This commit is contained in:
Andreas Fabri 2012-10-09 14:25:17 +00:00
parent d0931017d6
commit 5dd82a1b37
12 changed files with 113 additions and 114 deletions

View File

@ -14,7 +14,7 @@ is templated by a kernel class `K`.
\sa `InterpolationTraits`
\sa `GradientFittingTraits`
\sa CGAL::Interpolation_gradient_fitting_traits_2<K>
\sa `CGAL::Interpolation_gradient_fitting_traits_2<K>`
*/
template< typename K >

View File

@ -9,7 +9,7 @@ namespace CGAL {
`InterpolationTraits`. It can be used to instantiate the
geometric traits class of a two-dimensional regular triangulation.
A three-dimensional plane is defined by a point and a vector that
are members of the traits class. The triangulation is defined on \f$ 3D\f$
are members of the traits class. The triangulation is defined on `3D`
points. It is the regular triangulation of the input points
projected onto the plane and each weighted with the negative squared
distance of the input point to the plane. It can be shown that it is
@ -24,9 +24,9 @@ templated by a kernel class `K`.
\models ::RegularTriangulationTraits_2
\sa `RegularTriangulationTraits_2`
\sa CGAL::Regular_triangulation_2<Gt, Tds>
\sa CGAL::regular_neighbor_coordinates_2
\sa CGAL::surface_neighbor_coordinates_3
\sa `CGAL::Regular_triangulation_2<Gt, Tds>`
\sa `CGAL::regular_neighbor_coordinates_2()`
\sa `CGAL::surface_neighbor_coordinates_3()`
*/
template< typename K >

