cleanup of classified reference pages; Move global functions in a group too

This commit is contained in:
Andreas Fabri 2012-10-10 13:33:03 +00:00
parent f0134d7690
commit 5ef6b0d52e
4 changed files with 31 additions and 156 deletions

View File

@ -66,7 +66,7 @@ class Field_with_kth_root_tag : public Field_with_sqrt_tag {
}; /* end Field_with_kth_root_tag */
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsAlgebraicStructures
Tag indicating that a type is a model of the `FieldWithRootOf` concept.

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
The template function `abs` returns the absolute value of a number.
@ -19,7 +19,7 @@ template <class NT> NT abs(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
The template function `compare` compares the first argument with respect to
the second, i.e.\ it returns `CGAL::LARGER` if \f$ x\f$ is larger then \f$ y\f$.
@ -43,7 +43,7 @@ result_type compare(const NT &x, const NT &y);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
The function `div` computes the integral quotient of division
with remainder.
@ -74,7 +74,7 @@ div(const NT1& x, const NT2& y);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
computes the quotient \f$ q\f$ and remainder \f$ r\f$, such that \f$ x = q*y + r\f$
and \f$ r\f$ minimal with respect to the Euclidean Norm of the
@ -109,7 +109,7 @@ div_mod(const NT1& x, const NT2& y, result_type& q, result_type& r);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
The function `gcd` computes the greatest common divisor of two values.
@ -136,7 +136,7 @@ gcd(const NT1& x, const NT2& y);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
The function `integral_division` (a.k.a.\ exact division or division without remainder)
maps ring elements \f$ (x,y)\f$ to ring element \f$ z\f$ such that \f$ x = yz\f$ if such a \f$ z\f$
@ -167,7 +167,7 @@ integral_division(const NT1& x, const NT2& y);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
The function `inverse` returns the inverse element with respect to multiplication.
@ -187,7 +187,7 @@ template <class NT> NT inverse(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
The template function `is_negative` determines if a value is negative or not.
The function is defined if the argument type
@ -206,7 +206,7 @@ result_type is_negative(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
The function `is_one` determines if a value is equal to 1 or not.
@ -226,7 +226,7 @@ template <class NT> result_type is_one(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
The template function `is_positive` determines if a value is positive or not.
The function is defined if the argument type
@ -245,7 +245,7 @@ result_type is_positive(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
An ring element \f$ x\f$ is said to be a square iff there exists a ring element
\f$ y\f$ such
@ -264,7 +264,7 @@ The `result_type` is convertible to `bool`.
template <class NT> result_type is_square(const NT& x);
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
An ring element \f$ x\f$ is said to be a square iff there exists a ring element
\f$ y\f$ such
@ -287,7 +287,7 @@ template <class NT> result_type is_square(const NT& x, NT& y);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
The function `is_zero` determines if a value is equal to 0 or not.
@ -309,7 +309,7 @@ template <class NT> result_type is_zero(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
The function `kth_root` returns the k-th root of a value.
@ -327,7 +327,7 @@ template <class NT> NT kth_root(int k, const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
The function `mod` computes the remainder of division with remainder.
@ -357,7 +357,7 @@ mod(const NT1& x, const NT2& y);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
returns the k-th real root of the univariate polynomial, which is
defined by the iterator range, where begin refers to the constant
@ -383,7 +383,7 @@ root_of(int k, InputIterator begin, InputIterator end);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
The template function `sign` returns the sign of its argument.
@ -403,7 +403,7 @@ template <class NT> result_type sign(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
The function `simplify` may simplify a given object.
@ -421,7 +421,7 @@ template <class NT> void simplify(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
The function `sqrt` returns the square root of a value.
@ -439,7 +439,7 @@ template <class NT> NT sqrt(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
The function `square` returns the square of a number.
@ -457,7 +457,7 @@ template <class NT> NT square(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
The template function `to_double` returns an double approximation of a number.
The function is defined if the argument type
@ -476,7 +476,7 @@ template <class NT> double to_double(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
The template function `to_interval` computes for a given real embeddable
number \f$ x\f$ a double interval containing \f$ x\f$.
@ -496,7 +496,7 @@ std::pair<double,double> to_interval(const NT& x);
namespace CGAL {
/*!
\ingroup PkgAlgebraicFoundations
\ingroup PkgAlgebraicFoundationsFunctions
The function `unit_part` computes the unit part of a given ring
element.

View File

@ -1,5 +1,9 @@
/// \defgroup PkgAlgebraicFoundations Algebraic Foundations Reference
/// \defgroup PkgAlgebraicFoundationsFunctions Global Functions
/// \ingroup PkgAlgebraicFoundations
/// \defgroup PkgAlgebraicFoundationsAlgebraicStructures Algebraic Structures
/// \ingroup PkgAlgebraicFoundations
@ -56,135 +60,6 @@
\ref AlgebraicFoundationsClassified "Classified Reference Pages"
## Classified Reference Pages ##
### Algebraic Structures ###
#### Concepts ####
- `IntegralDomainWithoutDivision`
- `IntegralDomain`
- `UniqueFactorizationDomain`
- `EuclideanRing`
- `Field`
- `FieldWithSqrt`
- `FieldWithKthRoot`
- `FieldWithRootOf`
- `AlgebraicStructureTraits::IsZero`
- `AlgebraicStructureTraits::IsOne`
- `AlgebraicStructureTraits::Square`
- `AlgebraicStructureTraits::Simplify`
- `AlgebraicStructureTraits::UnitPart`
- `AlgebraicStructureTraits::IntegralDivision`
- `AlgebraicStructureTraits::Divides`
- `AlgebraicStructureTraits::Gcd`
- `AlgebraicStructureTraits::DivMod`
- `AlgebraicStructureTraits::Div`
- `AlgebraicStructureTraits::Mod`
- `AlgebraicStructureTraits::Inverse`
- `AlgebraicStructureTraits::Sqrt`
- `AlgebraicStructureTraits::IsSquare`
- `AlgebraicStructureTraits::KthRoot`
- `AlgebraicStructureTraits::RootOf`
#### Classes ####
- `CGAL::Algebraic_structure_traits<T>`
- `CGAL::Integral_domain_without_division_tag`
- `CGAL::Integral_domain_tag`
- `CGAL::Field_tag`
- `CGAL::Field_with_sqrt_tag`
- `CGAL::Unique_factorization_domain_tag`
- `CGAL::Euclidean_ring_tag`
#### Global Functions ####
- `CGAL::is_zero`
- `CGAL::is_one`
- `CGAL::square`
- `CGAL::simplify`
- `CGAL::unit_part`
- `CGAL::integral_division`
- `CGAL::is_square`
- `CGAL::gcd`
- `CGAL::div_mod`
- `CGAL::div`
- `CGAL::mod`
- `CGAL::inverse`
- `CGAL::sqrt`
- `CGAL::kth_root`
- `CGAL::root_of`
### Real Embeddable ###
#### Concepts ####
- `RealEmbeddable`
- `RealEmbeddableTraits`
- `RealEmbeddableTraits::IsZero`
- `RealEmbeddableTraits::Abs`
- `RealEmbeddableTraits::Sgn`
- `RealEmbeddableTraits::IsPositive`
- `RealEmbeddableTraits::IsNegative`
- `RealEmbeddableTraits::Compare`
- `RealEmbeddableTraits::ToDouble`
- `RealEmbeddableTraits::ToInterval`
#### Classes ####
- `CGAL::Real_embeddable_traits<T>`
#### Global Functions ####
- `CGAL::is_zero`
- `CGAL::abs`
- `CGAL::sign`
- `CGAL::is_positive`
- `CGAL::is_negative`
- `CGAL::compare`
- `CGAL::to_double`
- `CGAL::to_interval`
### Real Number Types ###
- `Concepts`
- `RingNumberType`
- `FieldNumberType`
- `Interoperability`
#### Concepts ####
- `ExplicitInteroperable`
- `ImplicitInteroperable`
#### Classes####
- `CGAL::Coercion_traits<A,B>`
### Fractions ###
#### Concepts ####
- `Fraction`
- `FractionTraits`
- `FractionTraits::Decompose`
- `FractionTraits::Compose`
- `FractionTraits::CommonFactor`
#### Classes ####
- `CGAL::Fraction_traits<T>`
### Miscellaneous ###
#### Concepts ####
- `FromIntConstructible`
- `FromDoubleConstructible`
*/

View File

@ -1,6 +1,6 @@
/*! \page AlgebraicFoundationsClassified
/*! \page AlgebraicFoundationsClassified Classified Reference Pages
## Classified Reference Pages ##
### Algebraic Structures ###
@ -95,7 +95,7 @@
### Real Number Types ###
- `Concepts`
#### Concepts####
- `RingNumberType`
- `FieldNumberType`