mirror of https://github.com/CGAL/cgal
Merge remote-tracking branch 'cgal/5.6.x-branch'
This commit is contained in:
commit
630e58f484
|
|
@ -33,6 +33,8 @@ namespace CGAL {
|
||||||
|
|
||||||
namespace METIS {
|
namespace METIS {
|
||||||
|
|
||||||
|
#ifndef DOXYGEN_RUNNING
|
||||||
|
|
||||||
template<typename TriangleMesh, typename METIS_options, typename NamedParameters>
|
template<typename TriangleMesh, typename METIS_options, typename NamedParameters>
|
||||||
void partition_dual_graph(const TriangleMesh& tm,
|
void partition_dual_graph(const TriangleMesh& tm,
|
||||||
int nparts,
|
int nparts,
|
||||||
|
|
@ -128,6 +130,8 @@ void partition_dual_graph(const TriangleMesh& tm, int nparts,
|
||||||
return partition_dual_graph(tm, nparts, &options, np);
|
return partition_dual_graph(tm, nparts, &options, np);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
/// \ingroup PkgBGLPartition
|
/// \ingroup PkgBGLPartition
|
||||||
///
|
///
|
||||||
/// computes a partition of the input triangular mesh into `nparts` parts,
|
/// computes a partition of the input triangular mesh into `nparts` parts,
|
||||||
|
|
|
||||||
|
|
@ -31,6 +31,8 @@ namespace CGAL {
|
||||||
|
|
||||||
namespace METIS {
|
namespace METIS {
|
||||||
|
|
||||||
|
#ifndef DOXYGEN_RUNNING
|
||||||
|
|
||||||
struct Output_vertex_partition_ids
|
struct Output_vertex_partition_ids
|
||||||
{
|
{
|
||||||
template<typename TriangleMesh, typename Indices>
|
template<typename TriangleMesh, typename Indices>
|
||||||
|
|
@ -68,6 +70,8 @@ struct Output_face_partition_ids
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
template<typename TriangleMesh, typename METIS_options, typename NamedParameters>
|
template<typename TriangleMesh, typename METIS_options, typename NamedParameters>
|
||||||
void partition_graph(const TriangleMesh& tm,
|
void partition_graph(const TriangleMesh& tm,
|
||||||
int nparts,
|
int nparts,
|
||||||
|
|
@ -161,6 +165,9 @@ void partition_graph(const TriangleMesh& tm, int nparts,
|
||||||
return partition_graph(tm, nparts, &options, np);
|
return partition_graph(tm, nparts, &options, np);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
||||||
/// \ingroup PkgBGLPartition
|
/// \ingroup PkgBGLPartition
|
||||||
///
|
///
|
||||||
/// computes a partition of the input triangular mesh into `nparts` parts, based on the
|
/// computes a partition of the input triangular mesh into `nparts` parts, based on the
|
||||||
|
|
|
||||||
|
|
@ -214,11 +214,6 @@ public:
|
||||||
|
|
||||||
#ifndef DOXYGEN_RUNNING
|
#ifndef DOXYGEN_RUNNING
|
||||||
|
|
||||||
explicit operator bool() const
|
|
||||||
{
|
|
||||||
return (! (this->base() == nullptr));
|
|
||||||
}
|
|
||||||
|
|
||||||
bool operator==( const Self& i) const {
|
bool operator==( const Self& i) const {
|
||||||
CGAL_assertion( anchor == anchor);
|
CGAL_assertion( anchor == anchor);
|
||||||
return ( g == i.g) && ( pos == i.pos) && ( winding == i.winding);
|
return ( g == i.g) && ( pos == i.pos) && ( winding == i.winding);
|
||||||
|
|
@ -308,11 +303,6 @@ public:
|
||||||
|
|
||||||
#ifndef DOXYGEN_RUNNING
|
#ifndef DOXYGEN_RUNNING
|
||||||
|
|
||||||
explicit operator bool() const
|
|
||||||
{
|
|
||||||
return (! (this->base() == nullptr));
|
|
||||||
}
|
|
||||||
|
|
||||||
bool operator==( const Self& i) const {
|
bool operator==( const Self& i) const {
|
||||||
CGAL_assertion( anchor == anchor);
|
CGAL_assertion( anchor == anchor);
|
||||||
return ( g == i.g) && ( pos == i.pos) && ( winding == i.winding);
|
return ( g == i.g) && ( pos == i.pos) && ( winding == i.winding);
|
||||||
|
|
@ -400,11 +390,6 @@ public:
|
||||||
pointer operator -> ( ) { return &pos; }
|
pointer operator -> ( ) { return &pos; }
|
||||||
const value_type* operator -> ( ) const { return &pos; }
|
const value_type* operator -> ( ) const { return &pos; }
|
||||||
|
|
||||||
explicit operator bool() const
|
|
||||||
{
|
|
||||||
return (! (this->base() == nullptr));
|
|
||||||
}
|
|
||||||
|
|
||||||
bool operator==( const Self& i) const {
|
bool operator==( const Self& i) const {
|
||||||
CGAL_assertion( anchor == anchor);
|
CGAL_assertion( anchor == anchor);
|
||||||
return ( g == i.g) && ( pos == i.pos) && ( winding == i.winding);
|
return ( g == i.g) && ( pos == i.pos) && ( winding == i.winding);
|
||||||
|
|
|
||||||
|
|
@ -16,7 +16,7 @@ int main(int argc, char *argv[])
|
||||||
Polyhedron P1, P2;
|
Polyhedron P1, P2;
|
||||||
std::ifstream ifs1((argc > 1) ? argv[1] : CGAL::data_file_path("meshes/cross_quad.off"));
|
std::ifstream ifs1((argc > 1) ? argv[1] : CGAL::data_file_path("meshes/cross_quad.off"));
|
||||||
ifs1 >> P1;
|
ifs1 >> P1;
|
||||||
std::ifstream ifs2((argc > 1) ? argv[1] : CGAL::data_file_path("meshes/beam.off"));
|
std::ifstream ifs2((argc > 2) ? argv[2] : CGAL::data_file_path("meshes/beam.off"));
|
||||||
ifs2 >> P2;
|
ifs2 >> P2;
|
||||||
|
|
||||||
// initialize nef from polyhedron
|
// initialize nef from polyhedron
|
||||||
|
|
|
||||||
|
|
@ -209,6 +209,7 @@ void polygon_mesh_to_nef_3(const PolygonMesh& P, SNC_structure& S, FaceIndexMap
|
||||||
PolygonMesh, SNC_structure,HalfedgeIndexMap> index_adder(P,himap);
|
PolygonMesh, SNC_structure,HalfedgeIndexMap> index_adder(P,himap);
|
||||||
|
|
||||||
for(vertex_descriptor pv : vertices(P) ) {
|
for(vertex_descriptor pv : vertices(P) ) {
|
||||||
|
if (halfedge(pv, P) == boost::graph_traits<PolygonMesh>::null_halfedge()) continue; // skip isolated vertices
|
||||||
|
|
||||||
typename boost::property_traits<PMap>::reference npv = get(pmap,pv);
|
typename boost::property_traits<PMap>::reference npv = get(pmap,pv);
|
||||||
Vertex_handle nv = S.new_vertex();
|
Vertex_handle nv = S.new_vertex();
|
||||||
|
|
|
||||||
|
|
@ -6,7 +6,7 @@
|
||||||
\cgalConcept
|
\cgalConcept
|
||||||
|
|
||||||
The concept `Periodic_2DelaunayTriangulationTraits_2` is the first template parameter of the class
|
The concept `Periodic_2DelaunayTriangulationTraits_2` is the first template parameter of the class
|
||||||
`Periodic_2_Delaunay_triangulation_2`. It refines the concepts
|
`CGAL::Periodic_2_Delaunay_triangulation_2`. It refines the concepts
|
||||||
`Periodic_2TriangulationTraits_2` and `DelaunayTriangulationTraits_2`.
|
`Periodic_2TriangulationTraits_2` and `DelaunayTriangulationTraits_2`.
|
||||||
It redefines the geometric objects, predicates and constructions to work with
|
It redefines the geometric objects, predicates and constructions to work with
|
||||||
point-offset pairs. In most cases the offsets will be (0,0) and the
|
point-offset pairs. In most cases the offsets will be (0,0) and the
|
||||||
|
|
@ -125,4 +125,3 @@ public:
|
||||||
/// @}
|
/// @}
|
||||||
|
|
||||||
}; /* end Periodic_2DelaunayTriangulationTraits_2 */
|
}; /* end Periodic_2DelaunayTriangulationTraits_2 */
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -6,7 +6,7 @@
|
||||||
\cgalConcept
|
\cgalConcept
|
||||||
|
|
||||||
The concept `Periodic_2TriangulationTraits_2` is the first template parameter of the classes
|
The concept `Periodic_2TriangulationTraits_2` is the first template parameter of the classes
|
||||||
`Periodic_2_triangulation_2<Traits, Tds>`. This concept provides the types of
|
`CGAL::Periodic_2_triangulation_2<Traits, Tds>`. This concept provides the types of
|
||||||
the geometric primitives used in the triangulation and some function
|
the geometric primitives used in the triangulation and some function
|
||||||
object types for the required predicates on those primitives.
|
object types for the required predicates on those primitives.
|
||||||
|
|
||||||
|
|
@ -296,4 +296,3 @@ public:
|
||||||
/// @}
|
/// @}
|
||||||
|
|
||||||
}; /* end Periodic_2TriangulationTraits_2 */
|
}; /* end Periodic_2TriangulationTraits_2 */
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -20,7 +20,7 @@ functor the version without offsets.
|
||||||
\cgalHasModelsEnd
|
\cgalHasModelsEnd
|
||||||
|
|
||||||
In addition to the requirements described for the traits class
|
In addition to the requirements described for the traits class
|
||||||
RegularTriangulationTraits_3, the geometric traits class of a
|
`RegularTriangulationTraits_3`, the geometric traits class of a
|
||||||
periodic regular triangulation must fulfill the following
|
periodic regular triangulation must fulfill the following
|
||||||
requirements.
|
requirements.
|
||||||
|
|
||||||
|
|
@ -250,4 +250,3 @@ Construct_weighted_circumcenter_3 construct_weighted_circumcenter_3_object();
|
||||||
/// @}
|
/// @}
|
||||||
|
|
||||||
}; /* end Periodic_3RegularTriangulationTraits_3 */
|
}; /* end Periodic_3RegularTriangulationTraits_3 */
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -4,7 +4,7 @@
|
||||||
\cgalConcept
|
\cgalConcept
|
||||||
|
|
||||||
The concept `Periodic_3TriangulationTraits_3` is the first template parameter of the class
|
The concept `Periodic_3TriangulationTraits_3` is the first template parameter of the class
|
||||||
`Periodic_3_triangulation_3`. It refines the concept
|
`CGAL::Periodic_3_triangulation_3`. It refines the concept
|
||||||
`TriangulationTraits_3` from the \cgal 3D Triangulations.
|
`TriangulationTraits_3` from the \cgal 3D Triangulations.
|
||||||
It redefines the geometric objects, predicates and constructions to
|
It redefines the geometric objects, predicates and constructions to
|
||||||
work with point-offset pairs. In most cases the offsets will be
|
work with point-offset pairs. In most cases the offsets will be
|
||||||
|
|
@ -258,4 +258,3 @@ Construct_tetrahedron_3 construct_tetrahedron_3_object();
|
||||||
/// @}
|
/// @}
|
||||||
|
|
||||||
}; /* end Periodic_3TriangulationTraits_3 */
|
}; /* end Periodic_3TriangulationTraits_3 */
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -31,10 +31,6 @@
|
||||||
namespace CGAL {
|
namespace CGAL {
|
||||||
namespace Shape_detection {
|
namespace Shape_detection {
|
||||||
|
|
||||||
// Forward declaration needed for automatic traits detection without
|
|
||||||
// including the deprecated header itself
|
|
||||||
template <typename Gt, typename IR, typename IPM, typename INM>
|
|
||||||
struct Shape_detection_traits;
|
|
||||||
|
|
||||||
namespace internal {
|
namespace internal {
|
||||||
|
|
||||||
|
|
@ -43,9 +39,6 @@ struct Traits_base { typedef Traits type; };
|
||||||
template <typename Gt, typename IR, typename IPM, typename INM>
|
template <typename Gt, typename IR, typename IPM, typename INM>
|
||||||
struct Traits_base<CGAL::Shape_detection::Efficient_RANSAC_traits<Gt,IR,IPM,INM> >
|
struct Traits_base<CGAL::Shape_detection::Efficient_RANSAC_traits<Gt,IR,IPM,INM> >
|
||||||
{ typedef Gt type; };
|
{ typedef Gt type; };
|
||||||
template <typename Gt, typename IR, typename IPM, typename INM>
|
|
||||||
struct Traits_base<CGAL::Shape_detection::Shape_detection_traits<Gt,IR,IPM,INM> >
|
|
||||||
{ typedef Gt type; };
|
|
||||||
|
|
||||||
template<class Traits>
|
template<class Traits>
|
||||||
class RANSAC_octree {
|
class RANSAC_octree {
|
||||||
|
|
|
||||||
|
|
@ -4,7 +4,7 @@
|
||||||
\cgalConcept
|
\cgalConcept
|
||||||
|
|
||||||
The concept `DelaunayTriangulationTraits_3` is the first template parameter of the class
|
The concept `DelaunayTriangulationTraits_3` is the first template parameter of the class
|
||||||
`Delaunay_triangulation_3`. It defines the geometric objects (points,
|
`CGAL::Delaunay_triangulation_3`. It defines the geometric objects (points,
|
||||||
segments...) forming the triangulation together with a few geometric
|
segments...) forming the triangulation together with a few geometric
|
||||||
predicates and constructions on these objects.
|
predicates and constructions on these objects.
|
||||||
|
|
||||||
|
|
@ -221,4 +221,3 @@ Construct_ray_3 construct_ray_3_object();
|
||||||
/// @}
|
/// @}
|
||||||
|
|
||||||
}; /* end DelaunayTriangulationTraits_3 */
|
}; /* end DelaunayTriangulationTraits_3 */
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -6,7 +6,7 @@
|
||||||
\cgalRefines{SpatialSortingTraits_3}
|
\cgalRefines{SpatialSortingTraits_3}
|
||||||
|
|
||||||
The concept `TriangulationTraits_3` is the first template parameter of the class
|
The concept `TriangulationTraits_3` is the first template parameter of the class
|
||||||
`Triangulation_3`. It defines the geometric objects (points, segments,
|
`CGAL::Triangulation_3`. It defines the geometric objects (points, segments,
|
||||||
triangles and tetrahedra) forming the triangulation together with a few
|
triangles and tetrahedra) forming the triangulation together with a few
|
||||||
geometric predicates and constructions on these objects: lexicographical
|
geometric predicates and constructions on these objects: lexicographical
|
||||||
comparison, orientation in case of coplanar points and orientation in space.
|
comparison, orientation in case of coplanar points and orientation in space.
|
||||||
|
|
@ -188,4 +188,3 @@ Orientation_3 orientation_3_object();
|
||||||
/// @}
|
/// @}
|
||||||
|
|
||||||
}; /* end TriangulationTraits_3 */
|
}; /* end TriangulationTraits_3 */
|
||||||
|
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue