( points[ v->info() ].first != v->point() ){
|
||||
|
|
|
|||
|
|
@ -37,8 +37,6 @@ int main()
|
|||
T.insert( boost::make_transform_iterator(points.begin(),Auto_count()),
|
||||
boost::make_transform_iterator(points.end(), Auto_count() ) );
|
||||
|
||||
CGAL_assertion( T.number_of_vertices() == 6 );
|
||||
|
||||
// check that the info was correctly set.
|
||||
Delaunay::Finite_vertices_iterator vit;
|
||||
for (Vertex_handle v : T.finite_vertex_handles())
|
||||
|
|
|
|||
|
|
@ -36,9 +36,6 @@ int main()
|
|||
T.insert( boost::make_zip_iterator(boost::make_tuple( points.begin(),indices.begin() )),
|
||||
boost::make_zip_iterator(boost::make_tuple( points.end(),indices.end() ) ) );
|
||||
|
||||
CGAL_assertion( T.number_of_vertices() == 6 );
|
||||
|
||||
|
||||
// check that the info was correctly set.
|
||||
|
||||
for (Vertex_handle v : T.finite_vertex_handles())
|
||||
|
|
|
|||
|
|
@ -3,6 +3,7 @@
|
|||
#include <CGAL/Delaunay_triangulation_3.h>
|
||||
|
||||
#include <CGAL/point_generators_3.h>
|
||||
#include <cassert>
|
||||
|
||||
typedef CGAL::Exact_predicates_inexact_constructions_kernel EPIC;
|
||||
typedef CGAL::Exact_predicates_exact_constructions_kernel EPEC;
|
||||
|
|
@ -43,5 +44,5 @@ int main()
|
|||
dt3_epec.set_infinite_vertex(
|
||||
dt3_epec.tds().copy_tds( dt3_epic.tds(),dt3_epic.infinite_vertex(), Convert_vertex(), Convert_cell() ) );
|
||||
|
||||
CGAL_assertion( dt3_epec.is_valid() );
|
||||
assert( dt3_epec.is_valid() );
|
||||
}
|
||||
|
|
|
|||
|
|
@ -26,8 +26,6 @@ int main()
|
|||
|
||||
Delaunay T( points.begin(),points.end() );
|
||||
|
||||
CGAL_assertion( T.number_of_vertices() == 6 );
|
||||
|
||||
// check that the info was correctly set.
|
||||
for (Delaunay::Vertex_handle v : T.finite_vertex_handles())
|
||||
if( points[ v->info() ].first != v->point() ){
|
||||
|
|
|
|||
|
|
@ -26,8 +26,6 @@ int main()
|
|||
|
||||
Regular rt( points.begin(),points.end() );
|
||||
|
||||
CGAL_assertion( rt.number_of_vertices() == 6 );
|
||||
|
||||
// check that the info was correctly set.
|
||||
for (Regular::Vertex_handle v : rt.finite_vertex_handles())
|
||||
if( points[ v->info() ].first != v->point() ){
|
||||
|
|
|
|||
|
|
@ -38,8 +38,6 @@ int main()
|
|||
Delaunay T( boost::make_transform_iterator(points.begin(),Auto_count()),
|
||||
boost::make_transform_iterator(points.end(), Auto_count() ) );
|
||||
|
||||
CGAL_assertion( T.number_of_vertices() == 6 );
|
||||
|
||||
// check that the info was correctly set.
|
||||
for (Delaunay::Vertex_handle v : T.finite_vertex_handles())
|
||||
if( points[ v->info() ] != v->point() ){
|
||||
|
|
|
|||
|
|
@ -37,8 +37,6 @@ int main()
|
|||
Delaunay T( boost::make_zip_iterator(boost::make_tuple( points.begin(),indices.begin() )),
|
||||
boost::make_zip_iterator(boost::make_tuple( points.end(),indices.end() ) ) );
|
||||
|
||||
CGAL_assertion( T.number_of_vertices() == 6 );
|
||||
|
||||
// check that the info was correctly set.
|
||||
for (Delaunay::Vertex_handle v : T.finite_vertex_handles() )
|
||||
if( points[ v->info() ] != v->point() ){
|
||||
|
|
|
|||
Loading…
Reference in New Issue