Adjusted formatting and readability

Changed formatting to 80 chars per line.
Improved readability. Removed useless renaming of variables.
This commit is contained in:
Andreas Haas 2015-03-22 00:04:46 +01:00
parent 8ea81e7515
commit 5d9b3d7e74
3 changed files with 212 additions and 214 deletions

View File

@ -23,11 +23,11 @@
#ifndef CGAL_SIMPLE_POLYGON_VISIBILITY_2_H
#define CGAL_SIMPLE_POLYGON_VISIBILITY_2_H
#include <CGAL/Arrangement_2.h>
#include <CGAL/tags.h>
#include <CGAL/enum.h>
#include <CGAL/Visibility_2/visibility_utils.h>
#include <CGAL/Constrained_Delaunay_triangulation_2.h>
#include <CGAL/assertions.h>
#include <stack>
#include <map>
@ -37,7 +37,6 @@ template<class Arrangement_2_, class RegularizationCategory = CGAL::Tag_true>
class Simple_polygon_visibility_2 {
public:
// Currently only consider with same type for both
typedef Arrangement_2_ Arrangement_2;
typedef typename Arrangement_2::Traits_2 Traits_2;
typedef typename Arrangement_2::Geometry_traits_2 Geometry_traits_2;
@ -66,18 +65,18 @@ public:
typedef CGAL::Tag_false Supports_general_polygon_category;
typedef CGAL::Tag_true Supports_simple_polygon_category;
Simple_polygon_visibility_2() : p_arr(NULL), geom_traits(NULL) {}
Simple_polygon_visibility_2() : p_arr(NULL), traits(NULL) {}
/*! Constructor given an arrangement and the Regularization tag. */
Simple_polygon_visibility_2(const Arrangement_2& arr):
p_arr(&arr) {
geom_traits = p_arr->geometry_traits();
traits = p_arr->geometry_traits();
query_pt_is_vertex = false;
query_pt_is_on_halfedge = false;
}
const std::string name(){return std::string("S_visibility_2");}
std::string name() const { return std::string("S_visibility_2"); }
/*! Method to check if the visibility object is attached or not to
an arrangement*/
@ -90,7 +89,7 @@ public:
if(p_arr != &arr){
detach();
p_arr = &arr;
geom_traits = p_arr->geometry_traits();
traits = p_arr->geometry_traits();
}
}
@ -98,7 +97,7 @@ public:
attached to*/
void detach() {
p_arr = NULL;
geom_traits = NULL;
traits = NULL;
vertices.clear();
query_pt_is_vertex = false;
query_pt_is_on_halfedge = false;
@ -114,26 +113,24 @@ public:
'face' and constructs the output in 'out_arr'*/
template <typename VARR>
typename VARR::Face_handle
compute_visibility(const Point_2& q, Face_const_handle face,
VARR& out_arr) const {
compute_visibility(const Point_2& q,
const Face_const_handle face,
VARR& out_arr) const
{
CGAL_precondition_msg(p_arr->number_of_faces() == 2,
"Only simple polygons are supported.");
CGAL_precondition(!face->is_unbounded());
out_arr.clear();
query_pt_is_vertex = false;
query_pt_is_on_halfedge = false;
// Now retrieve the circulator to first visible vertex from triangulation
Ccb_halfedge_const_circulator circ = find_visible_start(face, q);
Ccb_halfedge_const_circulator curr = circ;
Halfedge_const_handle he;
do {
he = curr;
vertices.push_back(he->source()->point());
vertices.push_back(curr->source()->point());
} while(++curr != circ);
vertices.push_back(vertices[0]);
@ -153,9 +150,6 @@ public:
VARR& out_arr ) const
{
CGAL_precondition_msg(p_arr->number_of_faces() == 2,
"Only simple polygons are supported.");
out_arr.clear();
query_pt_is_vertex = false;
@ -177,12 +171,11 @@ public:
}
Ccb_halfedge_const_circulator circ = he;
circ++;
++circ;
Ccb_halfedge_const_circulator curr = circ;
do {
Halfedge_const_handle he_handle = curr;
Point_2 curr_vertex = he_handle->target()->point();
const Point_2& curr_vertex = curr->target()->point();
vertices.push_back(curr_vertex);
} while (++curr != circ);
@ -193,31 +186,6 @@ public:
visibility_region_impl(q);
return output(q, out_arr);
