move example to user manual. de-advance

This commit is contained in:
Andreas Fabri 2012-09-24 08:50:09 +00:00
parent 190dd77c6f
commit 5c1d6e5ef6
8 changed files with 12 additions and 22 deletions

View File

@ -4,8 +4,6 @@ namespace CGAL {
/*! /*!
\ingroup PkgMatrixSearch \ingroup PkgMatrixSearch
\todo advanced is missing
The class `Dynamic_matrix` is an adaptor for an arbitrary The class `Dynamic_matrix` is an adaptor for an arbitrary
matrix class `M` to provide the dynamic operations needed for monotone matrix class `M` to provide the dynamic operations needed for monotone
matrix search. matrix search.

View File

@ -4,8 +4,6 @@ namespace CGAL {
/*! /*!
\ingroup PkgMatrixSearch \ingroup PkgMatrixSearch
\todo advanced missing
The class `Sorted_matrix_search_traits_adaptor` can be used The class `Sorted_matrix_search_traits_adaptor` can be used
as an adaptor to create sorted matrix search traits classes for as an adaptor to create sorted matrix search traits classes for
arbitrary feasibility test and matrix classes `F` resp. `M`. arbitrary feasibility test and matrix classes `F` resp. `M`.

View File

@ -3,7 +3,6 @@ namespace CGAL {
/*! /*!
\ingroup PkgMatrixSearch \ingroup PkgMatrixSearch
\todo advanced missing
The function `monotone_matrix_search` computes the maxima The function `monotone_matrix_search` computes the maxima
for all rows of a totally monotone matrix. for all rows of a totally monotone matrix.

View File

@ -3,8 +3,6 @@ namespace CGAL {
/*! /*!
\ingroup PkgMatrixSearch \ingroup PkgMatrixSearch
\todo advanced missing
The function `sorted_matrix_search` selects the smallest entry The function `sorted_matrix_search` selects the smallest entry
in a set of sorted matrices that fulfills a certain feasibility in a set of sorted matrices that fulfills a certain feasibility
criterion. criterion.
@ -56,17 +54,6 @@ Frederickson and Johnson\cite fj-fkppc-83, \cite fj-gsrsm-84 and runs in
the number of input matrices, \f$ k\f$ denotes the maximal dimension of the number of input matrices, \f$ k\f$ denotes the maximal dimension of
any input matrix and \f$ f\f$ the time needed for one feasibility test. any input matrix and \f$ f\f$ the time needed for one feasibility test.
### Example ###
In the following program we build a random vector \f$ a =
(a_i)_{i = 1,\,\ldots,\,5}\f$ (elements drawn uniformly from \f$ \{
0,\,\ldots,\,99 \}\f$) and construct a Cartesian matrix \f$ M\f$
containing as elements all sums \f$ a_i + a_j,\: i,\,j \in
\{1,\,\ldots,\,5\}\f$. If \f$ a\f$ is sorted, \f$ M\f$ is sorted as well. So
we can apply `sorted_matrix_search` to compute the upper bound
for the maximal entry of \f$ a\f$ in \f$ M\f$.
\cgalexample{sorted_matrix_search.cpp}
\sa `SortedMatrixSearchTraits` \sa `SortedMatrixSearchTraits`
*/ */

View File

@ -3,7 +3,6 @@
\ingroup PkgMatrixSearchConcepts \ingroup PkgMatrixSearchConcepts
\cgalconcept \cgalconcept
\todo advanced missing
A class `BasicMatrix` has to provide the following A class `BasicMatrix` has to provide the following
types and operations in order to be a model for types and operations in order to be a model for

View File

@ -3,7 +3,6 @@
\ingroup PkgMatrixSearchConcepts \ingroup PkgMatrixSearchConcepts
\cgalconcept \cgalconcept
\todo advanced missing
The concept `MonotoneMatrixSearchTraits` is a refinement of The concept `MonotoneMatrixSearchTraits` is a refinement of
`BasicMatrix` and defines types and operations needed to `BasicMatrix` and defines types and operations needed to

View File

@ -3,8 +3,6 @@
\ingroup PkgMatrixSearchConcepts \ingroup PkgMatrixSearchConcepts
\cgalconcept \cgalconcept
\todo advanced missing
The concept `SortedMatrixSearchTraits` defines types and operations The concept `SortedMatrixSearchTraits` defines types and operations
needed to compute the smallest entry in a set of sorted matrices needed to compute the smallest entry in a set of sorted matrices
that fulfills a certain feasibility criterion using the function that fulfills a certain feasibility criterion using the function

View File

@ -17,6 +17,18 @@ the computation of all furthest neighbors for the vertices of a convex
polygon, maximal \f$ k\f$-gons inscribed into a planar point set, and polygon, maximal \f$ k\f$-gons inscribed into a planar point set, and
computing rectangular \f$ p\f$-centers. computing rectangular \f$ p\f$-centers.
## Example ##
In the following program we build a random vector \f$ a =
(a_i)_{i = 1,\,\ldots,\,5}\f$ (elements drawn uniformly from \f$ \{
0,\,\ldots,\,99 \}\f$) and construct a Cartesian matrix \f$ M\f$
containing as elements all sums \f$ a_i + a_j,\: i,\,j \in
\{1,\,\ldots,\,5\}\f$. If \f$ a\f$ is sorted, \f$ M\f$ is sorted as well. So
we can apply `sorted_matrix_search` to compute the upper bound
for the maximal entry of \f$ a\f$ in \f$ M\f$.
\cgalexample{sorted_matrix_search.cpp}
*/ */
} /* namespace CGAL */ } /* namespace CGAL */