View File

@ -61,33 +61,33 @@ std::pair< Data_type, bool> operator()(const Key_type& p);
/*!
\ingroup PkgInterpolation2Interpolation
generates the interpolated function value
computed by Farin's interpolant \cite f-sodt-90.
generates the interpolated function value computed by Farin's interpolant.
\pre `norm` \f$ \neq0\f$. `function_value(p).second == true` for all points `p` of the point/coordinate pairs in the range \f$ \left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$.
\pre The range \f$ \left[\right.\f$ `first`, `beyond`\f$ \left.\right)\f$ contains either one or more than three element
The function `farin_c1_interpolation` interpolates the function values and the
The function `farin_c1_interpolation()` interpolates the function values and the
gradients that are provided by functors using the method described in \cite f-sodt-90.
### Parameters ###
`RandomAccessIterator::value_type` is a pair
The value type of `RandomAccessIterator` is a pair
associating a point to a (non-normalized) barycentric coordinate. See
`CGALL::sibson_c1_interpolation` for the other parameters.
`sibson_c1_interpolation()` for the other parameters.
### Requirements ###
Same requirements as for `sibson_c1_interpolation` only the
Same requirements as for `sibson_c1_interpolation()` only the
iterator must provide random access and `Traits::FT` does not need
to provide the square root operation.
\sa `CGAL::Data_access<Map>`
\sa CGAL::linear_interpolation
\sa CGAL::sibson_c1_interpolation
\sa CGAL::sibson_gradient_fitting
\sa `CGAL::linear_interpolation()`
\sa `CGAL::sibson_c1_interpolation()`
\sa `CGAL::sibson_gradient_fitting()`
\sa `CGAL::Interpolation_traits_2<K>`
\sa CGAL::natural_neighbor_coordinates_2
\sa CGAL::regular_neighbor_coordinates_2
\sa CGAL::surface_neighbor_coordinates_3
\sa `CGAL::natural_neighbor_coordinates_2()`
\sa `CGAL::regular_neighbor_coordinates_2()`
\sa `CGAL::surface_neighbor_coordinates_3()`
s.
*/
@ -105,10 +105,10 @@ Traits& traits);
/*!
\ingroup PkgInterpolation2Interpolation
The function `linear_interpolation` computes the weighted sum of the function
The function `linear_interpolation()` computes the weighted sum of the function
values which must be provided via a functor.
`ForwardIterator::value_type` is a pair associating a point to a (non-normalized) barycentric
The value type of `ForwardIterator` is a pair associating a point to a (non-normalized) barycentric
coordinate. `norm` is the normalization factor. Given a point,
the functor `function_values` allows to access a pair of a
function value and a Boolean. The Boolean indicates whether the
@ -121,28 +121,28 @@ range \f$ \left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$.
### Requirements ###
<OL>
<LI>`ForwardIterator::value_type` is a pair of
<LI>The value type of `ForwardIterator` is a pair of
point/coordinate value, thus
`ForwardIterator::value_type::first_type` is equivalent to a
point and `ForwardIterator::value_type::second_type` is a
`std::iterator_traits<ForwardIterator>::value_type::first_type` is equivalent to a
point and `std::iterator_traits<ForwardIterator>::value_type::second_type` is a
field number type.
<LI>`Functor::argument_type` must be equivalent to
`ForwardIterator::value_type::first_type` and
`std::iterator_traits<ForwardIterator>::value_type::first_type` and
`Functor::result_type` is a pair of the function value type
and a Boolean value. The function value type must provide a
multiplication and addition operation with the field number type
`ForwardIterator::value_type::second_type` and a constructor
`std::iterator_traits<ForwardIterator>::value_type::second_type` and a constructor
with argument \f$ 0\f$. A model of the functor is provided by the
struct `Data_access`. It must be instantiated accordingly with
an associative container (e.g. \stl `std::map`) having the
an associative container (e.g. `std::map`) having the
point type as `key_type` and the function value type as
`mapped_type`.
</OL>
\sa `CGAL::Data_access<Map>`
\sa CGAL::natural_neighbor_coordinates_2
\sa CGAL::regular_neighbor_coordinates_2
\sa CGAL::surface_neighbor_coordinates_3
\sa `CGAL::natural_neighbor_coordinates_2()`
\sa `CGAL::regular_neighbor_coordinates_2()`
\sa `CGAL::surface_neighbor_coordinates_3()`
*/
template < class ForwardIterator, class Functor> typename
@ -173,19 +173,19 @@ See `sibson_c1_interpolation`.
### Requirements ###
Same requirements as for
`sibson_c1_interpolation` only that `Traits::FT` does not need
`sibson_c1_interpolation()` only that `Traits::FT` does not need
to provide the square root operation.
\sa `InterpolationTraits`
\sa `GradientFittingTraits`
\sa `CGAL::Data_access<Map>`
\sa CGAL::sibson_gradient_fitting
\sa CGAL::linear_interpolation
\sa `CGAL::sibson_gradient_fitting()`
\sa `CGAL::linear_interpolation()`
\sa `CGAL::Interpolation_traits_2<K>`
\sa `CGAL::Interpolation_gradient_fitting_traits_2<K>`
\sa CGAL::natural_neighbor_coordinates_2
\sa CGAL::regular_neighbor_coordinates_2
\sa CGAL::surface_neighbor_coordinates_3
\sa `CGAL::natural_neighbor_coordinates_2()`
\sa `CGAL::regular_neighbor_coordinates_2()`
\sa `CGAL::surface_neighbor_coordinates_3()`
*/
template < class ForwardIterator, class Functor, class
GradFunctor, class Traits> typename Functor::result_type
@ -219,7 +219,7 @@ interpolated function value as first and `true` as second value. \pre
The template parameter `Traits` is to be
instantiated with a model of `InterpolationTraits`.
`ForwardIterator::value_type` is a pair associating a point to a
The value type of `ForwardIterator` is a pair associating a point to a
(non-normalized) barycentric coordinate. `norm` is the
normalization factor. The range \f$ \left[\right.\f$
`first`,`beyond`\f$ \left.\right)\f$ contains the barycentric
@ -233,10 +233,10 @@ function gradient given a point.
<OL>
<LI>`Traits` is a model of the concept
`InterpolationTraits`.
<LI>`ForwardIterator::value_type` is a point/coordinate pair.
Precisely `ForwardIterator::value_type::first_type` is
<LI>The value type of `ForwardIterator` is a point/coordinate pair.
Precisely `std::iterator_traits<ForwardIterator>::value_type::first_type` is
equivalent to `Traits::Point_d` and
`ForwardIterator::value_type::second_type` is equivalent to
`std::iterator_traits<ForwardIterator>::value_type::second_type` is equivalent to
`Traits::FT`.
<LI>`Functor::argument_type` must be equivalent to
`Traits::Point_d` and `Functor::result_type` is a pair of
@ -261,13 +261,13 @@ the square root operation `sqrt()`.
\sa `InterpolationTraits`
\sa `GradientFittingTraits`
\sa `CGAL::Data_access<Map>`
\sa CGAL::sibson_gradient_fitting
\sa CGAL::linear_interpolation
\sa `CGAL::sibson_gradient_fitting()`
\sa `CGAL::linear_interpolation()`
\sa `CGAL::Interpolation_traits_2<K>`
\sa `CGAL::Interpolation_gradient_fitting_traits_2<K>`
\sa CGAL::natural_neighbor_coordinates_2
\sa CGAL::regular_neighbor_coordinates_2
\sa CGAL::surface_neighbor_coordinates_3
\sa `CGAL::natural_neighbor_coordinates_2()`
\sa `CGAL::regular_neighbor_coordinates_2()`
\sa `CGAL::surface_neighbor_coordinates_3()`
*/
template < class ForwardIterator, class Functor, class
GradFunctor, class Traits> std::pair< typename Functor::result_type,
@ -282,7 +282,7 @@ traits);
/*!
\ingroup PkgInterpolation2Interpolation
The same as `CGAL::sibson_interpolation` except that no square root
The same as `sibson_interpolation()` except that no square root
operation is needed for FT.
*/
template < class ForwardIterator, class Functor, class

View File

@ -5,7 +5,7 @@ namespace CGAL {
\ingroup PkgInterpolation2NatNeighbor
The function `natural_neighbor_coordinates_2` computes natural neighbor coordinates, also
called Sibson's coordinates, for \f$ 2D\f$ points provided a two-dimensional
called Sibson's coordinates, for `2D` points provided a two-dimensional
triangulation and a query point in the convex hull of the vertices
of the triangulation.
@ -40,10 +40,10 @@ convex hull, the coordinate values cannot be computed and the third
value of the result triple is set to `false`.
\sa CGAL::linear_interpolation
\sa CGAL::sibson_c1_interpolation
\sa CGAL::surface_neighbor_coordinates_3
\sa CGAL::regular_neighbor_coordinates_2
\sa `CGAL::linear_interpolation()`
\sa `CGAL::sibson_c1_interpolation()`
\sa `CGAL::surface_neighbor_coordinates_3()`
\sa `CGAL::regular_neighbor_coordinates_2()`
*/
/// @{
@ -71,8 +71,8 @@ natural_neighbor_coordinates_2(
The same as above. `hole_begin` and `hole_end` determines the
iterator range over the boundary edges of the conflict zone of `p` in
the triangulation. It is the result of the function
`T.get_boundary_of_conflicts(p,std::back_inserter(hole), start)`, see
`Delaunay_triangulation_2<Traits, Tds>`.
\link Delaunay_triangulation_2::get_boundary_of_conflicts()
`dt.get_boundary_of_conflicts(p,std::back_inserter(hole), start)`\endlink.
*/
template <class Dt, class OutputIterator,
class EdgeIterator > CGAL::Triple< OutputIterator, typename Dt::Geom_traits::FT,

View File

@ -7,7 +7,7 @@ namespace CGAL {
Given a 3D point `p` and a 3D Delaunay triangulation `dt`,
this function calculates the natural neighbors and coordinates of `p` with regard of `dt`.
\tparam `OutputIterator` must have value type
\tparam OutputIterator must have value type
`std::pair<Dt::Vertex_handle, Dt::Geom_traits::FT>`
Result :

View File

@ -5,7 +5,7 @@ namespace CGAL {
\ingroup PkgInterpolation2NatNeighbor
The function `regular_neighbor_coordinates_2` computes natural neighbor coordinates, also
called Sibson's coordinates, for weighted \f$ 2D\f$ points provided a
called Sibson's coordinates, for weighted `2D` points provided a
two-dimensional regular triangulation and a (weighted) query point
inside the convex hull of the vertices of the triangulation. We call these
coordinates regular neighbor coordinates.
@ -21,7 +21,7 @@ type `FT` which is a model for `FieldNumberType` and it must
meet the requirements for the traits class of the
`polygon_area_2` function. A model of this traits class is
`Regular_triangulation_euclidean_traits_2<K, Weight>`.
<LI>`OutputIterator::value_type` is equivalent to
<LI>The value type of `OutputIterator` is equivalent to
`std::pair<Rt::Weighted_point, Rt::Geom_traits::FT>`, i.e. a pair
associating a point and its regular neighbor coordinate.
</OL>
@ -35,7 +35,7 @@ returned by the function. If `p` lies outside the convex hull, the
coordinate values cannot be computed and the third value of the result
triple is set to `false`.
\sa CGAL::natural_neighbor_coordinates_2
\sa `CGAL::natural_neighbor_coordinates_2()`
*/
/// @{
@ -64,12 +64,12 @@ Rt::Face_handle start = typename Rt::Face_handle());
/*!
The same as above. `hole_begin` and `hole_end` determines the iterator
range over the boundary edges of the conflict zone of `p` in the
triangulation `rt`. `hidden_vertices_begin` and `hidden_vertices_end`
triangulation `rt`.
\link Regular_triangulation_2::hidden_vertices_begin() `rt.hidden_vertices_begin()`\endlink and
\link Regular_triangulation_2::hidden_vertices_end() `rt.hidden_vertices_end()`\endlink
determines the iterator range over the hidden vertices of the conflict
zone of `p` in`rt`. It is the result of the function
`T.get_boundary_of_conflicts(p,std::back_inserter(hole),
std::back_inserter(hidden_vertices), start)`, see
`Regular_triangulation_2<Traits, Tds>`.
\link Regular_triangulation_2::get_boundary_of_conflicts() `rt.get_boundary_of_conflicts(p,std::back_inserter(hole), std::back_inserter(hidden_vertices), start)`\endlink.
*/
template <class Rt, class OutputIterator,
class EdgeIterator, class VertexIterator > CGAL::Triple<

View File

@ -4,7 +4,7 @@ namespace CGAL {
\defgroup sibson_gradient_fitting sibson_gradient_fitting
\ingroup PkgInterpolation2Interpolation
The function `sibson_gradient_fitting` approximates the gradient of a
The function `sibson_gradient_fitting()` approximates the gradient of a
function at a point `p` given natural neighbor coordinates for `p` and
its neighbors' function values. The approximation method is described
in \cite s-bdnni-81. Further functions are provided to fit the
@ -15,28 +15,28 @@ coordinates.
### Requirements ###
<OL>
<LI>`ForwardIterator::value_type` is a pair of point/coordinate
value, thus `ForwardIterator::value_type::first_type` is
<LI>The value type of `ForwardIterator` is a pair of point/coordinate
value, thus `std::iterator_traits<ForwardIterator>::value_type::first_type` is
equivalent to a point and
`ForwardIterator::value_type::second_type` is a
`std::iterator_traits<ForwardIterator>::value_type::second_type` is a
number type.
<LI>`Functor::argument_type` must be equivalent to
`ForwardIterator::value_type::first_type` and
`std::iterator_traits<ForwardIterator>::value_type::first_type` and
`Functor::result_type` is the function value type. It must
provide a multiplication and addition operation with the type
`ForwardIterator::value_type::second_type`.
`std::iterator_traits<ForwardIterator>::value_type::second_type`.
<LI>`Traits` is a model of the concept
`GradientFittingTraits`.
</OL>
\sa CGAL::linear_interpolation
\sa CGAL::sibson_c1_interpolation
\sa CGAL::farin_c1_interpolation
\sa CGAL::quadratic_interpolation
\sa `CGAL::linear_interpolation()`
\sa `CGAL::sibson_c1_interpolation()`
\sa `CGAL::farin_c1_interpolation()`
\sa `CGAL::quadratic_interpolation()`
\sa `CGAL::Interpolation_gradient_fitting_traits_2<K>`
\sa CGAL::natural_neighbor_coordinates_2
\sa CGAL::regular_neighbor_coordinates_2
\sa CGAL::surface_neighbor_coordinates_3
\sa `CGAL::natural_neighbor_coordinates_2()`
\sa `CGAL::regular_neighbor_coordinates_2()`
\sa `CGAL::surface_neighbor_coordinates_3()`
### Implementation ###
@ -67,8 +67,8 @@ Functor f, const Traits& traits);
/*!
estimates the function gradients at all vertices of `dt` that lie
inside the convex hull using the coordinates computed by the
function `CGAL::natural_neighbor_coordinates_2`.
`OutputIterator::value_type` is a pair associating a point to a
function `natural_neighbor_coordinates_2()`.
The value type of `OutputIterator` is a pair associating a point to a
vector. The sequence of point/gradient pairs computed by this
function is placed starting at `out`. The function returns an
iterator that is placed past-the-end of the resulting sequence. The
@ -82,8 +82,8 @@ dt, OutputIterator out, Functor f, const Traits& traits);
/*!
estimates the function gradients at all vertices of `rt` that lie
inside the convex hull using the coordinates computed by the
function `CGAL::regular_neighbor_coordinates_2`.
`OutputIterator::value_type` is a pair associating a point to a
function `regular_neighbor_coordinates_2()`.
The value type of `OutputIterator` is a pair associating a point to a
vector. The sequence of point/gradient pairs computed by this
function is placed starting at `out`. The function returns an
iterator that is placed past-the-end of the resulting sequence. The

View File

@ -4,7 +4,7 @@ namespace CGAL {
\defgroup surface_neighbor_coordinates_3 surface_neighbor_coordinates_3
\ingroup PkgInterpolation2SurfaceNeighbor
The function `surface_neighbor_coordinates_3` computes natural neighbor coordinates for
The function `surface_neighbor_coordinates_3()` computes natural neighbor coordinates for
surface points associated to a finite set of sample points issued from
the surface. The coordinates are computed from the intersection of the
Voronoi cell of the query point `p` with the tangent plane to the
@ -14,14 +14,13 @@ and in \cite bf-lcss-02,\cite cgal:f-csapc-03. The query
point `p` needs to lie inside the convex hull of the projection of
the sample points onto the tangent plane at `p`.
The functions `surface_neighbor_coordinates_certified_3` return, in
The functions `surface_neighbor_coordinates_certified_3()` return, in
addition, a second Boolean value (the fourth value of the quadruple)
that certifies whether or not, the Voronoi cell of `p` can be affected
by points that lie outside the input range, i.e. outside the ball
centered on `p` passing through the furthest sample point from `p` in
the range \f$ \left[\right.\f$`first`, `beyond`\f$
\left.\right)\f$. If the sample points are collected by a \f$
k\f$-nearest neighbor or a range search query, this permits to check
the range `[first, beyond)`. If the sample points are collected by a
`k`-nearest neighbor or a range search query, this permits to check
whether the neighborhood which has been considered is large enough.
### Requirements ###
@ -29,24 +28,24 @@ whether the neighborhood which has been considered is large enough.
<OL>
<LI>`Dt` is equivalent to the class
`Delaunay_triangulation_3`.
<LI>`OutputIterator::value_type` is equivalent to
<LI>The value type of `OutputIterator` is equivalent to
`std::pair<Dt::Point_3, Dt::Geom_traits::FT>`, i.e. a pair
associating a point and its natural neighbor coordinate.
<LI>`ITraits` is equivalent to the class `Voronoi_intersection_2_traits_3<K>`.
</OL>
\sa CGAL::linear_interpolation
\sa CGAL::sibson_c1_interpolation
\sa CGAL::farin_c1_interpolation
\sa CGAL::Voronoi_intersection_2_traits_3<K>
\sa CGAL::surface_neighbors_3
\sa `CGAL::linear_interpolation()`
\sa `CGAL::sibson_c1_interpolation()`
\sa `CGAL::farin_c1_interpolation()`
\sa `CGAL::Voronoi_intersection_2_traits_3<K>`
\sa `CGAL::surface_neighbors_3()`
### Implementation ###
This functions construct the regular triangulation of the input points
instantiated with `Voronoi_intersection_2_traits_3<Kernel>` or `ITraits` if provided.
They return the result of the function call
`CGAL::regular_neighbor_coordinates_2`
`regular_neighbor_coordinates_2()`
with the regular triangulation and `p` as arguments.
*/
@ -54,15 +53,15 @@ with the regular triangulation and `p` as arguments.
/*!
The sample points \f$ \mathcal{P}\f$ are provided in the range
\f$ \left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$.
`InputIterator::value_type` is the point type
`[first`, beyond)`.
The value type of `InputIterator` is the point type
`Kernel::Point_3`. The tangent plane is defined by the point
`p` and the vector `normal`. The parameter `K`
determines the kernel type that will instantiate
the template parameter of `Voronoi_intersection_2_traits_3<K>`.
The natural neighbor coordinates for `p` are computed in the
power diagram that results from the intersection of the \f$ 3D\f$ Voronoi
power diagram that results from the intersection of the `3D` Voronoi
diagram of \f$ \mathcal{P}\f$ with the tangent plane. The sequence of
point/coordinate pairs that is computed by the function is placed
starting at `out`. The function returns a triple with an
@ -93,7 +92,7 @@ ITraits& traits);
/*!
Similar to the first function. The additional fourth return
value is `true` if the furthest point in the range
\f$ \left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$ is further
`[first, beyond)` is further
away from `p` than twice the distance from `p` to the
furthest vertex of the intersection of the Voronoi cell of `p`
with the tangent plane defined by `(p,normal)`. It is
@ -109,8 +108,7 @@ K);
/*!
The same as above except that this function takes the
maximal distance from p to the points in the range
\f$ \left[\right.\f$`first`, `beyond`\f$ \left.\right)\f$ as
additional parameter.
`[first, beyond)` as additional parameter.
*/
template <class OutputIterator,
class InputIterator, class Kernel> CGAL::Quadruple< OutputIterator,
@ -166,7 +164,7 @@ Dt::Geom_traits::Vector_3& normal, OutputIterator out, typename
Dt::Cell_handle start = typename Dt::Cell_handle());
/*!
The same as above only that the parameter `traits` instantiates
The same as above only that the parameter traits instantiates
the geometric traits class. Its type `ITraits` must be
equivalent to `Voronoi_intersection_2_traits_3<K>`.
*/

View File

@ -3,7 +3,7 @@
\ingroup PkgInterpolation2Concepts
\cgalconcept
The function `sibson_gradient_fitting` is parameterized by a
The function `sibson_gradient_fitting()` is parameterized by a
traits class that defines the primitives used by the algorithm. The
concept `GradientFittingTraits` defines this common set of requirements.
@ -11,10 +11,10 @@ concept `GradientFittingTraits` defines this common set of requirements.
\sa `InterpolationTraits`
\sa `CGAL::Interpolation_traits_2<K>`
\sa CGAL::sibson_gradient_fitting
\sa CGAL::sibson_c1_interpolation
\sa CGAL::farin_c1_interpolation
\sa CGAL::quadratic_interpolation
\sa CGAL::sibson_gradient_fitting()
\sa CGAL::sibson_c1_interpolation()
\sa CGAL::farin_c1_interpolation()
\sa CGAL::quadratic_interpolation()
*/

View File

@ -11,10 +11,10 @@ defines the primitives used in the interpolation algorithms. The concept
\hasModel `CGAL::Interpolation_gradient_fitting_traits_2<K>`
\sa `GradientFittingTraits`
\sa CGAL::sibson_c1_interpolation
\sa CGAL::sibson_gradient_fitting
\sa CGAL::farin_c1_interpolation
\sa CGAL::quadratic_interpolation
\sa CGAL::sibson_c1_interpolation()
\sa CGAL::sibson_gradient_fitting()
\sa CGAL::farin_c1_interpolation()
\sa CGAL::quadratic_interpolation()
*/
class InterpolationTraits {

View File

@ -96,14 +96,15 @@ The interpolation package of \cgal provides functions to compute
natural neighbor coordinates for \f$ 2D\f$ and \f$ 3D\f$ points with respect
to Voronoi diagrams as well as with respect to power diagrams (only
\f$ 2D\f$), i.e. for weighted points. Refer to the reference pages
`natural_neighbor_coordinates_2`,
`natural_neighbor_coordinates_3` and
`regular_neighbor_coordinates_2`.
`natural_neighbor_coordinates_2()`,
`sibson_natural_neighbor_coordinates_3()`
`laplace_natural_neighbor_coordinates_3()` and
`regular_neighbor_coordinates_2()`.
In addition, the package provides functions to compute natural
neighbor coordinates on well sampled point set surfaces. See
Section \ref secsurface and the reference page
`CGAL::surface_neighbor_coordinates_3` for further information.
`surface_neighbor_coordinates_3()` for further information.
## Implementation ##
@ -198,7 +199,7 @@ upon the computation of regular neighbor coordinates with respect to
the regular triangulation that is dual to \f$ {\rm Vor}(\mathcal{P}) \cap
\mathcal{T}_x\f$, the intersection of \f$ \mathcal{T}_x\f$ and the Voronoi
diagram of \f$ \mathcal{P}\f$, via the function
`CGAL::regular_neighbor_coordinates_2`.
`regular_neighbor_coordinates_2()`.
Of course, we might introduce all data points \f$ \mathcal{P}\f$ into this
regular triangulation. However, this is not necessary because we are
@ -333,7 +334,7 @@ of \f$ \mathbf{p_i}\f$ with respect to \f$ \mathbf{p_i}\f$ associated to
\cgal provides functions to approximate the gradients of all data
points that are inside the convex hull. There is one function for each
type of natural neighbor coordinate (i.e. `CGAL::natural_neighbor_coordinates_2`, `CGAL::regular_neighbor_coordinates_2`).
type of natural neighbor coordinate (i.e. `natural_neighbor_coordinates_2()`, `regular_neighbor_coordinates_2()`).
\subsection subsecinterpol_examples Example for Linear Interpolation

View File

@ -3,6 +3,7 @@
/// \defgroup PkgInterpolation2Concepts Concepts
/// \ingroup PkgInterpolation2
/// \defgroup PkgInterpolation2Interpolation Interpolation Functions
/// \ingroup PkgInterpolation2
@ -15,7 +16,6 @@
/*!
\addtogroup PkgInterpolation2
\todo check generated documentation
\PkgDescriptionBegin{2D and Surface Function Interpolation,PkgInterpolation2Summary}
\PkgPicture{interpolation.png}
\PkgAuthor{Julia Fl&ouml;totto}
@ -37,10 +37,10 @@ function gradients are known, we can exactly interpolate quadratic
functions given barycentric coordinates. Any further properties of
these interpolation functions depend on the properties of the
barycentric coordinates. They are provided in this package under the
name `linear_interpolation` and
`quadratic_interpolation`.
name `CGAL::linear_interpolation()` and
`CGAL::quadratic_interpolation()`.
## Natural neighbor interpolation ##
## Natural Neighbor Interpolation ##
Natural neighbor coordinates are defined by Sibson in 1980 and are based on the Voronoi
diagram of the data points. Interpolation methods based on natural