diff --git a/Arrangement_on_surface_2/doc/Arrangement_on_surface_2/Arrangement_on_surface_2.txt b/Arrangement_on_surface_2/doc/Arrangement_on_surface_2/Arrangement_on_surface_2.txt index 5b4b9ed9051..1d597bb505b 100644 --- a/Arrangement_on_surface_2/doc/Arrangement_on_surface_2/Arrangement_on_surface_2.txt +++ b/Arrangement_on_surface_2/doc/Arrangement_on_surface_2/Arrangement_on_surface_2.txt @@ -1491,7 +1491,7 @@ educational purposes, and thus we do not elaborate on this strategy. The data structure needed by the landmark and the trapezoidal map RIC strategies can be constructed in \cgalBigO{N \log N} time, where \f$N\f$ is the overall number of edges in the arrangement, but the constant -hidden in the \cgalBigO{ } notation for the trapezoidal map RIC strategy +hidden in the \cgalBigO{~} notation for the trapezoidal map RIC strategy is much larger. Thus, construction needed by the landmark algorithm is in practice significantly faster than the construction needed by the trapezoidal map RIC strategy. In addition, although both resulting @@ -2038,8 +2038,8 @@ so it must be construct from scratch. In the first case, we sweep over the input curves, compute their intersection points, and construct the \dcel that represents their -arrangement. This process is performed in \cgalBigO{left((n + k)\log -n\right} time, where \f$k\f$ is the total number of intersection +arrangement. This process is performed in \cgalBigO{(n + k)\log +n} time, where \f$k\f$ is the total number of intersection points. The running time is asymptotically better than the time needed for incremental insertion if the arrangement is relatively sparse (when \f$k\f$ is \cgalBigO{\frac{n^2}{\log n}}), but it is recommended diff --git a/Documentation/doc/Documentation/Developer_manual/Chapter_intro.txt b/Documentation/doc/Documentation/Developer_manual/Chapter_intro.txt index 0f7d11e3f81..c3f8daef7d7 100644 --- a/Documentation/doc/Documentation/Developer_manual/Chapter_intro.txt +++ b/Documentation/doc/Documentation/Developer_manual/Chapter_intro.txt @@ -169,7 +169,7 @@ complexity are known. Also, the theoretic interest in efficiency for realistic inputs, as opposed to worst-case situations, is growing \cgalCite{v-ffrim-97}. For practical purposes, insight into the constant factors hidden in the -\cgalBigO{ }-notation is necessary, especially if there are several competing +\cgalBigO{~}-notation is necessary, especially if there are several competing algorithms. Therefore, different implementations should be supplied if there is diff --git a/Documentation/doc/biblio/geom.bib b/Documentation/doc/biblio/geom.bib index f92a1b5cbd5..c8816f4020b 100644 --- a/Documentation/doc/biblio/geom.bib +++ b/Documentation/doc/biblio/geom.bib @@ -2512,7 +2512,7 @@ cell neighborhood in $O(m)$ time." booktitle = {Handbook of Computational Geometry}, publisher = {Elsevier Science Publishers B.V. North-Holland}, address = {Amsterdam}, - year = {2000} + year = {2000}, pages = {49--119}, update = {00.03 bibrelex, 99.03 bibrelex, 98.11 bibrelex, 98.07 mitchell}, annote = {Chapter 2 of su-hcg-00} @@ -152057,12 +152057,13 @@ keywords = {polygonal surface mesh, Surface reconstruction, kinetic framework, s @article{cvl-ew-12, Author = {Cabello, Sergio and de Verdière, {\'E}ric Colin and Lazarus, Francis}, - Title = {Algorithms for the edge-width of an embedded graph}, - Journal = {Computational Geometry}, - Volume = {45}, - Pages = {215--224}, - Year = {2012}, - Url = {https://monge.univ-mlv.fr/~colinde/pub/09edgewidth.pdf} + Title = {Algorithms for the edge-width of an embedded graph}, + Journal = {Computational Geometry}, + Volume = {45}, + Pages = {215--224}, + Year = {2012}, + Url = {https://monge.univ-mlv.fr/~colinde/pub/09edgewidth.pdf} +} @inproceedings{tang2009interactive, title={Interactive Hausdorff distance computation for general polygonal models}, diff --git a/Documentation/doc/resources/1.10.0/CGAL_mathjax.js b/Documentation/doc/resources/1.10.0/CGAL_mathjax.js index 5ba6efa5bfb..8bf80a019b6 100644 --- a/Documentation/doc/resources/1.10.0/CGAL_mathjax.js +++ b/Documentation/doc/resources/1.10.0/CGAL_mathjax.js @@ -32,4 +32,14 @@ MathJax.Hub.Config( } } ); +MathJax.Hub.Register.StartupHook("TeX Jax Ready",function () { + var PARSE = MathJax.InputJax.TeX.Parse, + TEXT = PARSE.prototype.InternalText; + PARSE.Augment({ + InternalText: function (text,def) { + text = text.replace(/\\/g,""); + return TEXT.call(this,text,def); + } + }); +}); //]]> diff --git a/Documentation/doc/resources/1.8.13/CGAL_mathjax.js b/Documentation/doc/resources/1.8.13/CGAL_mathjax.js index a1a6e69deb1..cc2dbd79258 100644 --- a/Documentation/doc/resources/1.8.13/CGAL_mathjax.js +++ b/Documentation/doc/resources/1.8.13/CGAL_mathjax.js @@ -31,4 +31,14 @@ MathJax.Hub.Config( } } ); +MathJax.Hub.Register.StartupHook("TeX Jax Ready",function () { + var PARSE = MathJax.InputJax.TeX.Parse, + TEXT = PARSE.prototype.InternalText; + PARSE.Augment({ + InternalText: function (text,def) { + text = text.replace(/\\/g,""); + return TEXT.call(this,text,def); + } + }); +}); //]]> diff --git a/Documentation/doc/resources/1.9.6/CGAL_mathjax.js b/Documentation/doc/resources/1.9.6/CGAL_mathjax.js index 5ba6efa5bfb..8bf80a019b6 100644 --- a/Documentation/doc/resources/1.9.6/CGAL_mathjax.js +++ b/Documentation/doc/resources/1.9.6/CGAL_mathjax.js @@ -32,4 +32,14 @@ MathJax.Hub.Config( } } ); +MathJax.Hub.Register.StartupHook("TeX Jax Ready",function () { + var PARSE = MathJax.InputJax.TeX.Parse, + TEXT = PARSE.prototype.InternalText; + PARSE.Augment({ + InternalText: function (text,def) { + text = text.replace(/\\/g,""); + return TEXT.call(this,text,def); + } + }); +}); //]]> diff --git a/Kinetic_surface_reconstruction/doc/Kinetic_surface_reconstruction/Kinetic_surface_reconstruction.txt b/Kinetic_surface_reconstruction/doc/Kinetic_surface_reconstruction/Kinetic_surface_reconstruction.txt index 99ee3553995..1879e36d9fe 100644 --- a/Kinetic_surface_reconstruction/doc/Kinetic_surface_reconstruction/Kinetic_surface_reconstruction.txt +++ b/Kinetic_surface_reconstruction/doc/Kinetic_surface_reconstruction/Kinetic_surface_reconstruction.txt @@ -20,7 +20,7 @@ The reconstruction is posed as an energy minimization labeling the convex volume
-\f$\DeclareMathOperator*{\argmin}{arg\,min} \argmin\limits_{l \in {\{0, 1\}}^n} E(l) = (1 - \lambda) D(l) + \lambda U(l)\f$ +\f$\operatorname*{arg\,min}\limits_{l \in {\{0, 1\}}^n} E(l) = (1 - \lambda) D(l) + \lambda U(l)\f$ \f$D(l) = \sum\limits_{i \in C}\sum\limits_{p \in I_i}d_i(p, l_i)\f$ diff --git a/Weights/include/CGAL/Weights/authalic_weights.h b/Weights/include/CGAL/Weights/authalic_weights.h index 8c3eede9a25..7e28ae41f8d 100644 --- a/Weights/include/CGAL/Weights/authalic_weights.h +++ b/Weights/include/CGAL/Weights/authalic_weights.h @@ -59,7 +59,7 @@ FT weight(const FT cot_gamma, const FT cot_beta, const FT r2) This function computes the half of the authalic weight using the precomputed cotangent and squared distance values. The returned value is - \f$\frac{2\textbf{cot}}{\textbf{sq_d}}\f$. + \f$\frac{2\textbf{cot}}{\textbf{sq\_d}}\f$. \tparam FT a model of `FieldNumberType`