mirror of https://github.com/CGAL/cgal
cleanup of classified reference pages; Move global functions in a group too
This commit is contained in:
parent
f0134d7690
commit
5ef6b0d52e
|
|
@ -66,7 +66,7 @@ class Field_with_kth_root_tag : public Field_with_sqrt_tag {
|
|||
}; /* end Field_with_kth_root_tag */
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsAlgebraicStructures
|
||||
|
||||
Tag indicating that a type is a model of the `FieldWithRootOf` concept.
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
The template function `abs` returns the absolute value of a number.
|
||||
|
||||
|
|
@ -19,7 +19,7 @@ template <class NT> NT abs(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
The template function `compare` compares the first argument with respect to
|
||||
the second, i.e.\ it returns `CGAL::LARGER` if \f$ x\f$ is larger then \f$ y\f$.
|
||||
|
|
@ -43,7 +43,7 @@ result_type compare(const NT &x, const NT &y);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
The function `div` computes the integral quotient of division
|
||||
with remainder.
|
||||
|
|
@ -74,7 +74,7 @@ div(const NT1& x, const NT2& y);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
computes the quotient \f$ q\f$ and remainder \f$ r\f$, such that \f$ x = q*y + r\f$
|
||||
and \f$ r\f$ minimal with respect to the Euclidean Norm of the
|
||||
|
|
@ -109,7 +109,7 @@ div_mod(const NT1& x, const NT2& y, result_type& q, result_type& r);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
The function `gcd` computes the greatest common divisor of two values.
|
||||
|
||||
|
|
@ -136,7 +136,7 @@ gcd(const NT1& x, const NT2& y);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
The function `integral_division` (a.k.a.\ exact division or division without remainder)
|
||||
maps ring elements \f$ (x,y)\f$ to ring element \f$ z\f$ such that \f$ x = yz\f$ if such a \f$ z\f$
|
||||
|
|
@ -167,7 +167,7 @@ integral_division(const NT1& x, const NT2& y);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
The function `inverse` returns the inverse element with respect to multiplication.
|
||||
|
||||
|
|
@ -187,7 +187,7 @@ template <class NT> NT inverse(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
The template function `is_negative` determines if a value is negative or not.
|
||||
The function is defined if the argument type
|
||||
|
|
@ -206,7 +206,7 @@ result_type is_negative(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
The function `is_one` determines if a value is equal to 1 or not.
|
||||
|
||||
|
|
@ -226,7 +226,7 @@ template <class NT> result_type is_one(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
The template function `is_positive` determines if a value is positive or not.
|
||||
The function is defined if the argument type
|
||||
|
|
@ -245,7 +245,7 @@ result_type is_positive(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
An ring element \f$ x\f$ is said to be a square iff there exists a ring element
|
||||
\f$ y\f$ such
|
||||
|
|
@ -264,7 +264,7 @@ The `result_type` is convertible to `bool`.
|
|||
template <class NT> result_type is_square(const NT& x);
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
An ring element \f$ x\f$ is said to be a square iff there exists a ring element
|
||||
\f$ y\f$ such
|
||||
|
|
@ -287,7 +287,7 @@ template <class NT> result_type is_square(const NT& x, NT& y);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
The function `is_zero` determines if a value is equal to 0 or not.
|
||||
|
||||
|
|
@ -309,7 +309,7 @@ template <class NT> result_type is_zero(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
The function `kth_root` returns the k-th root of a value.
|
||||
|
||||
|
|
@ -327,7 +327,7 @@ template <class NT> NT kth_root(int k, const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
The function `mod` computes the remainder of division with remainder.
|
||||
|
||||
|
|
@ -357,7 +357,7 @@ mod(const NT1& x, const NT2& y);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
returns the k-th real root of the univariate polynomial, which is
|
||||
defined by the iterator range, where begin refers to the constant
|
||||
|
|
@ -383,7 +383,7 @@ root_of(int k, InputIterator begin, InputIterator end);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
The template function `sign` returns the sign of its argument.
