mirror of https://github.com/CGAL/cgal
Merge branch '5.2.x-branch'
This commit is contained in:
commit
5e53e0e70a
|
|
@ -553,7 +553,7 @@ private:
|
|||
op.min_points = dialog.min_points(); // Only extract shapes with a minimum number of points.
|
||||
op.epsilon = dialog.epsilon(); // maximum euclidean distance between point and shape.
|
||||
op.cluster_epsilon = dialog.cluster_epsilon(); // maximum euclidean distance between points to be clustered.
|
||||
op.normal_threshold = dialog.normal_tolerance(); // normal_threshold < dot(surface_normal, point_normal);
|
||||
op.normal_threshold = std::cos(CGAL_PI * dialog.normal_tolerance() / 180.); // normal_threshold < dot(surface_normal, point_normal);
|
||||
|
||||
CGAL::Random rand(static_cast<unsigned int>(time(0)));
|
||||
// Gets point set
|
||||
|
|
|
|||
|
|
@ -524,10 +524,10 @@ namespace CGAL {
|
|||
std::vector<Shape *> candidates;
|
||||
|
||||
// Identifying minimum number of samples
|
||||
std::size_t required_samples = 0;
|
||||
m_required_samples = 0;
|
||||
for (std::size_t i = 0;i<m_shape_factories.size();i++) {
|
||||
Shape *tmp = (Shape *) m_shape_factories[i]();
|
||||
required_samples = (std::max<std::size_t>)(required_samples, tmp->minimum_sample_size());
|
||||
m_required_samples = (std::max<std::size_t>)(m_required_samples, tmp->minimum_sample_size());
|
||||
delete tmp;
|
||||
}
|
||||
|
||||
|
|
@ -553,45 +553,52 @@ namespace CGAL {
|
|||
|
||||
if (keep_searching)
|
||||
do {
|
||||
// Generate candidates
|
||||
//1. pick a point p1 randomly among available points
|
||||
std::set<std::size_t> indices;
|
||||
bool done = false;
|
||||
do {
|
||||
do
|
||||
first_sample = get_default_random()(
|
||||
static_cast<unsigned int>(m_num_available_points));
|
||||
while (m_shape_index[first_sample] != -1);
|
||||
// Search (remaining_points / min_points) shapes (max 200 per iteration, min 1)
|
||||
std::size_t search_number
|
||||
= (std::min)(std::size_t(200),
|
||||
(std::max)(std::size_t((m_num_available_points - num_invalid) / double(m_options.min_points)),
|
||||
std::size_t(1)));
|
||||
for (std::size_t nb = 0; nb < search_number; ++ nb)
|
||||
{
|
||||
// Generate candidates
|
||||
//1. pick a point p1 randomly among available points
|
||||
std::set<std::size_t> indices;
|
||||
bool done = false;
|
||||
do {
|
||||
do
|
||||
first_sample = get_default_random()(
|
||||
static_cast<unsigned int>(m_num_available_points));
|
||||
while (m_shape_index[first_sample] != -1);
|
||||
|
||||
done = m_global_octree->drawSamplesFromCellContainingPoint(
|
||||
get(m_point_pmap,
|
||||
*(m_input_iterator_first + first_sample)),
|
||||
select_random_octree_level(),
|
||||
indices,
|
||||
m_shape_index,
|
||||
required_samples);
|
||||
done = m_global_octree->drawSamplesFromCellContainingPoint(
|
||||
get(m_point_pmap,
|
||||
*(m_input_iterator_first + first_sample)),
|
||||
select_random_octree_level(),
|
||||
