mirror of https://github.com/CGAL/cgal
citations needed and intro of user manual
This commit is contained in:
parent
caa96cd941
commit
62ebde3d2e
|
|
@ -464,6 +464,30 @@ note="Conference version: Symp. on Geometry Processing 2003"
|
||||||
,update = "97.08 kettner"
|
,update = "97.08 kettner"
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@article{cgal:cww-ghnac-13,
|
||||||
|
author = {Crane, Keenan and Weischedel, Clarisse and Wardetzky, Max},
|
||||||
|
title = {Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow},
|
||||||
|
journal = {ACM Trans. Graph.},
|
||||||
|
issue_date = {September 2013},
|
||||||
|
volume = {32},
|
||||||
|
number = {5},
|
||||||
|
month = oct,
|
||||||
|
year = {2013},
|
||||||
|
issn = {0730-0301},
|
||||||
|
pages = {152:1--152:11},
|
||||||
|
articleno = {152},
|
||||||
|
numpages = {11},
|
||||||
|
url = {http://doi.acm.org/10.1145/2516971.2516977},
|
||||||
|
doi = {10.1145/2516971.2516977},
|
||||||
|
acmid = {2516977},
|
||||||
|
publisher = {ACM},
|
||||||
|
address = {New York, NY, USA},
|
||||||
|
keywords = {Digital geometry processing, discrete differential geometry, distance transform, geodesic distance, heat kernel},
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@PhdThesis{ cgal:d-ccccg-10,
|
@PhdThesis{ cgal:d-ccccg-10,
|
||||||
author = {Damiand, G.},
|
author = {Damiand, G.},
|
||||||
title = {Contributions aux Cartes Combinatoires et Cartes G\'en\'eralis\'ees : Simplification, Mod\`eles, Invariants Topologiques et Applications},
|
title = {Contributions aux Cartes Combinatoires et Cartes G\'en\'eralis\'ees : Simplification, Mod\`eles, Invariants Topologiques et Applications},
|
||||||
|
|
@ -715,6 +739,23 @@ Teillaud"
|
||||||
,update = "95.09 mitchell"
|
,update = "95.09 mitchell"
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@inproceedings{cgal:fsbs-acidt-06,
|
||||||
|
author = {Fisher, Matthew and Springborn, Boris and Bobenko, Alexander I. and Schroder, Peter},
|
||||||
|
title = {An Algorithm for the Construction of Intrinsic Delaunay Triangulations with Applications to Digital Geometry Processing},
|
||||||
|
booktitle = {ACM SIGGRAPH 2006 Courses},
|
||||||
|
series = {SIGGRAPH '06},
|
||||||
|
year = {2006},
|
||||||
|
isbn = {1-59593-364-6},
|
||||||
|
location = {Boston, Massachusetts},
|
||||||
|
pages = {69--74},
|
||||||
|
numpages = {6},
|
||||||
|
url = {http://doi.acm.org/10.1145/1185657.1185668},
|
||||||
|
doi = {10.1145/1185657.1185668},
|
||||||
|
acmid = {1185668},
|
||||||
|
publisher = {ACM},
|
||||||
|
address = {New York, NY, USA},
|
||||||
|
}
|
||||||
|
|
||||||
@InCollection{ cgal:fh-survey-05,
|
@InCollection{ cgal:fh-survey-05,
|
||||||
author = {M. S. Floater and K. Hormann},
|
author = {M. S. Floater and K. Hormann},
|
||||||
title = {Surface Parameterization: a Tutorial and Survey},
|
title = {Surface Parameterization: a Tutorial and Survey},
|
||||||
|
|
@ -1096,7 +1137,7 @@ Teillaud"
|
||||||
isbn = {9781848002784},
|
isbn = {9781848002784},
|
||||||
edition = {3rd},
|
edition = {3rd},
|
||||||
publisher = {Springer Publishing Company, Incorporated}
|
publisher = {Springer Publishing Company, Incorporated}
|
||||||
}
|
}
|
||||||
|
|
||||||
@inproceedings { cgal:l-nmdgp-05,
|
@inproceedings { cgal:l-nmdgp-05,
|
||||||
AUTHOR = {Bruno Levy},
|
AUTHOR = {Bruno Levy},
|
||||||
|
|
|
||||||
|
|
@ -6,11 +6,26 @@ namespace CGAL {
|
||||||
\cgalAutoToc
|
\cgalAutoToc
|
||||||
\author Keenan Crane, Christina Vaz, Andreas Fabri
|
\author Keenan Crane, Christina Vaz, Andreas Fabri
|
||||||
|
|
||||||
This chapter describes the ...
|
This chapter describes the algorithm behind the Heat Method \cgalCite{cgal:cww-ghnac-13} and the algorithm behind Intrinsic Delaunay Triangulation \cgalCite{cgal:fsbs-acidt-06}.
|
||||||
|
|
||||||
|
The Heat Method is an algorithm that solves the multiple-source shortest path problem by returning the distance from the points in the domain to the closest point in the source set.
|
||||||
|
This algorithm computes this by first determining the direction along which distance increases and finishes by recovering the actual distance.
|
||||||
|
The Heat Method is more efficient and more robust than previous distance computations, as the algorithm boils down to two standard, numerical linear algebra problems.
|
||||||
|
|
||||||
|
|
||||||
|
In Section \ref sec_HM_definitions we give some definitions. In Section \ref sec_HM_history we explain the design of the algorithm and traits.
|
||||||
|
|
||||||
|
Note that this package requires the third party library <a href="https://doc.cgal.org/latest/Manual/installation.html#thirdpartyEigen">Eigen</a>.
|
||||||
|
This implementation is based on \cgalCite{cgal:cww-ghnac-13} and \cgalCite{cgal:fsbs-acidt-06}
|
||||||
|
|
||||||
\section sec_HM_definitions Definitions
|
\section sec_HM_definitions Definitions
|
||||||
|
Section \ref Subsection_HM_Definitions_Intro gives an overview of the structures needed by the heat method and how to calculate them. The Section
|
||||||
|
\ref Subsection_HM_IDT_Definitions gives the background needed for the Intrinsic Delaunay Triangulation.
|
||||||
|
|
||||||
Section on definitions here ...
|
|
||||||
|
\subsection Subsection_HM_Definitions_Intro The Heat Method Algorithm
|
||||||
|
|
||||||
|
\subsection Subsection_HM_IDT_Definitions
|
||||||
|
|
||||||
\section sec_HM_examples Examples
|
\section sec_HM_examples Examples
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue