Added support for the computation of Minkowski sum of polygons with holes

This commit is contained in:
Efi Fogel 2013-08-23 01:24:45 +03:00
parent 9ee92d42d8
commit 5e7e4ee8dd
5 changed files with 372 additions and 15 deletions

View File

@ -0,0 +1,6 @@
4 0 0 3 0 3 3 0 3
1
4 1 1 1 2 2 2 2 1
4 0 0 3 0 3 3 0 3
1
4 1 1 1 2 2 2 2 1

View File

@ -0,0 +1,42 @@
//! \file examples/Minkowski_sum_2/sum_by_decomposition.cpp
// Computing the Minkowski sum of two non-convex polygons read from a file
// using the small-side angle-bisector decomposition strategy.
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/minkowski_sum_2.h>
#include <CGAL/Polygon_vertical_decomposition_2.h>
#include <iostream>
#include <fstream>
#include "print_utils.h"
typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
typedef Kernel::Point_2 Point_2;
typedef CGAL::Polygon_2<Kernel> Polygon_2;
typedef CGAL::Polygon_with_holes_2<Kernel> Polygon_with_holes_2;
int main()
{
// Open the input file.
std::ifstream in_file("holes.dat");
if (! in_file.is_open()) {
std::cerr << "Failed to open the input file." << std::endl;
return (1);
}
// Read the two polygons from the file and compute their Minkowski sum.
Polygon_with_holes_2 P, Q;
in_file >> P >> Q;
in_file.close();
// Compute the Minkowski sum using the decomposition approach.
CGAL::Polygon_vertical_decomposition_2<Kernel> vertical_decomp;
Polygon_with_holes_2 sum = minkowski_sum_2(P, Q, vertical_decomp);
std::cout << "P (+) Q = ";
print_polygon_with_holes(sum);
return 0;
}

View File

@ -40,7 +40,7 @@ template <class DecompStrategy_, class Container_>
class Minkowski_sum_by_decomposition_2
{
public:
typedef DecompStrategy_ Decomposition_strategy;
typedef Container_ Container;
typedef typename Decomposition_strategy::Polygon_2 Polygon_2;
@ -52,7 +52,7 @@ private:
typedef typename Kernel::Point_2 Point_2;
typedef typename Kernel::Vector_2 Vector_2;
typedef typename Kernel::Direction_2 Direction_2;
// Kernel functors:
typedef typename Kernel::Equal_2 Equal_2;
typedef typename Kernel::Compare_angle_with_x_axis_2 Compare_angle_2;
@ -96,7 +96,7 @@ public:
f_equal = ker.equal_2_object();
f_compare_angle = ker.compare_angle_with_x_axis_2_object();
f_add = ker.construct_translated_point_2_object();
f_add = ker.construct_translated_point_2_object();
f_vector = ker.construct_vector_2_object();
f_direction = ker.construct_direction_2_object();
f_orientation = ker.orientation_2_object();
@ -142,18 +142,60 @@ public:
_compute_sum_of_convex (*curr1, *curr2, sub_sum);
sub_sum_polygons.push_back(sub_sum);
}
}
General_polygon_set_2 gps;
gps.join(sub_sum_polygons.begin(),sub_sum_polygons.end());
Polygon_with_holes_list sum;
gps.polygons_with_holes(std::back_inserter(sum));
return (*(sum.begin()));
}
/*!
* Compute the Minkowski sum of two polygon-with-holes.
* \param pgn1 The first polygon.
* \param pgn2 The second polygon.
* \pre Both input polygons are simple.
* \return The resulting polygon with holes, representing the sum.
*/
Polygon_with_holes_2
operator()(const Polygon_with_holes_2& pgn1,
const Polygon_with_holes_2& pgn2) const
{
// Decompose both input polygons to convex sub-polygons.
Decomposition_strategy decomp_strat;
Polygons_list sub_pgns1;
Polygons_list sub_pgns2;
Polygons_list sub_sum_polygons;
decomp_strat(pgn1, std::back_inserter(sub_pgns1));
decomp_strat(pgn2, std::back_inserter(sub_pgns2));
// Compute the sub-sums of all pairs of sub-polygons.
Polygons_iterator end1 = sub_pgns1.end();
Polygons_iterator end2 = sub_pgns2.end();
Polygons_iterator curr1, curr2;
for (curr1 = sub_pgns1.begin(); curr1 != end1; ++curr1) {
for (curr2 = sub_pgns2.begin(); curr2 != end2; ++curr2) {
// Compute the sum of the current pair of convex sub-polygons.
Polygon_2 sub_sum;
_compute_sum_of_convex(*curr1, *curr2, sub_sum);
sub_sum_polygons.push_back(sub_sum);
}
}
General_polygon_set_2 gps;
gps.join(sub_sum_polygons.begin(), sub_sum_polygons.end());
Polygon_with_holes_list sum;
gps.polygons_with_holes(std::back_inserter(sum));
CGAL_assertion(sum.size() == 1);
return (*(sum.begin()));
}
@ -189,7 +231,7 @@ private:
// Find the bottom-left vertex in both polygons.
Vertex_circulator first2, curr2, next2;
Vertex_circulator bottom_left2;
bottom_left2 = curr2 = first2 = pgn2.vertices_circulator();
++curr2;
while (curr2 != first2)
@ -208,7 +250,7 @@ private:
++next1;
next2 = curr2 = bottom_left2;
++next2;
// Compute the Minkowski sum.
Point_2 first_pt;
Point_2 curr_pt;
@ -241,7 +283,7 @@ private:
}
// Compare the angles the current edges form with the x-axis.
res = f_compare_angle (f_direction (f_vector (*curr1, *next1)),
res = f_compare_angle (f_direction (f_vector (*curr1, *next1)),
f_direction (f_vector (*curr2, *next2)));
// Proceed to the next vertex according to the result.
@ -265,8 +307,8 @@ private:
curr1 = next1;
++next1;
moved_on1 = true;
}
}
if (inc2)
{
curr2 = next2;

View File

@ -0,0 +1,245 @@
// Copyright (c) 2006 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Ron Wein <wein@post.tau.ac.il>
// (based on an old version by Eyal Flato)
#ifndef CGAL_SMALL_SIDE_ANGLE_BISECTOR_DECOMPOSITION_2_H
#define CGAL_SMALL_SIDE_ANGLE_BISECTOR_DECOMPOSITION_2_H
#include <CGAL/Polygon_2.h>
#include <CGAL/General_polygon_set_2.h>
#include <CGAL/Arr_vertical_decomposition_2.h>
#include <vector>
#include <list>
namespace CGAL {
/*!
* \class
* Vertical decomposition strategy.
*/
template <class Kernel_,
class Container_ = std::vector<typename Kernel_::Point_2> >
class Polygon_vertical_decomposition_2 {
public:
typedef Kernel_ Kernel;
typedef Container_ Container;
typedef CGAL::Polygon_2<Kernel, Container> Polygon_2;
typedef CGAL::Polygon_with_holes_2<Kernel, Container> Polygon_with_holes_2;
typedef CGAL::Arr_segment_traits_2<Kernel> Arr_segment_traits;
typedef CGAL::Gps_segment_traits_2<Kernel, Container, Arr_segment_traits>
Traits_2;
typedef CGAL::General_polygon_set_2<Traits_2> General_polygon_set_2;
typedef typename General_polygon_set_2::Arrangement_2 Arrangement_2;
typedef typename Arrangement_2::Halfedge_const_iterator
Halfedge_const_iterator;
typedef typename Arrangement_2::Face_const_iterator Face_const_iterator;
typedef typename Arrangement_2::Vertex_const_handle Vertex_const_handle;
typedef typename Arrangement_2::Halfedge_const_handle Halfedge_const_handle;
typedef typename Arrangement_2::Face_const_handle Face_const_handle;
typedef typename Arrangement_2::Vertex_handle Vertex_handle;
typedef typename Arrangement_2::Halfedge_handle Halfedge_handle;
typedef typename Arrangement_2::Face_handle Face_handle;
typedef std::pair<Vertex_const_handle, std::pair<CGAL::Object, CGAL::Object> >
Vert_decomp_entry;
typedef std::list<Vert_decomp_entry> Vert_decomp_list;
typedef typename Kernel::Point_2 Point_2;
typedef typename Arrangement_2::Outer_ccb_const_iterator
Outer_ccb_const_iterator;
private:
typedef typename Arrangement_2::X_monotone_curve_2 Segment_2;
typedef typename Kernel::Line_2 Line_2;
typedef typename Polygon_2::Vertex_circulator Vertex_circulator;
// An arrangement observer, used to receive notifications of face splits and
// face mergers.
class My_observer : public CGAL::Arr_observer<Arrangement_2> {
public:
My_observer (Arrangement_2& arr) :
CGAL::Arr_observer<Arrangement_2>(arr)
{}
virtual void after_split_face(Face_handle f, Face_handle new_f,
bool /* is_hole */)
{ if (f->contained()) new_f->set_contained(true); }
};
// Kernel functors:
typedef typename Kernel::Compare_x_2 Compare_x_2;
typedef typename Kernel::Intersect_2 Intersect_2;
typedef typename Kernel::Equal_2 Equal_2;
// Data members:
Kernel* m_kernel;
bool m_own_kernel; // inidicates whether the kernel should be freed up.
Compare_x_2 f_cmp_x;
Intersect_2 f_intersect;
Equal_2 f_equal;
public:
/*! Default constructor. */
Polygon_vertical_decomposition_2() :
m_kernel(new Kernel),
m_own_kernel(true)
{
// Obtain kernel functors.
f_cmp_x = m_kernel->compare_x_2_object();
f_intersect = m_kernel->intersect_2_object();
f_equal = m_kernel->equal_2_object();
}
// Destructor
~Polygon_vertical_decomposition_2()
{
if (m_own_kernel && m_kernel) {
delete m_kernel;
m_kernel = NULL;
m_own_kernel = false;
}
}
/*!
* Decompose a polygon-with-holes into convex sub-polygons.
* \param pgn The input polygon.
* \param oi An output iterator of convex polygons.
* \return A past-the-end iterator for the sub-polygons.
*/
template <class OutputIterator>
OutputIterator operator()(const Polygon_with_holes_2& pgn,
OutputIterator oi) const
{
General_polygon_set_2 gps;
gps.insert(pgn);
Arrangement_2& arr = gps.arrangement();
My_observer obs(arr);
vertical_decomposition(arr);
Face_const_iterator fi;
for (fi = arr.faces_begin(); fi != arr.faces_end(); ++fi) {
if (! fi->contained()) continue;
CGAL_assertion(fi->number_of_outer_ccbs() == 1);
Outer_ccb_const_iterator oci = fi->outer_ccbs_begin();
Halfedge_const_iterator first = *oci;
Halfedge_const_iterator curr = first;
Polygon_2 pgn;
do {
pgn.push_back(curr->target()->point());
curr = curr->next();
} while (curr != first);
*oi++ = pgn;
}
return oi;
}
private:
// Add a vertical segment from the given vertex to some other arrangement
// feature.
Halfedge_const_handle
add_vertical_segment(Arrangement_2& arr, Vertex_handle v, CGAL::Object obj)
const
{
Segment_2 seg;
Vertex_const_handle vh;
Halfedge_const_handle hh;
Face_const_handle fh;
Vertex_handle v2;
if (CGAL::assign(vh, obj)) {
// The given feature is a vertex.
seg = Segment_2(v->point(), vh->point());
v2 = arr.non_const_handle(vh);
}
else if (CGAL::assign(hh, obj)) {
// The given feature is a halfedge. We ignore fictitious halfedges.
if (hh->is_fictitious())
return Halfedge_const_handle();
// Check whether v lies in the interior of the x-range of the edge (in
// which case this edge should be split).
if (f_cmp_x(v->point(), hh->target()->point()) == CGAL::EQUAL) {
// In case the target of the edge already has the same x-coordinate as
// the vertex v, just connect these two vertices.
seg = Segment_2(v->point(), hh->target()->point());
v2 = arr.non_const_handle(hh->target());
}
else {
// Compute the vertical projection of v onto the segment associated
// with the halfedge. Split the edge and connect v with the split point.
Line_2 supp_line(hh->source()->point(), hh->target()->point());
Line_2 vert_line(v->point(),
Point_2(v->point().x(), v->point().y() + 1));
Point_2 point;
CGAL::assign(point, f_intersect(supp_line, vert_line));
seg = Segment_2(v->point(), point);
arr.split_edge(arr.non_const_handle(hh),
Segment_2(hh->source()->point(), point),
Segment_2(point, hh->target()->point()));
v2 = arr.non_const_handle(hh->target());
}
}
// Ignore faces and empty objects.
else return Halfedge_const_handle();
// Add the vertical segment to the arrangement using its two end vertices.
return arr.insert_at_vertices(seg, v, v2);
}
// Construct the vertical decomposition of the given arrangement.
void vertical_decomposition(Arrangement_2& arr) const
{
// For each vertex in the arrangment, locate the feature that lies
// directly below it and the feature that lies directly above it.
Vert_decomp_list vd_list;
CGAL::decompose(arr, std::back_inserter(vd_list));
// Go over the vertices (given in ascending lexicographical xy-order),
// and add segements to the feautres below and above it.
typename Vert_decomp_list::iterator it, prev = vd_list.end();
for (it = vd_list.begin(); it != vd_list.end(); ++it) {
// If the feature above the previous vertex is not the current vertex,
// add a vertical segment to the feature below the vertex.
Vertex_const_handle v;
if ((prev == vd_list.end()) ||
!CGAL::assign(v, prev->second.second) ||
!f_equal(v->point(), it->first->point()))
add_vertical_segment(arr, arr.non_const_handle(it->first),
it->second.first);
// Add a vertical segment to the feature above the vertex.
add_vertical_segment(arr, arr.non_const_handle(it->first),
it->second.second);
prev = it;
}
}
};
} //namespace CGAL
#endif

View File

@ -80,14 +80,36 @@ minkowski_sum_2 (const Polygon_2<Kernel,Container>& pgn1,
Minkowski_sum_by_decomposition_2<DecompositionStrategy,Container> mink_sum;
typedef Polygon_with_holes_2<Kernel,Container> Polygon_with_holes_2;
Polygon_with_holes_2 sum;
sum = mink_sum (pgn1, pgn2);
return (sum);
}
/*!
* Compute the Minkowski sum of two polygon-with-holes by decomposing each
* polygon to convex sub-polygons and computing the union of the pairwise
* Minkowski sums of the sub-polygons.
* The result is also represented as a polygon with holes.
* \param pgn1 The first polygon.
* \param pgn2 The second polygon.
* \param decomp A functor for decomposing polygons.
* \param sum Output: The resulting polygon with holes, representing the sum.
*/
template <class Kernel, class Container, class DecompositionStrategy>
Polygon_with_holes_2<Kernel, Container>
minkowski_sum_2(const Polygon_with_holes_2<Kernel, Container>& pgn1,
const Polygon_with_holes_2<Kernel, Container>& pgn2,
const DecompositionStrategy&)
{
Minkowski_sum_by_decomposition_2<DecompositionStrategy, Container> mink_sum;
typedef Polygon_with_holes_2<Kernel, Container> Polygon_with_holes_2;
Polygon_with_holes_2 sum = mink_sum(pgn1, pgn2);
return sum;
}
} //namespace CGAL
#endif