// std::vector<Point_2> points;
// if (!s.empty()) {
// Point_2 prev_pt = s.top();
// if (prev_pt != q) {
// points.push_back(prev_pt);
// }
// else if (query_pt_is_vertex) {
// points.push_back(prev_pt);
// }
// if (!s.empty()) {
// s.pop();
// }
// while(!s.empty()) {
// Point_2 curr_pt = s.top();
// if (curr_pt != q) {
// points.push_back(curr_pt);
// }
// else if (query_pt_is_vertex) {
// points.push_back(curr_pt);
// }
// s.pop();
// }
// }
}
@ -230,7 +198,7 @@ private:
private:
const Arrangement_2 *p_arr;
const Geometry_traits_2 *geom_traits;
const Geometry_traits_2 *traits;
/*! Boost pointer to the constrained Delaunay triangulation object*/
mutable boost::shared_ptr<CDT> p_cdt;
@ -253,28 +221,28 @@ private:
void conditional_regularize(VARR& out_arr, CGAL::Tag_true) const {
regularize_output(out_arr);
}
/*! No need to regularize output if flag is set to false*/
template <typename VARR>
void conditional_regularize(VARR& out_arr, CGAL::Tag_false) const {
//do nothing
}
/*! Regularizes the output - removes edges that have the same face on both
sides */
template <typename VARR>
void regularize_output(VARR& out_arr) const {
typename VARR::Edge_iterator e_itr;
for (e_itr = out_arr.edges_begin() ;
e_itr != out_arr.edges_end() ; e_itr++) {
for (e_itr = out_arr.edges_begin(); e_itr != out_arr.edges_end(); ++e_itr) {
typename VARR::Halfedge_handle he = e_itr;
typename VARR::Halfedge_handle he_twin = he->twin();
if (he->face() == he_twin->face()) {
out_arr.remove_edge(he);
if (e_itr->face() == e_itr->twin()->face()) {
out_arr.remove_edge(e_itr);
}
}
}
/*! Initialized the constrained Delaunay triangulation using the edges of
the outer boundary of 'face' */
void init_cdt(const Face_const_handle &face) const {
@ -286,8 +254,8 @@ private:
Ccb_halfedge_const_circulator curr = circ;
do {
Point_2 source = curr->source()->point();
Point_2 target = curr->target()->point();
const Point_2& source = curr->source()->point();
const Point_2& target = curr->target()->point();
point_itr_map.insert(std::make_pair(source, curr));
constraints.push_back(std::make_pair(source, target));
} while(++curr != circ);
@ -296,6 +264,7 @@ private:
constraints.end()));
}
template <typename VARR>
typename VARR::Face_handle
output(const Point_2& q, VARR& out_arr) const {
@ -306,19 +275,15 @@ private:
s.pop();
}
// std::reverse(points.begin(), points.end());
CGAL::Visibility_2::report_while_handling_needles
<Simple_polygon_visibility_2>(geom_traits,
q,
points,
out_arr);
Visibility_2::report_while_handling_needles<Simple_polygon_visibility_2>(
traits, q, points, out_arr);
CGAL_postcondition(out_arr.number_of_isolated_vertices() == 0);
CGAL_postcondition(s.empty());
conditional_regularize(out_arr, Regularization_category());
vertices.clear();
if (out_arr.faces_begin()->is_unbounded()) {
return ++out_arr.faces_begin();
}
@ -334,33 +299,29 @@ private:
const Point_2 &q) const {
init_cdt(face);
typename CDT::Face_handle fh = p_cdt->locate(q);
Point_2 start_point = fh->vertex(0)->point();
const Point_2& start_point = fh->vertex(0)->point();
// Now retrieve the circulator to first visible vertex from triangulation
Ccb_halfedge_const_circulator circ = point_itr_map[start_point];
Halfedge_const_handle he_curr = circ;
Halfedge_around_vertex_const_circulator incident_circ =
he_curr->source()->incident_halfedges();
circ->source()->incident_halfedges();
Halfedge_around_vertex_const_circulator incident_curr = incident_circ;
do {
Ccb_halfedge_const_circulator curr_inc = incident_curr;
Halfedge_const_handle he_curr_inc = curr_inc;
if (he_curr_inc->face() == face) {
if (incident_curr->face() == face) {
Ccb_halfedge_const_circulator incident_next = incident_curr;
incident_next++;
Halfedge_const_handle he_next_inc = incident_next;
++incident_next;
if (CGAL::Visibility_2::orientation_2(geom_traits,
he_curr_inc->source()->point(),
he_curr_inc->target()->point(),
q) == CGAL::LEFT_TURN
|| CGAL::Visibility_2::orientation_2(geom_traits,
he_next_inc->source()->point(),
he_next_inc->target()->point(),
q) == CGAL::LEFT_TURN)
if (Visibility_2::orientation_2(traits,
incident_curr->source()->point(),
incident_curr->target()->point(),
q) == LEFT_TURN
|| Visibility_2::orientation_2(traits,
incident_next->source()->point(),
incident_next->target()->point(),
q) == LEFT_TURN)
{
return incident_next;
}
@ -368,6 +329,7 @@ private:
} while (++incident_curr != incident_circ);
}
/*! Main method of the algorithm - initializes the stack and variables
and calles the corresponding methods acc. to the algorithm's state;
'q' - query point;
@ -376,11 +338,10 @@ private:
void visibility_region_impl(const Point_2& q) const {
int i = 0;
Point_2 w;
CGAL::Orientation orient = CGAL::Visibility_2::orientation_2(geom_traits,
q,
vertices[0],
vertices[1]);
if ( orient != CGAL::RIGHT_TURN ) {
Orientation orient =
Visibility_2::orientation_2(traits, q, vertices[0], vertices[1]);
if ( orient != RIGHT_TURN ) {
upcase = LEFT;
i = 1;
w = vertices[1];
@ -419,16 +380,17 @@ private:
if ( upcase == LEFT ) {
Point_2 s_t = s.top();
s.pop();
if ( ( CGAL::Visibility_2::orientation_2 <Geometry_traits_2>
( geom_traits, q, vertices[0], s.top() ) == CGAL::RIGHT_TURN ) &&
( CGAL::Visibility_2::orientation_2 <Geometry_traits_2>
( geom_traits, q, vertices[0],s_t ) == CGAL::LEFT_TURN ) ) {
if ( Visibility_2::orientation_2(traits, q, vertices[0], s.top() )
== RIGHT_TURN
&&
Visibility_2::orientation_2(traits, q, vertices[0], s_t)
== LEFT_TURN )
{
Segment_2 seg( s.top(), s_t );
if (Visibility_2::do_intersect_2(geom_traits, seg, ray_origin ) )
if ( Visibility_2::do_intersect_2(traits, seg, ray_origin) )
{
Object_2 result = Visibility_2::intersect_2(geom_traits,
seg, ray_origin);
const Point_2 * ipoint = CGAL::object_cast<Point_2>(&result);
Object_2 result = Visibility_2::intersect_2(traits, seg,ray_origin);
const Point_2 * ipoint = object_cast<Point_2>(&result);
assert( ipoint != NULL );
s_t = *ipoint;
upcase = SCANB;
@ -440,7 +402,7 @@ private:
}
/*! Method that handles the left turns in the vertex algorithm */
void left(int& i, Point_2& w, const Point_2& query_pt) const {
void left(int& i, Point_2& w, const Point_2& q) const {
if (i >= vertices.size() - 1) {
upcase = FINISH;
}
@ -449,24 +411,26 @@ private:
s.pop();
Point_2 s_t_prev = s.top();
s.push( s_t );
CGAL::Orientation orient1 = Visibility_2::orientation_2
( geom_traits,
query_pt,
Orientation orient1 = Visibility_2::orientation_2
( traits,
q,
vertices[i],
vertices[i+1] );
if ( orient1 != CGAL::RIGHT_TURN ) {
if ( orient1 != RIGHT_TURN ) {
// Case L2
upcase = LEFT;
s.push( vertices[i+1] );
w = vertices[i+1];
i++;
} else {
CGAL::Orientation orient2 = Visibility_2::orientation_2
( geom_traits,
Orientation orient2 = Visibility_2::orientation_2
( traits,
s_t_prev,
vertices[i],
vertices[i+1] );
if ( orient2 == CGAL::RIGHT_TURN ) {
if ( orient2 == RIGHT_TURN ) {
// Case L3
upcase = SCANA;
w = vertices[i+1];
@ -483,25 +447,24 @@ private:
/*! Scans the stack such that all vertices that were pushed before to the
stack and are now not visible anymore. */
void right(int& i, Point_2& w, const Point_2& query_pt) const {
void right(int& i, Point_2& w, const Point_2& q) const {
Point_2 s_j;
Point_2 s_j_prev;
Point_2 u;
int mode = 0;
CGAL::Orientation orient1, orient2;
Orientation orient1, orient2;
s_j_prev = s.top();
orient2 = CGAL::Visibility_2::orientation_2 <Geometry_traits_2>
( geom_traits, query_pt, s_j_prev, vertices[i] );
orient2 = Visibility_2::orientation_2( traits, q, s_j_prev, vertices[i] );
while ( s.size() > 1 ) {
s_j = s_j_prev;
orient1 = orient2;
s.pop();
s_j_prev = s.top();
orient2 = CGAL::Visibility_2::orientation_2 <Geometry_traits_2>
( geom_traits, query_pt, s_j_prev, vertices[i] );
if ( orient1 != CGAL::LEFT_TURN && orient2 != CGAL::RIGHT_TURN ) {
orient2 = Visibility_2::orientation_2( traits, q, s_j_prev, vertices[i]);
if ( orient1 != LEFT_TURN && orient2 != RIGHT_TURN ) {
mode = 1;
break;
}
@ -509,10 +472,10 @@ private:
Segment_2 seg2( vertices[i-1], vertices[i] );
Segment_2 seg( s_j_prev, s_j );
if ( vertices[i-1] != s_j &&
Visibility_2::do_intersect_2(geom_traits, seg, seg2) )
Visibility_2::do_intersect_2(traits, seg, seg2) )
{
Object_2 result = Visibility_2::intersect_2(geom_traits, seg, seg2);
const Point_2 * ipoint = CGAL::object_cast<Point_2>(&result);
Object_2 result = Visibility_2::intersect_2(traits, seg, seg2);
const Point_2 * ipoint = object_cast<Point_2>(&result);
assert( ipoint != NULL );
u = *ipoint;
mode = 2;
@ -522,11 +485,12 @@ private:
assert( mode != 0 );
if ( mode == 1 ) {
orient1 = CGAL::Visibility_2::orientation_2 <Geometry_traits_2>
( geom_traits, query_pt, vertices[i], vertices[i+1] );
orient2 = CGAL::Visibility_2::orientation_2 <Geometry_traits_2>
( geom_traits, vertices[i-1], vertices[i], vertices[i+1] );
if ( orient1 == CGAL::RIGHT_TURN ) {
orient1 = Visibility_2::orientation_2
( traits, q, vertices[i], vertices[i+1] );
orient2 = Visibility_2::orientation_2
( traits, vertices[i-1], vertices[i], vertices[i+1] );
if ( orient1 == RIGHT_TURN ) {
// Case R1
// Since the next action is RIGHT, we do not compute the intersection
// of (s_j,s_j_prev) and the ray (query_pt, vertices[i]),
@ -535,15 +499,16 @@ private:
s.push( s_j );
w = vertices[i];
i++;
} else if ( orient2 == CGAL::RIGHT_TURN ) {
} else if ( orient2 == RIGHT_TURN ) {
// Case R2
Ray_2 ray( query_pt, vertices[i] );
Ray_2 ray( q, vertices[i] );
Segment_2 seg( s_j_prev, s_j );
Object_2 result = CGAL::Visibility_2::intersect_2
<Geometry_traits_2, Segment_2, Ray_2>
( geom_traits, seg, ray );
const Point_2 * ipoint = CGAL::object_cast<Point_2>(&result);
Object_2 result = Visibility_2::intersect_2( traits, seg, ray );
const Point_2 * ipoint = object_cast<Point_2>(&result);
assert( ipoint != NULL );
u = *ipoint;
if ( s.top() != u ) {
s.push( u );
@ -555,13 +520,14 @@ private:
i++;
} else {
// Case R3
Ray_2 ray( query_pt, vertices[i] );
Ray_2 ray( q, vertices[i] );
Segment_2 seg( s_j_prev, s_j );
Object_2 result = CGAL::Visibility_2::intersect_2
<Geometry_traits_2, Segment_2, Ray_2>
( geom_traits, seg, ray );
const Point_2 * ipoint = CGAL::object_cast<Point_2>(&result);
Object_2 result = Visibility_2::intersect_2( traits, seg, ray );
const Point_2 * ipoint = object_cast<Point_2>(&result);
assert( ipoint != NULL );
u = *ipoint;
if ( s.top() != u ) {
s.push( u );
@ -579,21 +545,18 @@ private:
/*! Scans the vertices starting from index 'i' for the first visible vertex
out of the back hidden window */
void scana(int& i, Point_2& w, const Point_2& query_pt) const {
void scana(int& i, Point_2& w, const Point_2& q) const {
// Scan v_i, v_i+1, ..., v_n for the first edge to intersect (z, s_t)
Point_2 u;
int k = scan_edges( i, query_pt, s.top(), u, true );
int k = scan_edges( i, q, s.top(), u, true );
Orientation orient1 =
Visibility_2::orientation_2(traits, q, vertices[k], vertices[k+1] );
if ( orient1 == RIGHT_TURN ) {
bool fwd = Visibility_2::collinear_are_ordered_along_line_2
( traits, q, s.top(), u );
CGAL::Orientation orient1 = CGAL::Visibility_2::orientation_2
<Geometry_traits_2>
( geom_traits,
query_pt,
vertices[k],
vertices[k+1] );
if ( orient1 == CGAL::RIGHT_TURN ) {
bool fwd = CGAL::Visibility_2::collinear_are_ordered_along_line_2
<Geometry_traits_2>
( geom_traits, query_pt, s.top(), u );
if ( !fwd ) {
// Case A1
upcase = RIGHT;
@ -618,7 +581,7 @@ private:
}
/*! Find the first edge interecting the segment (v_0, s_t) */
void scanb(int& i, Point_2& w, const Point_2& query_pt) const {
void scanb(int& i, Point_2& w, const Point_2& q) const {
if ( i == vertices.size() - 1 ) {
upcase = FINISH;
return;
@ -639,7 +602,7 @@ private:
/*! Finds the exit from a general front hidden window by finding the first
vertex to the right of the ray defined by the query_point and w*/
void scanc(int& i, Point_2& w, const Point_2& query_pt) const {
void scanc(int& i, Point_2& w, const Point_2& q) const {
Point_2 u;
int k = scan_edges( i, s.top(), w, u, false );
upcase = RIGHT;
@ -648,7 +611,7 @@ private:
}
/*! find the first edge intersecting the given window (s_t, w) */
void scand(int& i, Point_2& w, const Point_2& query_pt) const {
void scand(int& i, Point_2& w, const Point_2& q) const {
Point_2 u;
int k = scan_edges( i, s.top(), w, u, false );
upcase = LEFT;
@ -669,14 +632,14 @@ private:
Point_2& u,
bool is_ray ) const
{
CGAL::Orientation old_orient = CGAL::RIGHT_TURN;
Orientation old_orient = RIGHT_TURN;
Ray_2 ray( ray_begin, ray_end );
Segment_2 s2( ray_begin, ray_end );
int k;
Object_2 result;
for ( k = i; k+1 < vertices.size(); k++ ) {
CGAL::Orientation curr_orient = CGAL::Visibility_2::orientation_2
( geom_traits,
Orientation curr_orient = Visibility_2::orientation_2
( traits,
ray_begin,
ray_end,
vertices[k+1] );
@ -684,15 +647,15 @@ private:
// Orientation switch, an intersection may occur
Segment_2 seg( vertices[k], vertices[k+1] );
if ( is_ray ) {
if (CGAL::Visibility_2::do_intersect_2(geom_traits, seg, ray) )
if (Visibility_2::do_intersect_2(traits, seg, ray) )
{
result = CGAL::Visibility_2::intersect_2( geom_traits, seg, ray );
result = Visibility_2::intersect_2( traits, seg, ray );
break;
}
} else {
if (Visibility_2::do_intersect_2(geom_traits, seg, s2) )
if (Visibility_2::do_intersect_2(traits, seg, s2) )
{
result = Visibility_2::intersect_2( geom_traits, seg, s2 );
result = Visibility_2::intersect_2( traits, seg, s2 );
break;
}
}
@ -700,7 +663,7 @@ private:
old_orient = curr_orient;
}
assert( k+1<vertices.size() );
const Point_2 * ipoint = CGAL::object_cast<Point_2>( &result );
const Point_2 * ipoint = object_cast<Point_2>( &result );
if ( ipoint ) {
u = *ipoint;
} else {

View File

@ -71,11 +71,11 @@ void print_arrangement_by_face(const Arrangement_2& arr) {
typedef typename Arrangement_2::Face_const_iterator Face_const_iterator;
typedef typename Arrangement_2::Ccb_halfedge_const_circulator
Ccb_halfedge_const_circulator;
Face_const_iterator fit;
for (fit = arr.faces_begin() ; fit != arr.faces_end() ; fit++) {
if (!fit->is_unbounded()) {
Face_const_iterator f;
for (f = arr.faces_begin() ; f != arr.faces_end() ; f++) {
if (!f->is_unbounded()) {
std::cout << "FACE\n";
print_simple_face<Face_const_iterator, Ccb_halfedge_const_circulator>(fit);
print_simple_face<Face_const_iterator, Ccb_halfedge_const_circulator>(f);
std::cout << "END FACE\n";
}
}
@ -115,9 +115,11 @@ bool collinear(const Geometry_traits_2 *geom_traits,
}
template <class Geometry_traits_2, class _Curve_first, class _Curve_second >
typename Geometry_traits_2::Object_2 intersect_2(const Geometry_traits_2 *geom_traits,
const _Curve_first& s1,
const _Curve_second& s2) {
typename Geometry_traits_2::Object_2 intersect_2(
const Geometry_traits_2 *geom_traits,
const _Curve_first& s1,
const _Curve_second& s2)
{
typedef typename Geometry_traits_2::Kernel Kernel;
const Kernel *kernel = static_cast<const Kernel*> (geom_traits);
@ -126,9 +128,11 @@ typename Geometry_traits_2::Object_2 intersect_2(const Geometry_traits_2 *geom_t
}
template <class Geometry_traits_2>
CGAL::Comparison_result compare_xy_2(const Geometry_traits_2 *geom_traits,
const typename Geometry_traits_2::Point_2 &p,
const typename Geometry_traits_2::Point_2 &q) {
CGAL::Comparison_result compare_xy_2(
const Geometry_traits_2 *geom_traits,
const typename Geometry_traits_2::Point_2 &p,
const typename Geometry_traits_2::Point_2 &q)
{
typename Geometry_traits_2::Compare_xy_2 cmp =
geom_traits->compare_xy_2_object();
@ -157,10 +161,12 @@ bool do_intersect_2(const Geometry_traits_2 *geom_traits,
}
template <class Geometry_traits_2>
bool collinear_are_ordered_along_line_2(const Geometry_traits_2 *geom_traits,
const typename Geometry_traits_2::Point_2 &p,
const typename Geometry_traits_2::Point_2 &q,
const typename Geometry_traits_2::Point_2 &r) {
bool collinear_are_ordered_along_line_2(
const Geometry_traits_2 *geom_traits,
const typename Geometry_traits_2::Point_2 &p,
const typename Geometry_traits_2::Point_2 &q,
const typename Geometry_traits_2::Point_2 &r)
{
typename Geometry_traits_2::Collinear_are_ordered_along_line_2 coll =
geom_traits->collinear_are_ordered_along_line_2_object();
@ -195,21 +201,23 @@ typename Geometry_traits_2::Point_2 construct_projected_point_2(
}
}
//construct an arrangement of visibility region from a vector of circular ordered vertices with respect to the query point
// construct an arrangement of visibility region from a vector of
// circular ordered vertices with respect to the query point
template <class Visibility_2, class Visibility_arrangement_2>
void report_while_handling_needles(
const typename Visibility_2::Arrangement_2::Geometry_traits_2 *geom_traits,
const typename Visibility_2::Arrangement_2::Geometry_traits_2 *traits,
const typename Visibility_2::Arrangement_2::Point_2& q,
std::vector<typename Visibility_2::Arrangement_2::Point_2>& points,
Visibility_arrangement_2& arr_out) {
typedef typename Visibility_2::Arrangement_2 Arrangement_2;
typedef typename Arrangement_2::Point_2 Point_2;
typedef typename Arrangement_2::Geometry_traits_2 Geometry_traits_2;
typedef typename Arrangement_2::Halfedge_handle Halfedge_handle;
typedef typename Arrangement_2::Vertex_handle Vertex_handle;
typedef typename Geometry_traits_2::Segment_2 Segment_2;
typedef typename Geometry_traits_2::Direction_2 Direction_2;
typedef typename Visibility_2::Arrangement_2 Arrangement_2;
typedef typename Arrangement_2::Point_2 Point_2;
typedef typename Arrangement_2::Geometry_traits_2 Geometry_traits_2;
typedef typename Arrangement_2::Halfedge_handle Halfedge_handle;
typedef typename Arrangement_2::Vertex_handle Vertex_handle;
typedef typename Geometry_traits_2::Segment_2 Segment_2;
typedef typename Geometry_traits_2::Direction_2 Direction_2;
typename std::vector<Segment_2>::size_type i = 0;
@ -217,11 +225,7 @@ void report_while_handling_needles(
points.pop_back();
}
while (collinear(geom_traits,
q,
points[i],
points.back())) {
while (collinear(traits, q, points[i], points.back())) {
points.push_back(points[i]);
i++;
}
@ -229,45 +233,62 @@ void report_while_handling_needles(
points.push_back(points[i]);
typename Visibility_arrangement_2::Halfedge_handle he_handle;
typename Visibility_arrangement_2::Vertex_handle v_trg; //the handle of vertex where the next segment is inserted
typename Visibility_arrangement_2::Vertex_handle v_fst; //the handle of vertex inserted first
typename Visibility_arrangement_2::Vertex_handle v_needle_end; //the handle of vertex of the end of a needle
v_trg = v_fst = arr_out.insert_in_face_interior(points[i], arr_out.unbounded_face());
//the handle of vertex where the next segment is inserted
typename Visibility_arrangement_2::Vertex_handle v_trg;
//the handle of vertex inserted first
typename Visibility_arrangement_2::Vertex_handle v_fst;
//the handle of vertex of the end of a needle
typename Visibility_arrangement_2::Vertex_handle v_needle_end;
v_trg = v_fst = arr_out.insert_in_face_interior(points[i],
arr_out.unbounded_face());
//find a point that is right after a needle
while (i+1 < points.size()) {
if ( collinear(geom_traits,
points[i],
points[i+1],
q)) {
if ( collinear(traits, points[i], points[i+1], q)) {
typename Visibility_arrangement_2::Vertex_handle v_needle_begin = v_trg;
std::vector<Point_2> forward_needle; //vertices of the needle that are not between q and v_needle_begin; their direction is leaving q;
std::vector<Point_2> backward_needle; //vertices of the needle that are not between q and v_needle_begin; their direction is towards q;
std::vector<Point_2> part_in_q_side; //vertices of the needle that are between q and v_needle_begin
std::vector<Point_2> forward_needle; //vertices of the needle that are not
//between q and v_needle_begin;
//their direction is leaving q;
std::vector<Point_2> backward_needle;//vertices of the needle that are not
//between q and v_needle_begin;
//their direction is towards q;
std::vector<Point_2> part_in_q_side; //vertices of the needle that are
//between q and v_needle_begin
part_in_q_side.push_back(points[i]);
forward_needle.push_back((points[i]));
bool same_side_of_q = (compare_xy_2(geom_traits, points[i], q)==compare_xy_2(geom_traits, points[i], points[i+1]));
bool same_side_of_q = (compare_xy_2(traits, points[i], q) ==
compare_xy_2(traits, points[i], points[i+1]));
if (same_side_of_q)
part_in_q_side.push_back(points[i+1]);
else
forward_needle.push_back(points[i+1]);
i++;
while (i+1< points.size() && orientation_2(geom_traits,
points[i],
points[i+1],
q ) == CGAL::COLLINEAR) {
while (i+1 < points.size() &&
orientation_2(traits, points[i], points[i+1], q ) ==
CGAL::COLLINEAR)
{
if (same_side_of_q) {
part_in_q_side.push_back(points[i+1]);
}
else {
if (compare_xy_2(geom_traits, part_in_q_side.front(), q)
== compare_xy_2(geom_traits, part_in_q_side.front(), points[i+1])) {
if (compare_xy_2(traits, part_in_q_side.front(), q) ==
compare_xy_2(traits, part_in_q_side.front(), points[i+1]))
{
same_side_of_q = true;
part_in_q_side.push_back(points[i+1]);
}
else {
if (less_distance_to_point_2(geom_traits, q, points[i], points[i+1]))
if (less_distance_to_point_2(traits, q, points[i], points[i+1]))
forward_needle.push_back(points[i+1]);
else
backward_needle.push_back(points[i+1]);
@ -296,11 +317,11 @@ void report_while_handling_needles(
while (itr_fst < forward_needle.size() &&
itr_snd < backward_needle.size()) {
if (less_distance_to_point_2(geom_traits,
q,
forward_needle[itr_fst],
backward_needle[itr_snd])) {
if (less_distance_to_point_2(traits,
q,
forward_needle[itr_fst],
backward_needle[itr_snd]))
{
merged_needle.push_back(forward_needle[itr_fst]);
itr_fst++;
}
@ -319,11 +340,15 @@ void report_while_handling_needles(
}
for (unsigned int p = 0 ; p+1 < merged_needle.size() ; p++) {
if (CGAL::Visibility_2::compare_xy_2<Geometry_traits_2>(geom_traits, merged_needle[p], merged_needle[p+1]) == CGAL::SMALLER) {
he_handle = arr_out.insert_from_left_vertex(Segment_2(merged_needle[p], merged_needle[p+1]), v_trg);
if (compare_xy_2<Geometry_traits_2>(
traits, merged_needle[p], merged_needle[p+1]) == SMALLER)
{
he_handle = arr_out.insert_from_left_vertex(
Segment_2(merged_needle[p], merged_needle[p+1]), v_trg);
}
else {
he_handle = arr_out.insert_from_right_vertex(Segment_2(merged_needle[p], merged_needle[p+1]), v_trg);
he_handle = arr_out.insert_from_right_vertex(
Segment_2(merged_needle[p], merged_needle[p+1]), v_trg);
}
v_trg = he_handle->target();
if (merged_needle[p+1] == end_of_needle) {
@ -334,11 +359,15 @@ void report_while_handling_needles(
//insert the part of needle between q and v_needle_begin
v_trg = v_needle_begin;
for (unsigned int p = 0 ; p+1 < part_in_q_side.size() ; p++) {
if (CGAL::Visibility_2::compare_xy_2<Geometry_traits_2>(geom_traits, part_in_q_side[p], part_in_q_side[p+1]) == CGAL::SMALLER) {
he_handle = arr_out.insert_from_left_vertex(Segment_2(part_in_q_side[p], part_in_q_side[p+1]), v_trg);
if (compare_xy_2<Geometry_traits_2>(
traits, part_in_q_side[p], part_in_q_side[p+1]) == SMALLER)
{
he_handle = arr_out.insert_from_left_vertex(
Segment_2(part_in_q_side[p], part_in_q_side[p+1]), v_trg);
}
else {
he_handle = arr_out.insert_from_right_vertex(Segment_2(part_in_q_side[p], part_in_q_side[p+1]), v_trg);
he_handle = arr_out.insert_from_right_vertex(
Segment_2(part_in_q_side[p], part_in_q_side[p+1]), v_trg);
}
v_trg = he_handle->target();
}
@ -347,11 +376,15 @@ void report_while_handling_needles(
v_trg = v_needle_end;
}
else {
if (CGAL::Visibility_2::compare_xy_2<Geometry_traits_2>(geom_traits, v_trg->point(), points[i+1]) == CGAL::SMALLER) {
he_handle = arr_out.insert_from_left_vertex(Segment_2(points[i], points[i+1]), v_trg);
if (compare_xy_2<Geometry_traits_2>(
traits, v_trg->point(), points[i+1]) == SMALLER)
{
he_handle = arr_out.insert_from_left_vertex(
Segment_2(points[i], points[i+1]), v_trg);
}
else {
he_handle = arr_out.insert_from_right_vertex(Segment_2(points[i], points[i+1]), v_trg);
he_handle = arr_out.insert_from_right_vertex(
Segment_2(points[i], points[i+1]), v_trg);
}
v_trg = he_handle->target();
i++;
@ -359,7 +392,9 @@ void report_while_handling_needles(
if (i+2 == points.size()) {
//close the boundary
v_trg = he_handle->target();
arr_out.insert_at_vertices(Segment_2(points[points.size()-2], points[points.size()-1]), v_trg, v_fst);
arr_out.insert_at_vertices(Segment_2(points[points.size()-2],
points[points.size()-1]),
v_trg, v_fst);
break;
}
}

View File

@ -488,7 +488,7 @@ void test_interface() {
template <class Visibility_2>
void run_tests_with_changes_to_arr() {
std::cout << "\tTesting changes to attached arrangement:";
std::cout << " Testing changes to attached arrangement:";
typedef typename Visibility_2::Arrangement_2 Arrangement_2;
typedef typename Arrangement_2::Geometry_traits_2 Geometry_traits_2;
@ -543,11 +543,11 @@ void run_tests_with_changes_to_arr() {
// Change attached arrangement and query again
arr.clear();
//arr.clear();
CGAL::insert(arr, Segment_2(vertices[0], vertices[1]));
//CGAL::insert(arr, Segment_2(vertices[0], vertices[1]));
CGAL::insert(arr, Segment_2(vertices[1], vertices[3]));
CGAL::insert(arr, Segment_2(vertices[3], vertices[0]));
//CGAL::insert(arr, Segment_2(vertices[3], vertices[0]));
CGAL::assign(location, get_location(arr, query));