indices,
|
||||
m_shape_index,
|
||||
m_required_samples);
|
||||
|
||||
if (callback && !callback(num_invalid / double(m_num_total_points)))
|
||||
return false;
|
||||
if (callback && !callback(num_invalid / double(m_num_total_points)))
|
||||
return false;
|
||||
|
||||
} while (m_shape_index[first_sample] != -1 || !done);
|
||||
} while (m_shape_index[first_sample] != -1 || !done);
|
||||
|
||||
generated_candidates++;
|
||||
generated_candidates++;
|
||||
|
||||
//add candidate for each type of primitives
|
||||
for(typename std::vector<Shape *(*)()>::iterator it =
|
||||
m_shape_factories.begin(); it != m_shape_factories.end(); it++) {
|
||||
//add candidate for each type of primitives
|
||||
for(typename std::vector<Shape *(*)()>::iterator it =
|
||||
m_shape_factories.begin(); it != m_shape_factories.end(); it++) {
|
||||
if (callback && !callback(num_invalid / double(m_num_total_points)))
|
||||
return false;
|
||||
Shape *p = (Shape *) (*it)();
|
||||
//compute the primitive and says if the candidate is valid
|
||||
p->compute(indices,
|
||||
m_input_iterator_first,
|
||||
m_traits,
|
||||
m_point_pmap,
|
||||
m_normal_pmap,
|
||||
m_options.epsilon,
|
||||
m_options.normal_threshold);
|
||||
m_input_iterator_first,
|
||||
m_traits,
|
||||
m_point_pmap,
|
||||
m_normal_pmap,
|
||||
m_options.epsilon,
|
||||
m_options.normal_threshold);
|
||||
|
||||
if (p->is_valid()) {
|
||||
improve_bound(p, m_num_available_points - num_invalid, 1, 500);
|
||||
|
|
@ -612,6 +619,7 @@ namespace CGAL {
|
|||
failed_candidates++;
|
||||
delete p;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (failed_candidates >= limit_failed_candidates)
|
||||
|
|
@ -1019,7 +1027,8 @@ namespace CGAL {
|
|||
}
|
||||
|
||||
inline FT stop_probability(std::size_t largest_candidate, std::size_t num_pts, std::size_t num_candidates, std::size_t octree_depth) const {
|
||||
return (std::min<FT>)(std::pow((FT) 1.f - (FT) largest_candidate / FT(num_pts * octree_depth * 4), (int) num_candidates), (FT) 1);
|
||||
return (std::min<FT>)(std::pow((FT) 1.f - (FT) largest_candidate
|
||||
/ (FT(num_pts) * (octree_depth+1) * (1 << (m_required_samples - 1))), (int) num_candidates), (FT) 1);
|
||||
}
|
||||
|
||||
private:
|
||||
|
|
@ -1039,6 +1048,7 @@ namespace CGAL {
|
|||
std::vector<int> m_shape_index;
|
||||
std::size_t m_num_available_points;
|
||||
std::size_t m_num_total_points;
|
||||
std::size_t m_required_samples;
|
||||
|
||||
//give the index of the subset of point i
|
||||
std::vector<int> m_index_subsets;
|
||||
|
|
|
|||
|
|
@ -42,6 +42,21 @@ if(EIGEN3_FOUND)
|
|||
target_link_libraries(${target} PUBLIC CGAL::Eigen_support)
|
||||
endforeach()
|
||||
|
||||
set(RANSAC_PROTO_DIR CACHE PATH "")
|
||||
if (NOT RANSAC_PROTO_DIR STREQUAL "")
|
||||
add_definitions(-DPOINTSWITHINDEX -DCGAL_TEST_RANSAC_PROTOTYPE)
|
||||
include_directories(${RANSAC_PROTO_DIR})
|
||||
