mirror of https://github.com/CGAL/cgal
move example to user manual. de-advance
This commit is contained in:
parent
190dd77c6f
commit
5c1d6e5ef6
|
|
@ -4,8 +4,6 @@ namespace CGAL {
|
|||
/*!
|
||||
\ingroup PkgMatrixSearch
|
||||
|
||||
\todo advanced is missing
|
||||
|
||||
The class `Dynamic_matrix` is an adaptor for an arbitrary
|
||||
matrix class `M` to provide the dynamic operations needed for monotone
|
||||
matrix search.
|
||||
|
|
|
|||
|
|
@ -4,8 +4,6 @@ namespace CGAL {
|
|||
/*!
|
||||
\ingroup PkgMatrixSearch
|
||||
|
||||
\todo advanced missing
|
||||
|
||||
The class `Sorted_matrix_search_traits_adaptor` can be used
|
||||
as an adaptor to create sorted matrix search traits classes for
|
||||
arbitrary feasibility test and matrix classes `F` resp. `M`.
|
||||
|
|
|
|||
|
|
@ -3,7 +3,6 @@ namespace CGAL {
|
|||
/*!
|
||||
\ingroup PkgMatrixSearch
|
||||
|
||||
\todo advanced missing
|
||||
|
||||
The function `monotone_matrix_search` computes the maxima
|
||||
for all rows of a totally monotone matrix.
|
||||
|
|
|
|||
|
|
@ -3,8 +3,6 @@ namespace CGAL {
|
|||
/*!
|
||||
\ingroup PkgMatrixSearch
|
||||
|
||||
\todo advanced missing
|
||||
|
||||
The function `sorted_matrix_search` selects the smallest entry
|
||||
in a set of sorted matrices that fulfills a certain feasibility
|
||||
criterion.
|
||||
|
|
@ -56,17 +54,6 @@ Frederickson and Johnson\cite fj-fkppc-83, \cite fj-gsrsm-84 and runs in
|
|||
the number of input matrices, \f$ k\f$ denotes the maximal dimension of
|
||||
any input matrix and \f$ f\f$ the time needed for one feasibility test.
|
||||
|
||||
### Example ###
|
||||
|
||||
In the following program we build a random vector \f$ a =
|
||||
(a_i)_{i = 1,\,\ldots,\,5}\f$ (elements drawn uniformly from \f$ \{
|
||||
0,\,\ldots,\,99 \}\f$) and construct a Cartesian matrix \f$ M\f$
|
||||
containing as elements all sums \f$ a_i + a_j,\: i,\,j \in
|
||||
\{1,\,\ldots,\,5\}\f$. If \f$ a\f$ is sorted, \f$ M\f$ is sorted as well. So
|
||||
we can apply `sorted_matrix_search` to compute the upper bound
|
||||
for the maximal entry of \f$ a\f$ in \f$ M\f$.
|
||||
|
||||
\cgalexample{sorted_matrix_search.cpp}
|
||||
|
||||
\sa `SortedMatrixSearchTraits`
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -3,7 +3,6 @@
|
|||
\ingroup PkgMatrixSearchConcepts
|
||||
\cgalconcept
|
||||
|
||||
\todo advanced missing
|
||||
|
||||
A class `BasicMatrix` has to provide the following
|
||||
types and operations in order to be a model for
|
||||
|
|
|
|||
|
|
@ -3,7 +3,6 @@
|
|||
\ingroup PkgMatrixSearchConcepts
|
||||
\cgalconcept
|
||||
|
||||
\todo advanced missing
|
||||
|
||||
The concept `MonotoneMatrixSearchTraits` is a refinement of
|
||||
`BasicMatrix` and defines types and operations needed to
|
||||
|
|
|
|||
|
|
@ -3,8 +3,6 @@
|
|||
\ingroup PkgMatrixSearchConcepts
|
||||
\cgalconcept
|
||||
|
||||
\todo advanced missing
|
||||
|
||||
The concept `SortedMatrixSearchTraits` defines types and operations
|
||||
needed to compute the smallest entry in a set of sorted matrices
|
||||
that fulfills a certain feasibility criterion using the function
|
||||
|
|
|
|||
|
|
@ -17,6 +17,18 @@ the computation of all furthest neighbors for the vertices of a convex
|
|||
polygon, maximal \f$ k\f$-gons inscribed into a planar point set, and
|
||||
computing rectangular \f$ p\f$-centers.
|
||||
|
||||
## Example ##
|
||||
|
||||
In the following program we build a random vector \f$ a =
|
||||
(a_i)_{i = 1,\,\ldots,\,5}\f$ (elements drawn uniformly from \f$ \{
|
||||
0,\,\ldots,\,99 \}\f$) and construct a Cartesian matrix \f$ M\f$
|
||||
containing as elements all sums \f$ a_i + a_j,\: i,\,j \in
|
||||
\{1,\,\ldots,\,5\}\f$. If \f$ a\f$ is sorted, \f$ M\f$ is sorted as well. So
|
||||
we can apply `sorted_matrix_search` to compute the upper bound
|
||||
for the maximal entry of \f$ a\f$ in \f$ M\f$.
|
||||
|
||||
\cgalexample{sorted_matrix_search.cpp}
|
||||
|
||||
*/
|
||||
} /* namespace CGAL */
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue