This commit is contained in:
Maxime Gimeno 2016-08-11 14:47:37 +02:00 committed by Sébastien Loriot
parent c4a6da2f8b
commit 62e78f34e5
1 changed files with 127 additions and 48 deletions

View File

@ -29,13 +29,12 @@
#include <CGAL/AABB_face_graph_triangle_primitive.h>
#include <CGAL/utility.h>
#include <boost/foreach.hpp>
#include <CGAL/Polygon_mesh_processing/internal/named_function_params.h>
#include <CGAL/Polygon_mesh_processing/internal/named_params_helper.h>
//#include <CGAL/Polygon_mesh_processing/internal/named_function_params.h>
//#include <CGAL/Polygon_mesh_processing/internal/named_params_helper.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/Surface_mesh.h>
#include <CGAL/boost/graph/graph_traits_Surface_mesh.h>
#include <CGAL/spatial_sort.h>
#include <CGAL/Polygon_mesh_processing/measure.h>
#ifdef CGAL_LINKED_WITH_TBB
#include <tbb/parallel_for.h>
@ -46,8 +45,8 @@
namespace CGAL{
namespace Polygon_mesh_processing {
namespace PMP = CGAL::Polygon_mesh_processing;
namespace internal{
template <class Kernel, class OutputIterator>
OutputIterator
triangle_grid_sampling( const typename Kernel::Point_3& p0,
@ -161,18 +160,18 @@ struct Distance_computation{
};
#endif
template <class Concurrency_tag, class Kernel>
template <class Concurrency_tag, class Kernel, class TriangleMesh, class VertexPointMap = typename boost::property_map<TriangleMesh,
CGAL::vertex_point_t>::type>
double approximated_Hausdorff_distance(
std::vector<typename Kernel::Point_3>& sample_points,
Surface_mesh<typename Kernel::Point_3>& m,
TriangleMesh& m,
std::size_t nb_sample_points)
{
typedef Surface_mesh<typename Kernel::Point_3> Mesh;
typedef Point_3<Kernel> Point_3;
bool is_triangle = is_triangle_mesh(m);
CGAL_assertion_msg (is_triangle,
"Mesh is not triangulated. Distance computing impossible.");
Random_points_in_triangle_mesh_3<Mesh>
Random_points_in_triangle_mesh_3<TriangleMesh, VertexPointMap>
g(m);
CGAL::cpp11::copy_n(g, nb_sample_points, std::back_inserter(sample_points));
#ifdef CGAL_HAUSDORFF_DEBUG
@ -180,11 +179,8 @@ double approximated_Hausdorff_distance(
#endif
spatial_sort(sample_points.begin(), sample_points.end());
/// \todo shall we use Simple_cartesian for the distance computation?
/// check if this can be problematic to have non-exact predicates.
typedef typename Mesh::face_iterator Triangle_iterator;
typedef AABB_face_graph_triangle_primitive<Mesh> Primitive;
typedef typename TriangleMesh::face_iterator Triangle_iterator;
typedef AABB_face_graph_triangle_primitive<TriangleMesh> Primitive;
typedef AABB_traits<Kernel, Primitive> Traits;
typedef AABB_tree< Traits > Tree;
@ -208,40 +204,48 @@ double approximated_Hausdorff_distance(
{
double hdist = 0;
typename Traits::Point_3 hint = sample_points.front();
BOOST_FOREACH(const typename Kernel::Point_3& pt, sample_points)
BOOST_FOREACH(const typename Traits::Point_3& pt, sample_points)
{
hint = tree.closest_point(pt, hint);
double d = CGAL::sqrt( squared_distance(hint,pt) );
typename Kernel::FT dist = squared_distance(hint,pt);
double d = to_double(CGAL::approximate_sqrt(dist));
if (d>hdist) hdist=d;
}
return hdist;
}
}
template <class Concurrency_tag, class Kernel>
template <class Concurrency_tag, class Kernel, class TriangleMesh,
class VertexPointMap1 = typename boost::property_map<TriangleMesh,
CGAL::vertex_point_t>::type,
class VertexPointMap2 = typename boost::property_map<TriangleMesh,
CGAL::vertex_point_t>::type>
double approximated_Hausdorff_distance(
Surface_mesh<typename Kernel::Point_3>& m1,
Surface_mesh<typename Kernel::Point_3>& m2,
TriangleMesh& m1,
TriangleMesh& m2,
int nb_points
)
{
std::vector<typename Kernel::Point_3> sample_points;
Random_points_in_triangle_mesh_3<Surface_mesh<typename Kernel::Point_3> >
Random_points_in_triangle_mesh_3<TriangleMesh, VertexPointMap1>
g(m1);
CGAL::cpp11::copy_n(g, nb_points, std::back_inserter(sample_points));
return approximated_Hausdorff_distance<Concurrency_tag, Kernel>(sample_points, m2,4000);
return approximated_Hausdorff_distance<Concurrency_tag, Kernel, TriangleMesh, VertexPointMap2>(sample_points, m2,4000);
}
template <class Concurrency_tag, class Kernel>
template <class Concurrency_tag, class Kernel, class TriangleMesh, class VertexPointMap1 = typename boost::property_map<TriangleMesh,
CGAL::vertex_point_t>::type,
class VertexPointMap2 = typename boost::property_map<TriangleMesh,
CGAL::vertex_point_t>::type>
double approximated_symmetric_Hausdorff_distance(
Surface_mesh<typename Kernel::Point_3>& m1,
Surface_mesh<typename Kernel::Point_3>& m2,
TriangleMesh& m1,
TriangleMesh& m2,
int nb_points
)
{
return (std::max)(
approximated_Hausdorff_distance<Concurrency_tag, Kernel>(m1, m2, nb_points),
approximated_Hausdorff_distance<Concurrency_tag, Kernel>(m2, m1, nb_points)
approximated_Hausdorff_distance<Concurrency_tag, Kernel, TriangleMesh, VertexPointMap1, VertexPointMap2>(m1, m2, nb_points),
approximated_Hausdorff_distance<Concurrency_tag, Kernel, TriangleMesh, VertexPointMap2, VertexPointMap1>(m2, m1, nb_points)
);
}
@ -252,14 +256,72 @@ double approximated_symmetric_Hausdorff_distance(
/// The goal is to test different strategies and put the better one in `approximated_Hausdorff_distance()`
/// for particular cases one can still use a specific sampling method together with `max_distance_to_triangle_mesh()`
/// \todo add a plugin in the demo to display the distance betweem 2 meshes as a texture (if not complicated)
enum Sampling_method{
RANDOM_UNIFORM =0,
GRID,
MONTE_CARLO };
template<class Kernel, class TriangleMesh>
void sample_triangle_mesh(TriangleMesh& m,
double precision,
std::vector<typename Kernel::Point_3>& sampled_points,
Sampling_method method = RANDOM_UNIFORM)
{
switch(method)
{
std::size_t nb_points = std::ceil(precision * PMP::area(m,
PMP::parameters::geom_traits(Kernel())));
case RANDOM_UNIFORM:
Random_points_in_triangle_mesh_3<TriangleMesh>
g(m);
CGAL::cpp11::copy_n(g, nb_points, std::back_inserter(sampled_points));
return;
case GRID:
{
typedef typename boost::property_map<TriangleMesh, CGAL::vertex_point_t>::type Pmap;
CGAL::Property_map_to_unary_function<Pmap> pmap(&m);
BOOST_FOREACH(typename TriangleMesh::face_iterator f, faces(m))
{
typename Kernel::Point_3 points[3];
typename TriangleMesh::Halfedge_around_face_circulator hc = halfedge(f,m);
for(int i=0; i<3; ++i)
{
points[i] = get(pmap, target(hc, m));
++hc;
}
internal::triangle_grid_sampling(points[0], points[1], points[2],100.0/nb_points, std::back_inserter(sampled_points));
}
return;
}
case MONTE_CARLO:
break;
}
}
/// \todo add a plugin in the demo to display the distance between 2 meshes as a texture (if not complicated)
template< class Concurrency_tag,
class Kernel,
class TriangleMesh,
class PMap1,
class PMap2>
double approximated_Hausdorff_distance( TriangleMesh& tm1,
TriangleMesh& tm2,
double precision,
const PMap1&,
const PMap2&)
{
std::size_t nb_points = std::max(std::ceil(to_double(precision * PMP::area(tm1,
PMP::parameters::geom_traits(Kernel())))),
std::ceil(to_double(precision * PMP::area(tm2,
PMP::parameters::geom_traits(Kernel())))));
return approximated_Hausdorff_distance<Concurrency_tag,Kernel,TriangleMesh, PMap1, PMap2>(tm1, tm2, nb_points);
}
// documented functions
/**
* \ingroup PMP_distance_grp
* computes the approximated Hausdorff distance of `tm1` from `tm2` by
* by generating a uniform random point sampling on `tm1`, and by then
* generating a uniform random point sampling on `tm1`, and by then
* returning the distance of the furthest point from `tm2`.
*
* A parallel version is provided and requires the executable to be
@ -278,7 +340,7 @@ double approximated_symmetric_Hausdorff_distance(
*
* @param tm1 the triangle mesh that will be sampled
* @param tm2 the triangle mesh to compute the distance to
* @param precision TODO: either the number of points per squared area unit or something else depending on the result of the testing
* @param precision the number of points per squared area unit
* @param np1 optional sequence of \ref namedparameters for `tm1` among the ones listed below
* @param np2 optional sequence of \ref namedparameters for `tm2` among the ones listed below
*
@ -292,8 +354,8 @@ template< class Concurrency_tag,
class TriangleMesh,
class NamedParameters1,
class NamedParameters2>
double approximated_Hausdorff_distance( const TriangleMesh& tm1,
const TriangleMesh& tm2,
double approximated_Hausdorff_distance( TriangleMesh& tm1,
TriangleMesh& tm2,
double precision,
const NamedParameters1& np1,
const NamedParameters2& np2)
@ -301,7 +363,6 @@ double approximated_Hausdorff_distance( const TriangleMesh& tm1,
typedef typename GetGeomTraits<TriangleMesh,
NamedParameters1>::type Geom_traits;
/// \todo implement the missing function
return approximated_Hausdorff_distance<Concurrency_tag, Geom_traits>(
tm1, tm2,
precision,
@ -328,8 +389,8 @@ template< class Concurrency_tag,
class NamedParameters1,
class NamedParameters2>
double approximated_symmetric_Hausdorff_distance(
const TriangleMesh& tm1,
const TriangleMesh& tm2,
TriangleMesh& tm1,
TriangleMesh& tm2,
double precision,
const NamedParameters1& np1,
const NamedParameters2& np2)
@ -341,15 +402,34 @@ double approximated_symmetric_Hausdorff_distance(
}
/// \todo document and implement me
/// \todo find a way to define precision through named parameters
/**
* \ingroup PMP_distance_grp
* computes the approximated Hausdorff distance between `points` and `tm`.
* \copydetails CGAL::Polygon_mesh_processing::approximated_Hausdorff_distance()
*/
template< class Concurrency_tag,
class TriangleMesh,
class PointRange,
class NamedParameters>
double max_distance_to_triangle_mesh(const PointRange& points,
const TriangleMesh& tm,
TriangleMesh& tm,
double precision,
const NamedParameters& np)
{
return 0;
typedef typename GetGeomTraits<TriangleMesh,
NamedParameters>::type Geom_traits;
std::vector<typename PointRange::value_type> sample_points;
BOOST_FOREACH(typename PointRange::value_type point, points)
sample_points.push_back(point);
std::size_t nb_points = std::ceil(to_double(precision * PMP::area(tm,
PMP::parameters::geom_traits(Geom_traits()))));
return approximated_Hausdorff_distance<Concurrency_tag, Geom_traits, TriangleMesh/*,
choose_const_pmap(get_param(np, boost::vertex_point),
tm,
vertex_point)*/>
(sample_points,tm, nb_points);
}
/// \todo document and implement me
@ -361,7 +441,7 @@ template< class Concurrency_tag,
class TriangleMesh,
class PointRange,
class NamedParameters>
double max_distance_to_point_set(const TriangleMesh& tm,
double max_distance_to_point_set(TriangleMesh& tm,
const PointRange& points,
const NamedParameters& np)
{
@ -373,8 +453,8 @@ double max_distance_to_point_set(const TriangleMesh& tm,
template< class Concurrency_tag,
class TriangleMesh,
class NamedParameters1>
double approximated_Hausdorff_distance( const TriangleMesh& tm1,
const TriangleMesh& tm2,
double approximated_Hausdorff_distance( TriangleMesh& tm1,
TriangleMesh& tm2,
double precision,
const NamedParameters1& np1)
{
@ -383,10 +463,9 @@ double approximated_Hausdorff_distance( const TriangleMesh& tm1,
}
template< class Concurrency_tag,
class TriangleMesh,
class NamedParameters1>
double approximated_Hausdorff_distance( const TriangleMesh& tm1,
const TriangleMesh& tm2,
class TriangleMesh>
double approximated_Hausdorff_distance( TriangleMesh& tm1,
TriangleMesh& tm2,
double precision)
{
return approximated_Hausdorff_distance<Concurrency_tag>(
@ -399,8 +478,8 @@ double approximated_Hausdorff_distance( const TriangleMesh& tm1,
template< class Concurrency_tag,
class TriangleMesh,
class NamedParameters1>
double approximated_symmetric_Hausdorff_distance(const TriangleMesh& tm1,
const TriangleMesh& tm2,
double approximated_symmetric_Hausdorff_distance(TriangleMesh& tm1,
TriangleMesh& tm2,
double precision,
const NamedParameters1& np1)
{
@ -411,8 +490,8 @@ double approximated_symmetric_Hausdorff_distance(const TriangleMesh& tm1,
template< class Concurrency_tag,
class TriangleMesh,
class NamedParameters1>
double approximated_symmetric_Hausdorff_distance(const TriangleMesh& tm1,
const TriangleMesh& tm2,
double approximated_symmetric_Hausdorff_distance(TriangleMesh& tm1,
TriangleMesh& tm2,
double precision)
{
return approximated_symmetric_Hausdorff_distance<Concurrency_tag>(