include_directories(${RANSAC_PROTO_DIR}/MiscLib/)
|
||||
file(GLOB proto_src "${RANSAC_PROTO_DIR}/*.cpp")
|
||||
file(GLOB proto_misc_src "${RANSAC_PROTO_DIR}/MiscLib/*.cpp")
|
||||
add_library(libproto STATIC ${proto_src} ${proto_misc_src})
|
||||
add_executable(test_validity_sampled_data "test_validity_sampled_data.cpp")
|
||||
target_link_libraries(test_validity_sampled_data libproto CGAL::CGAL CGAL::Eigen_support)
|
||||
else()
|
||||
add_executable(test_validity_sampled_data "test_validity_sampled_data.cpp")
|
||||
target_link_libraries(test_validity_sampled_data CGAL::CGAL CGAL::Eigen_support)
|
||||
endif()
|
||||
cgal_add_test(test_validity_sampled_data)
|
||||
endif()
|
||||
|
||||
create_single_source_cgal_program(
|
||||
|
|
|
|||
|
|
@ -0,0 +1,244 @@
|
|||
#include <CGAL/Simple_cartesian.h>
|
||||
|
||||
#define CGAL_RANSAC_EXPERIMENTAL_FIXES
|
||||
#define USE_WEIGHTED_LEVELS
|
||||
#include <CGAL/Shape_detection/Efficient_RANSAC.h>
|
||||
#include <CGAL/Shape_detection/Region_growing/Region_growing.h>
|
||||
#include <CGAL/Shape_detection/Region_growing/Region_growing_on_point_set.h>
|
||||
|
||||
#ifdef CGAL_TEST_RANSAC_PROTOTYPE
|
||||
#include <RansacShapeDetector.h>
|
||||
#include <CylinderPrimitiveShapeConstructor.h>
|
||||
#include <PlanePrimitiveShapeConstructor.h>
|
||||
#include <CylinderPrimitiveShape.h>
|
||||
#endif
|
||||
|
||||
#include <CGAL/IO/read_xyz_points.h>
|
||||
#include <CGAL/IO/write_ply_points.h>
|
||||
|
||||
#include <CGAL/Real_timer.h>
|
||||
|
||||
#include <boost/function_output_iterator.hpp>
|
||||
|
||||
namespace SD = CGAL::Shape_detection;
|
||||
|
||||
using Kernel = CGAL::Simple_cartesian<double>;
|
||||
using Point_3 = Kernel::Point_3;
|
||||
using Vector_3 = Kernel::Vector_3;
|
||||
|
||||
using Pwn = std::pair<Point_3, Vector_3>;
|
||||
using Point_set = std::vector<Pwn>;
|
||||
using Point_map = CGAL::First_of_pair_property_map<Pwn>;
|
||||
using Normal_map = CGAL::Second_of_pair_property_map<Pwn>;
|
||||
|
||||
using RG_query = SD::Point_set::Sphere_neighbor_query<Kernel, Point_set, Point_map>;
|
||||
using RG_region = SD::Point_set::Least_squares_plane_fit_region<Kernel, Point_set, Point_map, Normal_map>;
|
||||
using Region_growing = SD::Region_growing<Point_set, RG_query, RG_region>;
|
||||
|
||||
using RANSAC_traits = SD::Efficient_RANSAC_traits<Kernel, Point_set, Point_map, Normal_map>;
|
||||
using RANSAC = SD::Efficient_RANSAC<RANSAC_traits>;
|
||||
using RANSAC_plane = SD::Plane<RANSAC_traits>;
|
||||
|
||||
void test_copied_point_cloud (const Point_set& points, std::size_t nb);
|
||||
|
||||
int main (int argc, char** argv)
|
||||
{
|
||||
Point_set points;
|
||||
const char* ifilename = (argc > 1) ? argv[1] : "data/point_set_3.xyz";
|
||||
std::ifstream ifile(ifilename);
|
||||
|
||||
if (!ifile ||
|
||||
!CGAL::read_xyz_points(
|
||||
ifile,
|
||||
std::back_inserter(points),
|
||||
CGAL::parameters::point_map(Point_map()).
|
||||
normal_map(Normal_map())))
|
||||
{
|
||||
std::cerr << "Reading error" << std::endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
CGAL::cpp98::random_shuffle (points.begin(), points.end());
|
||||
|
||||
test_copied_point_cloud (points, 1);
|
||||
test_copied_point_cloud (points, 2);
|
||||
test_copied_point_cloud (points, 5);
|
||||
test_copied_point_cloud (points, 10);
|
||||
#ifndef CGAL_TEST_SUITE // Disable tests too large for testsuite
|
||||
test_copied_point_cloud (points, 20);
|
||||
test_copied_point_cloud (points, 50);
|
||||
#endif
|
||||
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
|
||||
void test_copied_point_cloud (const Point_set& original_points, std::size_t nb)
|
||||
{
|
||||
CGAL::Bbox_3 bbox = CGAL::bbox_3
|
||||
(CGAL::make_transform_iterator_from_property_map (original_points.begin(), Point_map()),
|
||||
CGAL::make_transform_iterator_from_property_map (original_points.end(), Point_map()));
|
||||
|
||||
std::size_t ground_truth = 6*nb*nb+1;
|
||||
std::cerr << "Ground truth = " << ground_truth << " planes" << std::endl;
|
||||
|
||||
Point_set points;
|
||||
points.reserve (nb * nb * original_points.size());
|
||||
for (std::size_t x = 0; x < nb; ++ x)
|
||||
for (std::size_t y = 0; y < nb; ++ y)
|
||||
{
|
||||
Vector_3 shift ((bbox.xmax() - bbox.xmin()) * x, (bbox.ymax() - bbox.ymin()) * y, 0);
|
||||
for (std::size_t i = 0; i < original_points.size(); ++ i)
|
||||
{
|
||||
Vector_3 noise (CGAL::get_default_random().get_double(-0.0001, 0.0001),
|
||||
CGAL::get_default_random().get_double(-0.0001, 0.0001),
|
||||
CGAL::get_default_random().get_double(-0.0001, 0.0001));
|
||||
points.emplace_back (original_points[i].first + shift + noise,
|
||||
original_points[i].second);
|
||||
}
|
||||
}
|
||||
|
||||
bbox = CGAL::bbox_3
|
||||
(CGAL::make_transform_iterator_from_property_map (points.begin(), Point_map()),
|
||||
CGAL::make_transform_iterator_from_property_map (points.end(), Point_map()));
|
||||
|
||||
typename RANSAC::Parameters parameters;
|
||||
parameters.probability = 0.01;
|
||||
parameters.min_points = 100;
|
||||
parameters.epsilon = 0.01;
|
||||
parameters.cluster_epsilon = 0.01;
|
||||
parameters.normal_threshold = 0.95;
|
||||
|
||||
CGAL::Real_timer t;
|
||||
t.start();
|
||||
RG_query rg_query (points, parameters.cluster_epsilon);
|
||||
RG_region rg_region (points, parameters.epsilon, parameters.normal_threshold, parameters.min_points);
|
||||
Region_growing region_growing (points, rg_query, rg_region);
|
||||
std::size_t nb_detected = 0;
|
||||
std::size_t nb_unassigned = 0;
|
||||
region_growing.detect (boost::make_function_output_iterator ([&](const auto&) { ++ nb_detected; }));
|
||||
region_growing.unassigned_items (boost::make_function_output_iterator ([&](const auto&) { ++ nb_unassigned; }));
|
||||
t.stop();
|
||||
std::cerr << "Region Growing = " << nb_detected << " planes (" << 1000 * t.time() << "ms)" << std::endl;
|
||||
|
||||
assert (nb_detected == ground_truth);
|
||||
|
||||
#ifdef CGAL_TEST_SUITE
|
||||
double timeout = 60; // 1 minute timeout
|
||||
std::size_t nb_runs = 20; //
|
||||
#else
|
||||
double timeout = 120; // 2 minutes timeout
|
||||
std::size_t nb_runs = 500;
|
||||
#endif
|
||||
|
||||
CGAL::Real_timer timer;
|
||||
timer.start();
|
||||
|
||||
std::vector<std::size_t> detected_ransac;
|
||||
std::vector<double> times_ransac;
|
||||
for (std::size_t run = 0; run < nb_runs; ++ run)
|
||||
{
|
||||
Point_set ordered_points = points;
|
||||
|
||||
CGAL::Real_timer t;
|
||||
t.start();
|
||||
RANSAC ransac;
|
||||
ransac.template add_shape_factory<RANSAC_plane>();
|
||||
ransac.set_input(ordered_points);
|
||||
ransac.detect(parameters);
|
||||
t.stop();
|
||||
|
||||
detected_ransac.emplace_back (ransac.shapes().size());
|
||||
times_ransac.emplace_back (t.time() * 1000);
|
||||
if (timer.time() > timeout)
|
||||
{
|
||||
nb_runs = run + 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
std::sort (detected_ransac.begin(), detected_ransac.end());
|
||||
std::sort (times_ransac.begin(), times_ransac.end());
|
||||
std::cerr << "RANSAC = " << detected_ransac[detected_ransac.size() / 2]
|
||||
<< " planes (" << times_ransac[times_ransac.size() / 2] << "ms) (on "
|
||||
<< nb_runs << " runs, planes["
|
||||
<< detected_ransac.front() << ";" << detected_ransac.back() << "], time["
|
||||
<< times_ransac.front() << ";" << times_ransac.back() << "])" << std::endl;
|
||||
|
||||
// RANSAC should at least detect 75% of shapes
|
||||
assert (detected_ransac[detected_ransac.size() / 2] > std::size_t(0.75 * ground_truth));
|
||||
|
||||
#ifdef CGAL_TEST_RANSAC_PROTOTYPE
|
||||
{
|
||||
CGAL::Real_timer timer;
|
||||
double timeout = 120.; // 2 minute timeout
|
||||
timer.start();
|
||||
std::size_t nb_runs = 500;
|
||||
std::vector<std::size_t> detected_ransac;
|
||||
std::vector<double> times_ransac;
|
||||
for (std::size_t run = 0; run < nb_runs; ++ run)
|
||||
{
|
||||
PointCloud proto_points;
|
||||
proto_points.reserve (points.size());
|
||||
|
||||
Point Pt;
|
||||
for (std::size_t i = 0; i < points.size(); ++i)
|
||||
{
|
||||
Pt.pos[0] = static_cast<float>(points[i].first.x());
|
||||
Pt.pos[1] = static_cast<float>(points[i].first.y());
|
||||
Pt.pos[2] = static_cast<float>(points[i].first.z());
|
||||
Pt.normal[0] = static_cast<float>(points[i].second.x());
|
||||
Pt.normal[1] = static_cast<float>(points[i].second.y());
|
||||
Pt.normal[2] = static_cast<float>(points[i].second.z());
|
||||
#ifdef POINTSWITHINDEX
|
||||
Pt.index = i;
|
||||
#endif
|
||||
proto_points.push_back(Pt);
|
||||
}
|
||||
|
||||
//manually set bounding box!
|
||||
Vec3f cbbMin, cbbMax;
|
||||
cbbMin[0] = static_cast<float>(bbox.xmin());
|
||||
cbbMin[1] = static_cast<float>(bbox.ymin());
|
||||
cbbMin[2] = static_cast<float>(bbox.zmin());
|
||||
cbbMax[0] = static_cast<float>(bbox.xmax());
|
||||
cbbMax[1] = static_cast<float>(bbox.ymax());
|
||||
cbbMax[2] = static_cast<float>(bbox.zmax());
|
||||
proto_points.setBBox(cbbMin, cbbMax);
|
||||
|
||||
// Sets parameters for shape detection.
|
||||
RansacShapeDetector::Options options;
|
||||
options.m_epsilon = parameters.epsilon;
|
||||
options.m_bitmapEpsilon = parameters.cluster_epsilon;
|
||||
options.m_normalThresh = parameters.normal_threshold;
|
||||
options.m_probability = parameters.probability;
|
||||
options.m_minSupport = parameters.min_points;
|
||||
|
||||
CGAL::Real_timer t;
|
||||
t.start();
|
||||
RansacShapeDetector ransac (options); // the detector object
|
||||
ransac.Add (new PlanePrimitiveShapeConstructor());
|
||||
MiscLib::Vector<std::pair<MiscLib::RefCountPtr<PrimitiveShape>, std::size_t> > shapes; // stores the detected shapes
|
||||
ransac.Detect (proto_points, 0, proto_points.size(), &shapes);
|
||||
t.stop();
|
||||
|
||||
detected_ransac.emplace_back (shapes.size());
|
||||
times_ransac.emplace_back (t.time() * 1000);
|
||||
if (timer.time() > timeout)
|
||||
{
|
||||
nb_runs = run + 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
std::sort (detected_ransac.begin(), detected_ransac.end());
|
||||
std::sort (times_ransac.begin(), times_ransac.end());
|
||||
std::cerr << "RANSAC (proto) = " << detected_ransac[detected_ransac.size() / 2]
|
||||
<< " planes (" << times_ransac[times_ransac.size() / 2] << "ms) (on "
|
||||
<< nb_runs << " runs, planes["
|
||||
<< detected_ransac.front() << ";" << detected_ransac.back() << "], time["
|
||||
<< times_ransac.front() << ";" << times_ransac.back() << "])" << std::endl;
|
||||
}
|
||||
#endif
|
||||
|
||||
std::cerr << std::endl;
|
||||
}
|
||||
Loading…
Reference in New Issue