|
||||
|
||||
|
|
@ -403,7 +403,7 @@ template <class NT> result_type sign(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
The function `simplify` may simplify a given object.
|
||||
|
||||
|
|
@ -421,7 +421,7 @@ template <class NT> void simplify(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
The function `sqrt` returns the square root of a value.
|
||||
|
||||
|
|
@ -439,7 +439,7 @@ template <class NT> NT sqrt(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
The function `square` returns the square of a number.
|
||||
|
||||
|
|
@ -457,7 +457,7 @@ template <class NT> NT square(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
The template function `to_double` returns an double approximation of a number.
|
||||
The function is defined if the argument type
|
||||
|
|
@ -476,7 +476,7 @@ template <class NT> double to_double(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
The template function `to_interval` computes for a given real embeddable
|
||||
number \f$ x\f$ a double interval containing \f$ x\f$.
|
||||
|
|
@ -496,7 +496,7 @@ std::pair<double,double> to_interval(const NT& x);
|
|||
namespace CGAL {
|
||||
|
||||
/*!
|
||||
\ingroup PkgAlgebraicFoundations
|
||||
\ingroup PkgAlgebraicFoundationsFunctions
|
||||
|
||||
The function `unit_part` computes the unit part of a given ring
|
||||
element.
|
||||
|
|
|
|||
|
|
@ -1,5 +1,9 @@
|
|||
/// \defgroup PkgAlgebraicFoundations Algebraic Foundations Reference
|
||||
|
||||
|
||||
/// \defgroup PkgAlgebraicFoundationsFunctions Global Functions
|
||||
/// \ingroup PkgAlgebraicFoundations
|
||||
|
||||
/// \defgroup PkgAlgebraicFoundationsAlgebraicStructures Algebraic Structures
|
||||
/// \ingroup PkgAlgebraicFoundations
|
||||
|
||||
|
|
@ -56,135 +60,6 @@
|
|||
|
||||
\ref AlgebraicFoundationsClassified "Classified Reference Pages"
|
||||
|
||||
## Classified Reference Pages ##
|
||||
|
||||
|
||||
### Algebraic Structures ###
|
||||
|
||||
#### Concepts ####
|
||||
|
||||
- `IntegralDomainWithoutDivision`
|
||||
- `IntegralDomain`
|
||||
- `UniqueFactorizationDomain`
|
||||
- `EuclideanRing`
|
||||
- `Field`
|
||||
- `FieldWithSqrt`
|
||||
- `FieldWithKthRoot`
|
||||
- `FieldWithRootOf`
|
||||
|
||||
- `AlgebraicStructureTraits::IsZero`
|
||||
- `AlgebraicStructureTraits::IsOne`
|
||||
- `AlgebraicStructureTraits::Square`
|
||||
|
||||
- `AlgebraicStructureTraits::Simplify`
|
||||
- `AlgebraicStructureTraits::UnitPart`
|
||||
- `AlgebraicStructureTraits::IntegralDivision`
|
||||
- `AlgebraicStructureTraits::Divides`
|
||||
- `AlgebraicStructureTraits::Gcd`
|
||||
- `AlgebraicStructureTraits::DivMod`
|
||||
- `AlgebraicStructureTraits::Div`
|
||||
- `AlgebraicStructureTraits::Mod`
|
||||
- `AlgebraicStructureTraits::Inverse`
|
||||
- `AlgebraicStructureTraits::Sqrt`
|
||||
- `AlgebraicStructureTraits::IsSquare`
|
||||
- `AlgebraicStructureTraits::KthRoot`
|
||||
- `AlgebraicStructureTraits::RootOf`
|
||||
|
||||
#### Classes ####
|
||||
|
||||
- `CGAL::Algebraic_structure_traits<T>`
|
||||
- `CGAL::Integral_domain_without_division_tag`
|
||||
- `CGAL::Integral_domain_tag`
|
||||
- `CGAL::Field_tag`
|
||||
- `CGAL::Field_with_sqrt_tag`
|
||||
- `CGAL::Unique_factorization_domain_tag`
|
||||
- `CGAL::Euclidean_ring_tag`
|
||||
|
||||
#### Global Functions ####
|
||||
|
||||
- `CGAL::is_zero`
|
||||
- `CGAL::is_one`
|
||||
- `CGAL::square`
|
||||
- `CGAL::simplify`
|
||||
- `CGAL::unit_part`
|
||||
- `CGAL::integral_division`
|
||||
- `CGAL::is_square`
|
||||
- `CGAL::gcd`
|
||||
- `CGAL::div_mod`
|
||||
- `CGAL::div`
|
||||
- `CGAL::mod`
|
||||
- `CGAL::inverse`
|
||||
- `CGAL::sqrt`
|
||||
- `CGAL::kth_root`
|
||||
- `CGAL::root_of`
|
||||
|
||||
### Real Embeddable ###
|
||||
|
||||
#### Concepts ####
|
||||
|
||||
- `RealEmbeddable`
|
||||
|
||||
- `RealEmbeddableTraits`
|
||||
- `RealEmbeddableTraits::IsZero`
|
||||
- `RealEmbeddableTraits::Abs`
|
||||
- `RealEmbeddableTraits::Sgn`
|
||||
- `RealEmbeddableTraits::IsPositive`
|
||||
- `RealEmbeddableTraits::IsNegative`
|
||||
- `RealEmbeddableTraits::Compare`
|
||||
- `RealEmbeddableTraits::ToDouble`
|
||||
- `RealEmbeddableTraits::ToInterval`
|
||||
|
||||
#### Classes ####
|
||||
|
||||
- `CGAL::Real_embeddable_traits<T>`
|
||||
|
||||
#### Global Functions ####
|
||||
|
||||
- `CGAL::is_zero`
|
||||
- `CGAL::abs`
|
||||
- `CGAL::sign`
|
||||
- `CGAL::is_positive`
|
||||
- `CGAL::is_negative`
|
||||
- `CGAL::compare`
|
||||
- `CGAL::to_double`
|
||||
- `CGAL::to_interval`
|
||||
|
||||
### Real Number Types ###
|
||||
|
||||
- `Concepts`
|
||||
- `RingNumberType`
|
||||
- `FieldNumberType`
|
||||
|
||||
- `Interoperability`
|
||||
|
||||
#### Concepts ####
|
||||
|
||||
- `ExplicitInteroperable`
|
||||
- `ImplicitInteroperable`
|
||||
|
||||
#### Classes####
|
||||
|
||||
- `CGAL::Coercion_traits<A,B>`
|
||||
|
||||
### Fractions ###
|
||||
|
||||
#### Concepts ####
|
||||
|
||||
- `Fraction`
|
||||
- `FractionTraits`
|
||||
- `FractionTraits::Decompose`
|
||||
- `FractionTraits::Compose`
|
||||
- `FractionTraits::CommonFactor`
|
||||
|
||||
#### Classes ####
|
||||
|
||||
- `CGAL::Fraction_traits<T>`
|
||||
|
||||
### Miscellaneous ###
|
||||
|
||||
#### Concepts ####
|
||||
- `FromIntConstructible`
|
||||
- `FromDoubleConstructible`
|
||||
|
||||
*/
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
/*! \page AlgebraicFoundationsClassified
|
||||
/*! \page AlgebraicFoundationsClassified Classified Reference Pages
|
||||
|
||||
|
||||
## Classified Reference Pages ##
|
||||
|
||||
|
||||
### Algebraic Structures ###
|
||||
|
|
@ -95,7 +95,7 @@
|
|||
|
||||
### Real Number Types ###
|
||||
|
||||
- `Concepts`
|
||||
#### Concepts####
|
||||
- `RingNumberType`
|
||||
- `FieldNumberType`
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue