add a trailing _ to the namespaces of the concepts in Algebraic Foundations

No more warning!
This commit is contained in:
Sébastien Loriot 2013-01-24 19:15:03 +01:00
parent 0ce7a00f1e
commit 609925675b
39 changed files with 286 additions and 208 deletions

View File

@ -72,7 +72,7 @@ All other unary (e.g., sqrt) and binary functions
(e.g., gcd, div) must be models of the well known \stl-concepts
`AdaptableUnaryFunction` or `AdaptableBinaryFunction`
concept and local to the traits class
(e.g., `Algebraic_structure_traits<AS>::Sqrt()(x)`).
(e.g., \link AlgebraicStructureTraits::Sqrt `Algebraic_structure_traits<AS>::Sqrt()(x)` \endlink).
This design allows us to profit from all parts in the
\stl and its programming style and avoids the name-lookup and
two-pass template compilation problems experienced with the old design

View File

@ -9,7 +9,7 @@ The function is defined if the argument type
is a model of the `RealEmbeddable` concept.
\sa `RealEmbeddable`
\sa `RealEmbeddableTraits::Abs`
\sa `RealEmbeddableTraits_::Abs`
*/
template <class NT> NT abs(const NT& x);
@ -33,7 +33,7 @@ is a model of the `RealEmbeddable` concept.
The `result_type` is convertible to `CGAL::Comparison_result`.
\sa `RealEmbeddable`
\sa `RealEmbeddableTraits::Compare`
\sa `RealEmbeddableTraits_::Compare`
*/
template <class NT1, class NT2>
result_type compare(const NT &x, const NT &y);
@ -60,7 +60,7 @@ The function is defined if `result_type`
is a model of the `EuclideanRing` concept.
\sa `EuclideanRing`
\sa `AlgebraicStructureTraits::Div`
\sa `AlgebraicStructureTraits_::Div`
\sa `CGAL::mod()`
\sa `CGAL::div_mod()`
@ -95,7 +95,7 @@ The function is defined if `result_type`
is a model of the `EuclideanRing` concept.
\sa `EuclideanRing`
\sa `AlgebraicStructureTraits::DivMod`
\sa `AlgebraicStructureTraits_::DivMod`
\sa `CGAL::mod()`
\sa `CGAL::div()`
@ -125,7 +125,7 @@ The function is defined if `result_type`
is a model of the `UniqueFactorizationDomain` concept.
\sa `UniqueFactorizationDomain`
\sa `AlgebraicStructureTraits::Gcd`
\sa `AlgebraicStructureTraits_::Gcd`
*/
template <class NT1, class NT2> result_type
@ -156,7 +156,7 @@ The function is defined if `result_type`
is a model of the `IntegralDomain` concept.
\sa `IntegralDomain`
\sa `AlgebraicStructureTraits::IntegralDivision`
\sa `AlgebraicStructureTraits_::IntegralDivision`
*/
template <class NT1, class NT2> result_type
@ -177,7 +177,7 @@ is a model of the `Field` concept.
\pre \f$ x \neq0\f$.
\sa `Field`
\sa `AlgebraicStructureTraits::Inverse`
\sa `AlgebraicStructureTraits_::Inverse`
*/
template <class NT> NT inverse(const NT& x);
@ -196,7 +196,7 @@ is a model of the `RealEmbeddable` concept.
The `result_type` is convertible to `bool`.
\sa `RealEmbeddable`
\sa `RealEmbeddableTraits::IsNegative`
\sa `RealEmbeddableTraits_::IsNegative`
*/
result_type is_negative(const NT& x);
@ -216,7 +216,7 @@ is a model of the `IntegralDomainWithoutDivision` concept.
The `result_type` is convertible to `bool`.
\sa `IntegralDomainWithoutDivision`
\sa `AlgebraicStructureTraits::IsOne`
\sa `AlgebraicStructureTraits_::IsOne`
*/
template <class NT> result_type is_one(const NT& x);
@ -235,7 +235,7 @@ is a model of the `RealEmbeddable` concept.
The `result_type` is convertible to `bool`.
\sa `RealEmbeddable`
\sa `RealEmbeddableTraits::IsPositive`
\sa `RealEmbeddableTraits_::IsPositive`
*/
result_type is_positive(const NT& x);
@ -258,7 +258,7 @@ The function `is_square` is available if
The `result_type` is convertible to `bool`.
\sa `UniqueFactorizationDomain`
\sa `AlgebraicStructureTraits::IsSquare`
\sa `AlgebraicStructureTraits_::IsSquare`
*/
template <class NT> result_type is_square(const NT& x);
@ -277,7 +277,7 @@ The function `is_square` is available if
The `result_type` is convertible to `bool`.
\sa `UniqueFactorizationDomain`
\sa `AlgebraicStructureTraits::IsSquare`
\sa `AlgebraicStructureTraits_::IsSquare`
*/
template <class NT> result_type is_square(const NT& x, NT& y);
@ -298,9 +298,9 @@ the `IntegralDomainWithoutDivision` concept.
The `result_type` is convertible to `bool`.
\sa `RealEmbeddable`
\sa `RealEmbeddableTraits::IsZero`
\sa `RealEmbeddableTraits_::IsZero`
\sa `IntegralDomainWithoutDivision`
\sa `AlgebraicStructureTraits::IsZero`
\sa `AlgebraicStructureTraits_::IsZero`
*/
template <class NT> result_type is_zero(const NT& x);
@ -317,7 +317,7 @@ The function is defined if the second argument type
is a model of the `FieldWithKthRoot` concept.
\sa `FieldWithKthRoot`
\sa `AlgebraicStructureTraits::KthRoot`
\sa `AlgebraicStructureTraits_::KthRoot`
*/
template <class NT> NT kth_root(int k, const NT& x);
@ -343,7 +343,7 @@ The function is defined if `result_type`
is a model of the `EuclideanRing` concept.
\sa `EuclideanRing`
\sa `AlgebraicStructureTraits::DivMod`
\sa `AlgebraicStructureTraits_::DivMod`
\sa `CGAL::div_mod()`
\sa `CGAL::div()`
@ -372,7 +372,7 @@ of the iterator range is a model of the `FieldWithRootOf` concept.
\pre The polynomial is square-free.
\sa `FieldWithRootOf`
\sa `AlgebraicStructureTraits::RootOf`
\sa `AlgebraicStructureTraits_::RootOf`
*/
template <class InputIterator> NT
@ -393,7 +393,7 @@ is a model of the `RealEmbeddable` concept.
The `result_type` is convertible to `CGAL::Sign`.
\sa `RealEmbeddable`
\sa `RealEmbeddableTraits::Sgn`
\sa `RealEmbeddableTraits_::Sgn`
*/
template <class NT> result_type sign(const NT& x);
@ -411,7 +411,7 @@ The function is defined if the argument type
is a model of the `IntegralDomainWithoutDivision` concept.
\sa `IntegralDomainWithoutDivision`
\sa `AlgebraicStructureTraits::Simplify`
\sa `AlgebraicStructureTraits_::Simplify`
*/
template <class NT> void simplify(const NT& x);
@ -429,7 +429,7 @@ The function is defined if the argument type
is a model of the `FieldWithSqrt` concept.
\sa `FieldWithSqrt`
\sa `AlgebraicStructureTraits::Sqrt`
\sa `AlgebraicStructureTraits_::Sqrt`
*/
template <class NT> NT sqrt(const NT& x);
@ -447,7 +447,7 @@ The function is defined if the argument type
is a model of the `IntegralDomainWithoutDivision` concept.
\sa `IntegralDomainWithoutDivision`
\sa `AlgebraicStructureTraits::Square`
\sa `AlgebraicStructureTraits_::Square`
*/
template <class NT> NT square(const NT& x);
@ -466,7 +466,7 @@ is a model of the `RealEmbeddable` concept.
Remark: In order to control the quality of approximation one has to resort to methods that are specific to NT. There are no general guarantees whatsoever.
\sa `RealEmbeddable`
\sa `RealEmbeddableTraits::ToDouble`
\sa `RealEmbeddableTraits_::ToDouble`
*/
template <class NT> double to_double(const NT& x);
@ -485,7 +485,7 @@ The function is defined if the argument type
is a model of the `RealEmbeddable` concept.
\sa `RealEmbeddable`
\sa `RealEmbeddableTraits::ToInterval`
\sa `RealEmbeddableTraits_::ToInterval`
*/
template <class NT>
@ -505,7 +505,7 @@ The function is defined if the argument type
is a model of the `IntegralDomainWithoutDivision` concept.
\sa `IntegralDomainWithoutDivision`
\sa `AlgebraicStructureTraits::UnitPart`
\sa `AlgebraicStructureTraits_::UnitPart`
*/
template <class NT> NT unit_part(const NT& x);

View File

@ -1,4 +1,6 @@
namespace AlgebraicStructureTraits_{
/*!
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
@ -9,12 +11,12 @@ with remainder.
\cgalRefines `AdaptableBinaryFunction`
\sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits::Mod`
\sa `AlgebraicStructureTraits::DivMod`
\sa `AlgebraicStructureTraits_::Mod`
\sa `AlgebraicStructureTraits_::DivMod`
*/
class AlgebraicStructureTraits::Div {
class Div {
public:
/// \name Types
@ -54,5 +56,6 @@ template <class NT1, class NT2> result_type operator()(NT1 x, NT2 y);
/// @}
}; /* end AlgebraicStructureTraits::Div */
}; /* end Div */
}

View File

@ -1,4 +1,6 @@
namespace AlgebraicStructureTraits_{
/*!
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
@ -190,12 +192,12 @@ r
\cgalRefines `AdaptableFunctor`
\sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits::Mod`
\sa `AlgebraicStructureTraits::Div`
\sa `AlgebraicStructureTraits_::Mod`
\sa `AlgebraicStructureTraits_::Div`
*/
class AlgebraicStructureTraits::DivMod {
class DivMod {
public:
/// \name Types
@ -251,5 +253,6 @@ operator()(NT1 x, NT2 y, third_argument_type q, fourth_argument_type r);
/// @}
}; /* end AlgebraicStructureTraits::DivMod */
}; /* end DivMod */
} /* end of namespace AlgebraicStructureTraits_ */

View File

@ -1,4 +1,6 @@
namespace AlgebraicStructureTraits_{
/*!
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
@ -17,11 +19,11 @@ The second operator returns \f$ c\f$ via the additional third argument.
\cgalRefines `AdaptableBinaryFunction`
\sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits::IntegralDivision`
\sa `AlgebraicStructureTraits_::IntegralDivision`
*/
class AlgebraicStructureTraits::Divides {
class Divides {
public:
/// \name Types
@ -67,5 +69,6 @@ AlgebraicStructureTraits::Type& c);
/// @}
}; /* end AlgebraicStructureTraits::Divides */
}; /* end Divides */
} /* end of namespace AlgebraicStructureTraits_ */

View File

@ -1,4 +1,6 @@
namespace AlgebraicStructureTraits_{
/*!
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
@ -21,7 +23,7 @@ Thus, \f$ 0\f$ is divided by every element of the Ring, in particular by itself.
*/
class AlgebraicStructureTraits::Gcd {
class Gcd {
public:
/// \name Types
@ -61,5 +63,6 @@ template <class NT1, class NT2> result_type operator()(NT1 x, NT2 y);
/// @}
}; /* end AlgebraicStructureTraits::Gcd */
}; /* end Gcd */
} /* end of namespace AlgebraicStructureTraits_ */

View File

@ -1,4 +1,6 @@
namespace AlgebraicStructureTraits_{
/*!
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
@ -14,11 +16,11 @@ this operation is undefined. Since the ring represented is an integral domain,
\cgalRefines `AdaptableBinaryFunction`
\sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits::Divides`
\sa `AlgebraicStructureTraits_::Divides`
*/
class AlgebraicStructureTraits::IntegralDivision {
class IntegralDivision {
public:
/// \name Types
@ -58,5 +60,8 @@ template <class NT1, class NT2> result_type operator()(NT1 x, NT2 y);
/// @}
}; /* end AlgebraicStructureTraits::IntegralDivision */
}; /* end IntegralDivision */
} /* end of namespace AlgebraicStructureTraits_ */

