diff --git a/Classification/include/CGAL/Classification/Random_forest_classifier.h b/Classification/include/CGAL/Classification/Random_forest_classifier.h index 7aaf44c4ed7..10844a3496e 100644 --- a/Classification/include/CGAL/Classification/Random_forest_classifier.h +++ b/Classification/include/CGAL/Classification/Random_forest_classifier.h @@ -127,15 +127,15 @@ public: if (ground_truth[i] != -1) ++ nb_samples; - cv::Mat training_features (nb_samples, m_features.size(), CV_32FC1); - cv::Mat training_labels (nb_samples, 1, CV_32FC1); + cv::Mat training_features (int(nb_samples), int(m_features.size()), CV_32FC1); + cv::Mat training_labels (int(nb_samples), 1, CV_32FC1); for (std::size_t i = 0, index = 0; i < ground_truth.size(); ++ i) if (ground_truth[i] != -1) { for (std::size_t f = 0; f < m_features.size(); ++ f) - training_features.at(index, f) = m_features[f]->value(i); - training_labels.at(index, 0) = ground_truth[i]; + training_features.at(int(index), int(f)) = m_features[f]->value(i); + training_labels.at(int(index), 0) = ground_truth[i]; ++ index; } @@ -194,9 +194,9 @@ public: { out.resize (m_labels.size(), 0.); - cv::Mat feature (1, m_features.size(), CV_32FC1); + cv::Mat feature (1, int(m_features.size()), CV_32FC1); for (std::size_t f = 0; f < m_features.size(); ++ f) - feature.at(0, f) = m_features[f]->value(item_index); + feature.at(0, int(f)) = m_features[f]->value(item_index); //compute the result of each tree #if (CV_MAJOR_VERSION < 3)