rm some warnings

This commit is contained in:
Michael Hemmer 2008-01-10 16:26:38 +00:00
parent 21a2a887e0
commit 632246f7cb
4 changed files with 15 additions and 12 deletions

View File

@ -477,7 +477,7 @@ public:
private: private:
// NTX not decomposable // NTX not decomposable
template <class NTX, class TAG > template <class NTX, class TAG >
CGAL::Sign sign_at_(const NTX& x, TAG tag) const{ CGAL::Sign sign_at_(const NTX& x, TAG) const{
CGAL_precondition(degree()>=0); CGAL_precondition(degree()>=0);
return CGAL::sign(evaluate(x)); return CGAL::sign(evaluate(x));
} }

View File

@ -211,9 +211,10 @@ Polynomial<NT> gcd_(
// see [Cohen, 1993], algorithm 3.3.1 // see [Cohen, 1993], algorithm 3.3.1
// handle trivial cases // handle trivial cases
if (p1.is_zero()) if (p1.is_zero()){
if (p2.is_zero()) return Polynomial<NT>(NT(1)); if (p2.is_zero()) return Polynomial<NT>(NT(1));
else return p2 / p2.unit_part(); else return p2 / p2.unit_part();
}
if (p2.is_zero()) if (p2.is_zero())
return p1 / p1.unit_part(); return p1 / p1.unit_part();
if (p2.degree() > p1.degree()) { if (p2.degree() > p1.degree()) {
@ -291,9 +292,10 @@ Polynomial<NT> gcd_(
Polynomial<NT> p1, Polynomial<NT> p2, Field_tag Polynomial<NT> p1, Polynomial<NT> p2, Field_tag
) { ) {
// handle trivial cases // handle trivial cases
if (p1.is_zero()) if (p1.is_zero()){
if (p2.is_zero()) return Polynomial<NT>(NT(1)); if (p2.is_zero()) return Polynomial<NT>(NT(1));
else return p2 / p2.unit_part(); else return p2 / p2.unit_part();
}
if (p2.is_zero()) if (p2.is_zero())
return p1 / p1.unit_part(); return p1 / p1.unit_part();
if (p2.degree() > p1.degree()) { if (p2.degree() > p1.degree()) {
@ -350,7 +352,7 @@ Polynomial<NT> gcd(const Polynomial<NT>& p1, const Polynomial<NT>& p2)
namespace POLYNOMIAL { namespace POLYNOMIAL {
template <class NT> inline template <class NT> inline
NT gcd_utcf_(const NT& a, const NT& b) NT gcd_utcf_(const NT&, const NT&)
{ return NT(1); } { return NT(1); }
template <class NT> inline template <class NT> inline
@ -427,7 +429,7 @@ Polynomial<NT> gcd_utcf_(
) { ) {
// handle trivial cases // handle trivial cases
if (p1.is_zero()) if (p1.is_zero()){
if (p2.is_zero()){ if (p2.is_zero()){
return Polynomial<NT>(NT(1)); return Polynomial<NT>(NT(1));
}else{ }else{
@ -437,6 +439,7 @@ Polynomial<NT> gcd_utcf_(
return canonicalize_polynomial(p2); return canonicalize_polynomial(p2);
#endif #endif
} }
}
if (p2.is_zero()){ if (p2.is_zero()){
#if NiX_POLYNOMIAL_GCD_AVOID_CANONICALIZE #if NiX_POLYNOMIAL_GCD_AVOID_CANONICALIZE
return p1; return p1;

View File

@ -162,7 +162,7 @@ namespace POLYNOMIAL {
// Polynomial<NT> / NT - NT is already the coefficient type and is extended // Polynomial<NT> / NT - NT is already the coefficient type and is extended
template <class NT> template <class NT>
Polynomial<NT> div_utcf_NT_is_IC( Polynomial<NT> div_utcf_NT_is_IC(
Polynomial<NT> f, const NT& g, CGAL::Tag_false) Polynomial<NT> f, const NT&, CGAL::Tag_false)
{ {
return canonicalize_polynomial(f); return canonicalize_polynomial(f);
} }

View File

@ -260,11 +260,11 @@ class Polynomial_traits_d_base {
struct Degree struct Degree
: public Unary_function< ICoeff , int > { : public Unary_function< ICoeff , int > {
int operator()(const ICoeff& c) const { return 0; } int operator()(const ICoeff&) const { return 0; }
}; };
struct Total_degree struct Total_degree
: public Unary_function< ICoeff , int > { : public Unary_function< ICoeff , int > {
int operator()(const ICoeff& c) const { return 0; } int operator()(const ICoeff&) const { return 0; }
}; };
typedef Null_functor Construct_polynomial; typedef Null_functor Construct_polynomial;
@ -331,7 +331,7 @@ class Polynomial_traits_d_base {
typedef Coefficient argument_type; typedef Coefficient argument_type;
// returns the exponent vector of inner_most_lcoeff. // returns the exponent vector of inner_most_lcoeff.
result_type operator()(const Coefficient& constant){ result_type operator()(const Coefficient&){
return Exponent_vector(); return Exponent_vector();
} }
}; };
@ -1093,9 +1093,9 @@ public:
// rsqff_utcf computes the sqff recursively for Coeff // rsqff_utcf computes the sqff recursively for Coeff
// end of recursion: ICoeff // end of recursion: ICoeff
template < class OutputIterator1, class OutputIterator2 > template < class OutputIterator1, class OutputIterator2 >
int rsqff_utcf (ICoeff c, int rsqff_utcf (ICoeff ,
OutputIterator1 factors, OutputIterator1 ,
OutputIterator2 mults) const{ OutputIterator2 ) const{
return 0; return 0;
} }
template < class OutputIterator1, class OutputIterator2 > template < class OutputIterator1, class OutputIterator2 >