View File

@ -1,4 +1,6 @@
namespace AlgebraicStructureTraits_{
/*!
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
@ -12,7 +14,7 @@ respect to multiplication of a `Field`.
*/
class AlgebraicStructureTraits::Inverse {
class Inverse {
public:
/// \name Types
@ -42,5 +44,6 @@ result_type operator()(argument_type x) const;
/// @}
}; /* end AlgebraicStructureTraits::Inverse */
}; /* end Inverse */
} /* end of namespace AlgebraicStructureTraits_ */

View File

@ -1,4 +1,6 @@
namespace AlgebraicStructureTraits_{
/*!
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
@ -12,7 +14,7 @@ returns true in case the argument is the one of the ring.
*/
class AlgebraicStructureTraits::IsOne {
class IsOne {
public:
/// \name Types
@ -41,5 +43,6 @@ result_type operator()(argument_type x);
/// @}
}; /* end AlgebraicStructureTraits::IsOne */
}; /* end IsOne */
} /* end of namespace AlgebraicStructureTraits_ */

View File

@ -1,4 +1,6 @@
namespace AlgebraicStructureTraits_{
/*!
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
@ -17,7 +19,7 @@ that \f$ x= y*y\f$. In case the ring is a `UniqueFactorizationDomain`,
*/
class AlgebraicStructureTraits::IsSquare {
class IsSquare {
public:
/// \name Types
@ -59,5 +61,6 @@ result_type operator()(first_argument_type x);
/// @}
}; /* end AlgebraicStructureTraits::IsSquare */
}; /* end IsSquare */
} /* end of namespace AlgebraicStructureTraits_ */

View File

@ -1,4 +1,6 @@
namespace AlgebraicStructureTraits_{
/*!
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
@ -8,11 +10,11 @@
\cgalRefines `AdaptableUnaryFunction`
\sa `AlgebraicStructureTraits`
\sa `RealEmbeddableTraits::IsZero`
\sa `RealEmbeddableTraits_::IsZero`
*/
class AlgebraicStructureTraits::IsZero {
class IsZero {
public:
/// \name Types
@ -41,5 +43,6 @@ result_type operator()(argument_type x) const;
/// @}
}; /* end AlgebraicStructureTraits::IsZero */
}; /* end IsZero */
} /* end of namespace AlgebraicStructureTraits_ */

View File

@ -1,4 +1,6 @@
namespace AlgebraicStructureTraits_{
/*!
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
@ -12,7 +14,7 @@
*/
class AlgebraicStructureTraits::KthRoot {
class KthRoot {
public:
/// \name Types
@ -47,5 +49,6 @@ result_type operator()(int k, second_argument_type x);
/// @}
}; /* end AlgebraicStructureTraits::KthRoot */
}; /* end KthRoot */
} /* end of namespace AlgebraicStructureTraits_ */

View File

@ -1,4 +1,6 @@
namespace AlgebraicStructureTraits_ {
/*!
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
@ -8,12 +10,12 @@
\cgalRefines `AdaptableBinaryFunction`
\sa `AlgebraicStructureTraits`
\sa `AlgebraicStructureTraits::Div`
\sa `AlgebraicStructureTraits::DivMod`
\sa `AlgebraicStructureTraits_::Div`
\sa `AlgebraicStructureTraits_::DivMod`
*/
class AlgebraicStructureTraits::Mod {
class Mod {
public:
/// \name Types
@ -53,5 +55,6 @@ template <class NT1, class NT2> result_type operator()(NT1 x, NT2 y);
/// @}
}; /* end AlgebraicStructureTraits::Mod */
}; /* end Mod */
} /* end of namespace AlgebraicStructureTraits_ */

View File

@ -1,4 +1,6 @@
namespace AlgebraicStructureTraits_{
/*!
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
@ -13,7 +15,7 @@ polynomial.
*/
class AlgebraicStructureTraits::RootOf {
class RootOf {
public:
/// \name Types
@ -41,5 +43,6 @@ result_type operator() (int k, InputIterator begin, InputIterator end);
/// @}
}; /* end AlgebraicStructureTraits::RootOf */
}; /* end RootOf */
} /* end of namespace AlgebraicStructureTraits_ */

View File

@ -1,4 +1,6 @@
namespace AlgebraicStructureTraits_{
/*!
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
@ -11,7 +13,7 @@ This `AdaptableUnaryFunction` may simplify a given object.
*/
class AlgebraicStructureTraits::Simplify {
class Simplify {
public:
/// \name Types
@ -39,5 +41,6 @@ result_type operator()(argument_type x);
/// @}
}; /* end AlgebraicStructureTraits::Simplify */
}; /* end Simplify */
} /* end of namespace AlgebraicStructureTraits_ */

View File

@ -1,4 +1,6 @@
namespace AlgebraicStructureTraits_{
/*!
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
@ -11,7 +13,7 @@
*/
class AlgebraicStructureTraits::Sqrt {
class Sqrt {
public:
/// \name Types
@ -39,5 +41,6 @@ result_type operator()(argument_type x) const;
/// @}
}; /* end AlgebraicStructureTraits::Sqrt */
}; /* end Sqrt */
} /* end of namespace AlgebraicStructureTraits_ */

View File

@ -1,4 +1,6 @@
namespace AlgebraicStructureTraits_{
/*!
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
@ -11,7 +13,7 @@
*/
class AlgebraicStructureTraits::Square {
class Square {
public:
/// \name Types
@ -39,5 +41,6 @@ result_type operator()(argument_type x);
/// @}
}; /* end AlgebraicStructureTraits::Square */
}; /* end Square */
} /* end of namespace AlgebraicStructureTraits_ */

View File

@ -1,4 +1,6 @@
namespace AlgebraicStructureTraits_{
/*!
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
@ -25,7 +27,8 @@ associate being one. The unit part of zero is, by convention, one.
*/
class AlgebraicStructureTraits::UnitPart {
class UnitPart {
public:
/// \name Types
@ -53,5 +56,6 @@ result_type operator()(argument_type x);
/// @}
}; /* end AlgebraicStructureTraits::UnitPart */
}; /* end UnitPart */
} /* end of namespace AlgebraicStructureTraits_ */

View File

@ -153,18 +153,18 @@ typedef Hidden_type Boolean;
/*!
A model of `AlgebraicStructureTraits::IsZero`.
A model of `AlgebraicStructureTraits_::IsZero`.
Required by the concept `IntegralDomainWithoutDivision`.
In case `Type` is also model of `RealEmbeddable` this is a
model of `RealEmbeddableTraits::IsZero`.
model of `RealEmbeddableTraits_::IsZero`.
*/
typedef Hidden_type Is_zero;
/*!
A model of `AlgebraicStructureTraits::IsOne`.
A model of `AlgebraicStructureTraits_::IsOne`.
Required by the concept `IntegralDomainWithoutDivision`.
@ -173,7 +173,7 @@ typedef Hidden_type Is_one;
/*!
A model of `AlgebraicStructureTraits::Square`.
A model of `AlgebraicStructureTraits_::Square`.
Required by the concept `IntegralDomainWithoutDivision`.
@ -182,7 +182,7 @@ typedef Hidden_type Square;
/*!
A model of `AlgebraicStructureTraits::Simplify`.
A model of `AlgebraicStructureTraits_::Simplify`.
Required by the concept `IntegralDomainWithoutDivision`.
@ -191,7 +191,7 @@ typedef Hidden_type Simplify;
/*!
A model of `AlgebraicStructureTraits::UnitPart`.
A model of `AlgebraicStructureTraits_::UnitPart`.
Required by the concept `IntegralDomainWithoutDivision`.
@ -200,7 +200,7 @@ typedef Hidden_type Unit_part;
/*!
A model of `AlgebraicStructureTraits::IntegralDivision`.
A model of `AlgebraicStructureTraits_::IntegralDivision`.
Required by the concept `IntegralDomain`.
@ -209,7 +209,7 @@ typedef Hidden_type Integral_division;
/*!
A model of `AlgebraicStructureTraits::Divides`.
A model of `AlgebraicStructureTraits_::Divides`.
Required by the concept `IntegralDomain`.
@ -218,7 +218,7 @@ typedef Hidden_type Divides;
/*!
A model of `AlgebraicStructureTraits::IsSquare`.
A model of `AlgebraicStructureTraits_::IsSquare`.
Required by the concept `IntegralDomainWithoutDivision`.
@ -227,7 +227,7 @@ typedef Hidden_type Is_square;
/*!
A model of `AlgebraicStructureTraits::Gcd`.
A model of `AlgebraicStructureTraits_::Gcd`.
Required by the concept `UniqueFactorizationDomain`.
@ -236,7 +236,7 @@ typedef Hidden_type Gcd;
/*!
A model of `AlgebraicStructureTraits::Mod`.
A model of `AlgebraicStructureTraits_::Mod`.
Required by the concept `EuclideanRing`.
@ -245,7 +245,7 @@ typedef Hidden_type Mod;
/*!
A model of `AlgebraicStructureTraits::Div`.
A model of `AlgebraicStructureTraits_::Div`.
Required by the concept `EuclideanRing`.
@ -254,7 +254,7 @@ typedef Hidden_type Div;
/*!
A model of `AlgebraicStructureTraits::DivMod`.
A model of `AlgebraicStructureTraits_::DivMod`.
Required by the concept `EuclideanRing`.
@ -263,7 +263,7 @@ typedef Hidden_type Div_mod;
/*!
A model of `AlgebraicStructureTraits::Inverse`.
A model of `AlgebraicStructureTraits_::Inverse`.
Required by the concept `Field`.
@ -272,7 +272,7 @@ typedef Hidden_type Inverse;
/*!
A model of `AlgebraicStructureTraits::Sqrt`.
A model of `AlgebraicStructureTraits_::Sqrt`.
Required by the concept `FieldWithSqrt`.
@ -281,7 +281,7 @@ typedef Hidden_type Sqrt;
/*!
A model of `AlgebraicStructureTraits::KthRoot`.
A model of `AlgebraicStructureTraits_::KthRoot`.
Required by the concept `FieldWithKthRoot`.
@ -290,7 +290,7 @@ typedef Hidden_type Kth_root;
/*!
A model of `AlgebraicStructureTraits::RootOf`.
A model of `AlgebraicStructureTraits_::RootOf`.
Required by the concept `FieldWithRootOf`.

View File

@ -13,9 +13,9 @@ Moreover, `CGAL::Algebraic_structure_traits< EuclideanRing >` is a model of
`AlgebraicStructureTraits` providing:
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< EuclideanRing >::Algebraic_category` \endlink derived from `CGAL::Unique_factorization_domain_tag`
- `CGAL::Algebraic_structure_traits< EuclideanRing >::Mod` which is a model of `AlgebraicStructureTraits::Mod`
- `CGAL::Algebraic_structure_traits< EuclideanRing >::Div` which is a model of `AlgebraicStructureTraits::Div`
- \link AlgebraicStructureTraits::Div_mod `CGAL::Algebraic_structure_traits< EuclideanRing >::Div_mod` \endlink which is a model of `AlgebraicStructureTraits::DivMod`
- \link AlgebraicStructureTraits::Mod `CGAL::Algebraic_structure_traits< EuclideanRing >::Mod` \endlink which is a model of `AlgebraicStructureTraits_::Mod`
- \link AlgebraicStructureTraits::Div `CGAL::Algebraic_structure_traits< EuclideanRing >::Div` \endlink which is a model of `AlgebraicStructureTraits_::Div`
- \link AlgebraicStructureTraits::Div_mod `CGAL::Algebraic_structure_traits< EuclideanRing >::Div_mod` \endlink which is a model of `AlgebraicStructureTraits_::DivMod`
### Remarks ###

View File

@ -14,7 +14,7 @@ Moreover, `CGAL::Algebraic_structure_traits< Field >` is a model of
`AlgebraicStructureTraits` providing:
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< Field >::Algebraic_category` \endlink derived from `CGAL::Field_tag`
- `CGAL::Algebraic_structure_traits< FieldWithSqrt >::Inverse` which is a model of `AlgebraicStructureTraits::Inverse`
- \link AlgebraicStructureTraits::Inverse `CGAL::Algebraic_structure_traits< FieldWithSqrt >::Inverse` \endlink which is a model of `AlgebraicStructureTraits_::Inverse`
\cgalRefines `IntegralDomain`

View File

@ -8,7 +8,7 @@ A model of `FieldWithKthRoot` is a `FieldWithSqrt` that has operations to take k
Moreover, `CGAL::Algebraic_structure_traits< FieldWithKthRoot >` is a model of `AlgebraicStructureTraits` providing:
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< FieldWithKthRoot >::Algebraic_category` \endlink derived from `CGAL::Field_with_kth_root_tag`
- \link AlgebraicStructureTraits::Kth_root `CGAL::Algebraic_structure_traits< FieldWithKthRoot >::Kth_root` \endlink which is a model of `AlgebraicStructureTraits::KthRoot`
- \link AlgebraicStructureTraits::Kth_root `CGAL::Algebraic_structure_traits< FieldWithKthRoot >::Kth_root` \endlink which is a model of `AlgebraicStructureTraits_::KthRoot`
\cgalRefines `FieldWithSqrt`

View File

@ -9,7 +9,7 @@ construct it as the root of a univariate polynomial.
Moreover, `CGAL::Algebraic_structure_traits< FieldWithRootOf >` is a model of `AlgebraicStructureTraits` providing:
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< FieldWithRootOf >::Algebraic_category` \endlink derived from `CGAL::Field_with_kth_root_tag`
- \link AlgebraicStructureTraits::Root_of `CGAL::Algebraic_structure_traits< FieldWithRootOf >::Root_of` \endlink which is a model of `AlgebraicStructureTraits::RootOf`
- \link AlgebraicStructureTraits::Root_of `CGAL::Algebraic_structure_traits< FieldWithRootOf >::Root_of` \endlink which is a model of `AlgebraicStructureTraits_::RootOf`
\cgalRefines `FieldWithKthRoot`

View File

@ -8,7 +8,7 @@ A model of `FieldWithSqrt` is a `Field` that has operations to take square roots
Moreover, `CGAL::Algebraic_structure_traits< FieldWithSqrt >` is a model of `AlgebraicStructureTraits` providing:
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< FieldWithSqrt >::Algebraic_category` \endlink derived from `CGAL::Field_with_sqrt_tag`
- `CGAL::Algebraic_structure_traits< FieldWithSqrt >::Sqrt` which is a model of `AlgebraicStructureTraits::Sqrt`
- \link AlgebraicStructureTraits::Sqrt `CGAL::Algebraic_structure_traits< FieldWithSqrt >::Sqrt` \endlink which is a model of `AlgebraicStructureTraits_::Sqrt`
\cgalRefines `Field`

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicFoundationsFractionsConcepts
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
A model of `FractionTraits` is associated with a type `Type`.
@ -10,9 +10,9 @@ as the numerator and denominator type.
\cgalHasModel `CGAL::Fraction_traits<T>`
\sa `FractionTraits::Decompose`
\sa `FractionTraits::Compose`
\sa `FractionTraits::CommonFactor`
\sa `FractionTraits_::Decompose`
\sa `FractionTraits_::Compose`
\sa `FractionTraits_::CommonFactor`
*/
class FractionTraits {
@ -53,17 +53,40 @@ typedef Hidden_type Denominator_type;
/// In case `Type` is not a `Fraction` all functors are `Null_functor`.
/// @{
/*!
A model of FractionTraits_::Compose.
*/
typedef Hidden_type Compose;
/*!
\ingroup PkgAlgebraicFoundationsFractionsConcepts
A model of FractionTraits_::Decompose.
*/
typedef Hidden_type Decompose;
/*!
A model of FractionTraits_::CommonFactor.
*/
typedef Hidden_type Common_factor;
/// @}
}; /* end FractionTraits */
namespace FractionTraits_ {
/*!
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
Functor decomposing a `Fraction` into its numerator and denominator.
\sa `Fraction`
\sa `FractionTraits`
\sa `FractionTraits::Compose`
\sa `FractionTraits::CommonFactor`
\sa `FractionTraits_::Compose`
\sa `FractionTraits_::CommonFactor`
*/
@ -82,10 +105,10 @@ FractionTraits::Denominator_type & d);
/// @}
}; /* end FractionTraits::Decompose */
}; /* end Decompose */
/*!
\ingroup PkgAlgebraicFoundationsFractionsConcepts
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
`AdaptableBinaryFunction`, returns the fraction of its arguments.
@ -94,8 +117,8 @@ FractionTraits::Denominator_type & d);
\sa `Fraction`
\sa `FractionTraits`
\sa `FractionTraits::Decompose`
\sa `FractionTraits::CommonFactor`
\sa `FractionTraits_::Decompose`
\sa `FractionTraits_::CommonFactor`
*/
@ -132,16 +155,16 @@ result_type operator()(first_argument_type n, second_argument_type d);
/// @}
}; /* end FractionTraits::Compose */
}; /* end Compose */
/*!
\ingroup PkgAlgebraicFoundationsFractionsConcepts
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
`AdaptableBinaryFunction`, finds great common factor of denominators.
This can be considered as a relaxed version of `AlgebraicStructureTraits::Gcd`,
This can be considered as a relaxed version of `AlgebraicStructureTraits_::Gcd`,
this is needed because it is not guaranteed that `FractionTraits::Denominator_type` is a model of
`UniqueFactorizationDomain`.
@ -149,9 +172,9 @@ this is needed because it is not guaranteed that `FractionTraits::Denominator_ty
\sa `Fraction`
\sa `FractionTraits`
\sa `FractionTraits::Decompose`
\sa `FractionTraits::Compose`
\sa `AlgebraicStructureTraits::Gcd`
\sa `FractionTraits_::Decompose`
\sa `FractionTraits_::Compose`
\sa `AlgebraicStructureTraits_::Gcd`
*/
@ -190,26 +213,6 @@ result_type operator()(first_argument_type d1, second_argument_type d2);
/// @}
}; /* end FractionTraits::CommonFactor */
}; /* end CommonFactor */
/*!
A model of FractionTraits::Compose.
*/
typedef Hidden_type Compose;
/*!
A model of FractionTraits::Decompose.
*/
typedef Hidden_type Decompose;
/*!
A model of FractionTraits::CommonFactor.
*/
typedef Hidden_type Common_factor;
/// @}
}; /* end FractionTraits */
} /* end of namespace FractionTraits_ */

View File

@ -13,8 +13,8 @@ Moreover, `CGAL::Algebraic_structure_traits< IntegralDomain >` is a model of
`AlgebraicStructureTraits` providing:
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< IntegralDomain >::Algebraic_category` \endlink derived from `CGAL::Integral_domain_tag`
- \link AlgebraicStructureTraits::Integral_division `CGAL::Algebraic_structure_traits< IntegralDomain >::Integral_division` \endlink which is a model of `AlgebraicStructureTraits::IntegralDivision`
- `CGAL::Algebraic_structure_traits< IntegralDomain >::Divides` which is a model of `AlgebraicStructureTraits::Divides`
- \link AlgebraicStructureTraits::Integral_division `CGAL::Algebraic_structure_traits< IntegralDomain >::Integral_division` \endlink which is a model of `AlgebraicStructureTraits_::IntegralDivision`
- \link AlgebraicStructureTraits::Divides`CGAL::Algebraic_structure_traits< IntegralDomain >::Divides`\endlink which is a model of `AlgebraicStructureTraits_::Divides`
\cgalRefines `IntegralDomainWithoutDivision`

View File

@ -24,11 +24,11 @@ Moreover, `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >` is
`AlgebraicStructureTraits` providing:
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Algebraic_category` \endlink derived from `CGAL::Integral_domain_without_division_tag`
- \link AlgebraicStructureTraits::Is_zero `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Is_zero` \endlink which is a model of `AlgebraicStructureTraits::IsZero`
- \link AlgebraicStructureTraits::Is_one `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Is_one` \endlink which is a model of `AlgebraicStructureTraits::IsOne`
- `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Square` which is a model of `AlgebraicStructureTraits::Square`
- `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Simplify` which is a model of `AlgebraicStructureTraits::Simplify`
- \link AlgebraicStructureTraits::Unit_part `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Unit_part` \endlink which is a model of `AlgebraicStructureTraits::UnitPart`
- \link AlgebraicStructureTraits::Is_zero `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Is_zero` \endlink which is a model of `AlgebraicStructureTraits_::IsZero`
- \link AlgebraicStructureTraits::Is_one `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Is_one` \endlink which is a model of `AlgebraicStructureTraits_::IsOne`
- \link AlgebraicStructureTraits::Square `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Square` \endlink which is a model of `AlgebraicStructureTraits_::Square`
- \link AlgebraicStructureTraits::Simplify `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Simplify` \endlink which is a model of `AlgebraicStructureTraits_::Simplify`
- \link AlgebraicStructureTraits::Unit_part `CGAL::Algebraic_structure_traits< IntegralDomainWithoutDivision >::Unit_part` \endlink which is a model of `AlgebraicStructureTraits_::UnitPart`
\cgalRefines `Assignable`
\cgalRefines `CopyConstructible`

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicFoundationsRealEmbeddableConcepts
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
A model of this concepts represents numbers that are embeddable on the real
@ -16,21 +16,21 @@ with:
and functors :
- \link RealEmbeddableTraits::Is_zero `CGAL::Real_embeddable_traits< RealEmbeddable >::Is_zero` \endlink which is a model of `RealEmbeddableTraits::IsZero`
- \link RealEmbeddableTraits::Is_zero `CGAL::Real_embeddable_traits< RealEmbeddable >::Is_zero` \endlink which is a model of `RealEmbeddableTraits_::IsZero`
- `CGAL::Real_embeddable_traits< RealEmbeddable >::Abs` which is a model of `RealEmbeddableTraits::Abs`
- \link RealEmbeddableTraits::Abs `CGAL::Real_embeddable_traits< RealEmbeddable >::Abs` \endlink which is a model of `RealEmbeddableTraits_::Abs`
- `CGAL::Real_embeddable_traits< RealEmbeddable >::Sgn` which is a model of `RealEmbeddableTraits::Sgn`
- \link RealEmbeddableTraits::Sgn `CGAL::Real_embeddable_traits< RealEmbeddable >::Sgn` \endlink which is a model of `RealEmbeddableTraits_::Sgn`
- \link RealEmbeddableTraits::Is_positive `CGAL::Real_embeddable_traits< RealEmbeddable >::Is_positive` \endlink which is a model of `RealEmbeddableTraits::IsPositive`
- \link RealEmbeddableTraits::Is_positive `CGAL::Real_embeddable_traits< RealEmbeddable >::Is_positive` \endlink which is a model of `RealEmbeddableTraits_::IsPositive`
- \link RealEmbeddableTraits::Is_negative `CGAL::Real_embeddable_traits< RealEmbeddable >::Is_negative` \endlink which is a model of `RealEmbeddableTraits::IsNegative`
- \link RealEmbeddableTraits::Is_negative `CGAL::Real_embeddable_traits< RealEmbeddable >::Is_negative` \endlink which is a model of `RealEmbeddableTraits_::IsNegative`
- `CGAL::Real_embeddable_traits< RealEmbeddable >::Compare` which is a model of `RealEmbeddableTraits::Compare`
- \link RealEmbeddableTraits::Compare `CGAL::Real_embeddable_traits< RealEmbeddable >::Compare` \endlink which is a model of `RealEmbeddableTraits_::Compare`
- \link RealEmbeddableTraits::To_double `CGAL::Real_embeddable_traits< RealEmbeddable >::To_double` \endlink which is a model of `RealEmbeddableTraits::ToDouble`
- \link RealEmbeddableTraits::To_double `CGAL::Real_embeddable_traits< RealEmbeddable >::To_double` \endlink which is a model of `RealEmbeddableTraits_::ToDouble`
- \link RealEmbeddableTraits::To_interval `CGAL::Real_embeddable_traits< RealEmbeddable >::To_interval` \endlink which is a model of `RealEmbeddableTraits::ToInterval`
- \link RealEmbeddableTraits::To_interval `CGAL::Real_embeddable_traits< RealEmbeddable >::To_interval` \endlink which is a model of `RealEmbeddableTraits_::ToInterval`
Remark:

View File

@ -1,6 +1,8 @@
namespace RealEmbeddableTraits_ {
/*!
\ingroup PkgAlgebraicFoundationsRealEmbeddableConcepts
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
`AdaptableUnaryFunction` computes the absolute value of a number.
@ -11,7 +13,7 @@
*/
class RealEmbeddableTraits::Abs {
class Abs {
public:
/// \name Types
@ -39,5 +41,6 @@ result_type operator()(argument_type x);
/// @}
}; /* end RealEmbeddableTraits::Abs */
}; /* end Abs */
} /* end of namespace RealEmbeddableTraits_ */

View File

@ -1,6 +1,8 @@
namespace RealEmbeddableTraits_ {
/*!
\ingroup PkgAlgebraicFoundationsConcepts
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
`AdaptableBinaryFunction` compares two real embeddable numbers.
@ -11,7 +13,7 @@
*/
class RealEmbeddableTraits::Compare {
class Compare {
public:
/// \name Types
@ -54,5 +56,6 @@ result_type operator()(NT1 x, NT2 y);
/// @}
}; /* end RealEmbeddableTraits::Compare */
}; /* end Compare */
} /* end of namespace RealEmbeddableTraits_ */

View File

@ -1,6 +1,8 @@
namespace RealEmbeddableTraits_ {
/*!
\ingroup PkgAlgebraicFoundationsConcepts
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
`AdaptableUnaryFunction`, returns true in case the argument is negative.
@ -11,7 +13,7 @@
*/
class RealEmbeddableTraits::IsNegative {
class IsNegative {
public:
/// \name Types
@ -39,5 +41,6 @@ result_type operator()(argument_type x);
/// @}
}; /* end RealEmbeddableTraits::IsNegative */
}; /* end IsNegative */
} /* end of namespace RealEmbeddableTraits_ */

View File

@ -1,6 +1,8 @@
namespace RealEmbeddableTraits_ {
/*!
\ingroup PkgAlgebraicFoundationsConcepts
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
`AdaptableUnaryFunction`, returns true in case the argument is positive.
@ -11,7 +13,7 @@
*/
class RealEmbeddableTraits::IsPositive {
class IsPositive {
public:
/// \name Types
@ -39,5 +41,6 @@ result_type operator()(argument_type x);
/// @}
}; /* end RealEmbeddableTraits::IsPositive */
}; /* end IsPositive */
} /* end of namespace RealEmbeddableTraits_ */

View File

@ -1,6 +1,8 @@
namespace RealEmbeddableTraits_ {
/*!
\ingroup PkgAlgebraicFoundationsConcepts
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
`AdaptableUnaryFunction`, returns true in case the argument is 0.
@ -8,11 +10,11 @@
\cgalRefines `AdaptableUnaryFunction`
\sa `RealEmbeddableTraits`
\sa `AlgebraicStructureTraits::IsZero`
\sa `AlgebraicStructureTraits_::IsZero`
*/
class RealEmbeddableTraits::IsZero {
class IsZero {
public:
/// \name Types
@ -41,5 +43,6 @@ result_type operator()(argument_type x);
/// @}
}; /* end RealEmbeddableTraits::IsZero */
}; /* end IsZero */
} /* end of namespace RealEmbeddableTraits_ */

View File

@ -1,6 +1,8 @@
namespace RealEmbeddableTraits_ {
/*!
\ingroup PkgAlgebraicFoundationsConcepts
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
This `AdaptableUnaryFunction` computes the sign of a real embeddable number.
@ -11,7 +13,7 @@ This `AdaptableUnaryFunction` computes the sign of a real embeddable number.
*/
class RealEmbeddableTraits::Sgn {
class Sgn {
public:
/// \name Types
@ -39,5 +41,6 @@ result_type operator()(argument_type x);
/// @}
}; /* end RealEmbeddableTraits::Sgn */
}; /* end Sgn */
} /* end of namespace RealEmbeddableTraits_ */

View File

@ -1,6 +1,8 @@
namespace RealEmbeddableTraits_ {
/*!
\ingroup PkgAlgebraicFoundationsConcepts
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
`AdaptableUnaryFunction` computes a double approximation of a real
@ -15,7 +17,7 @@ to methods that are specific to NT. There are no general guarantees whatsoever.
*/
class RealEmbeddableTraits::ToDouble {
class ToDouble {
public:
/// \name Types
@ -43,5 +45,6 @@ result_type operator()(argument_type x);
/// @}
}; /* end RealEmbeddableTraits::ToDouble */
}; /* end ToDouble */
} /* end of namespace RealEmbeddableTraits_ */

View File

@ -1,6 +1,8 @@
namespace RealEmbeddableTraits_ {
/*!
\ingroup PkgAlgebraicFoundationsConcepts
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
`AdaptableUnaryFunction` computes for a given real embeddable
@ -13,7 +15,7 @@ This interval is represented by `std::pair<double,double>`.
*/
class RealEmbeddableTraits::ToInterval {
class ToInterval {
public:
/// \name Types
@ -41,5 +43,6 @@ result_type operator()(argument_type x);
/// @}
}; /* end RealEmbeddableTraits::ToInterval */
}; /* end ToInterval */
} /* end of namespace RealEmbeddableTraits_ */

View File

@ -1,6 +1,6 @@
/*!
\ingroup PkgAlgebraicFoundationsRealEmbeddableConcepts
\ingroup PkgAlgebraicFoundationsAlgebraicStructuresConcepts
\cgalConcept
A model of `RealEmbeddableTraits` is associated to a number type
@ -69,44 +69,44 @@ typedef Hidden_type Comparison_result;
/*!
A model of `RealEmbeddableTraits::IsZero`
A model of `RealEmbeddableTraits_::IsZero`
In case `Type` is also model of `IntegralDomainWithoutDivision`
this is a model of `AlgebraicStructureTraits::IsZero`.
this is a model of `AlgebraicStructureTraits_::IsZero`.
*/
typedef Hidden_type Is_zero;
/*!
A model of `RealEmbeddableTraits::Abs`
A model of `RealEmbeddableTraits_::Abs`
*/
typedef Hidden_type Abs;
/*!
A model of `RealEmbeddableTraits::Sgn`
A model of `RealEmbeddableTraits_::Sgn`
*/
typedef Hidden_type Sgn;
/*!
A model of `RealEmbeddableTraits::IsPositive`
A model of `RealEmbeddableTraits_::IsPositive`
*/
typedef Hidden_type Is_positive;
/*!
A model of `RealEmbeddableTraits::IsNegative`
A model of `RealEmbeddableTraits_::IsNegative`
*/
typedef Hidden_type Is_negative;
/*!
A model of `RealEmbeddableTraits::Compare`
A model of `RealEmbeddableTraits_::Compare`
*/
typedef Hidden_type Compare;
/*!
A model of `RealEmbeddableTraits::ToDouble`
A model of `RealEmbeddableTraits_::ToDouble`
*/
typedef Hidden_type To_double;
/*!
A model of `RealEmbeddableTraits::ToInterval`
A model of `RealEmbeddableTraits_::ToInterval`
*/
typedef Hidden_type To_interval;

View File

@ -21,7 +21,7 @@ is a model of `AlgebraicStructureTraits` providing:
- \link AlgebraicStructureTraits::Algebraic_category `CGAL::Algebraic_structure_traits< UniqueFactorizationDomain >::Algebraic_category` \endlink
derived from `CGAL::Unique_factorization_domain_tag`
- `CGAL::Algebraic_structure_traits< UniqueFactorizationDomain >::Gcd` which is a model of `AlgebraicStructureTraits::Gcd`
- \link AlgebraicStructureTraits::Gcd `CGAL::Algebraic_structure_traits< UniqueFactorizationDomain >::Gcd` \endlink which is a model of `AlgebraicStructureTraits_::Gcd`
\cgalRefines `IntegralDomain`

View File

@ -35,22 +35,22 @@
- `FieldWithRootOf`
- `AlgebraicStructureTraits`
- `AlgebraicStructureTraits::IsZero`
- `AlgebraicStructureTraits::IsOne`
- `AlgebraicStructureTraits::Square`
- `AlgebraicStructureTraits::Simplify`
- `AlgebraicStructureTraits::UnitPart`
- `AlgebraicStructureTraits::IntegralDivision`
- `AlgebraicStructureTraits::Divides`
- `AlgebraicStructureTraits::Gcd`
- `AlgebraicStructureTraits::DivMod`
- `AlgebraicStructureTraits::Div`
- `AlgebraicStructureTraits::Mod`
- `AlgebraicStructureTraits::Inverse`
- `AlgebraicStructureTraits::Sqrt`
- `AlgebraicStructureTraits::IsSquare`
- `AlgebraicStructureTraits::KthRoot`
- `AlgebraicStructureTraits::RootOf`
- `AlgebraicStructureTraits_::IsZero`
- `AlgebraicStructureTraits_::IsOne`
- `AlgebraicStructureTraits_::Square`
- `AlgebraicStructureTraits_::Simplify`
- `AlgebraicStructureTraits_::UnitPart`
- `AlgebraicStructureTraits_::IntegralDivision`
- `AlgebraicStructureTraits_::Divides`
- `AlgebraicStructureTraits_::Gcd`
- `AlgebraicStructureTraits_::DivMod`
- `AlgebraicStructureTraits_::Div`
- `AlgebraicStructureTraits_::Mod`
- `AlgebraicStructureTraits_::Inverse`
- `AlgebraicStructureTraits_::Sqrt`
- `AlgebraicStructureTraits_::IsSquare`
- `AlgebraicStructureTraits_::KthRoot`
- `AlgebraicStructureTraits_::RootOf`
### Classes ###
@ -87,14 +87,14 @@
- `RealEmbeddable`
- `RealEmbeddableTraits`
- `RealEmbeddableTraits::IsZero`
- `RealEmbeddableTraits::Abs`
- `RealEmbeddableTraits::Sgn`
- `RealEmbeddableTraits::IsPositive`
- `RealEmbeddableTraits::IsNegative`
- `RealEmbeddableTraits::Compare`
- `RealEmbeddableTraits::ToDouble`
- `RealEmbeddableTraits::ToInterval`
- `RealEmbeddableTraits_::IsZero`
- `RealEmbeddableTraits_::Abs`
- `RealEmbeddableTraits_::Sgn`
- `RealEmbeddableTraits_::IsPositive`
- `RealEmbeddableTraits_::IsNegative`
- `RealEmbeddableTraits_::Compare`
- `RealEmbeddableTraits_::ToDouble`
- `RealEmbeddableTraits_::ToInterval`
### Classes ###
@ -135,9 +135,9 @@
- `Fraction`
- `FractionTraits`
- `FractionTraits::Decompose`
- `FractionTraits::Compose`
- `FractionTraits::CommonFactor`
- `FractionTraits_::Decompose`
- `FractionTraits_::Compose`
- `FractionTraits_::CommonFactor`
### Classes ###