issue #6892 Kernel_d: Incorrect documentation

Correcting preconditions.
This commit is contained in:
albert-github 2022-09-27 18:46:32 +02:00
parent b8e342d845
commit 65547c69aa
3 changed files with 8 additions and 8 deletions

View File

@ -118,7 +118,7 @@ and the columns of `spanning_vectors` are a maximal set of
linearly independent solutions to the corresponding homogeneous
system.
\pre `M.row_dimension() = b.dimension()`.
\pre `M.row_dimension() == b.dimension()`.
*/
static bool linear_solver(const Matrix& M, const Vector& b,
Vector& x, NT& D, Matrix& spanning_vectors, Vector& c);
@ -127,14 +127,14 @@ Vector& x, NT& D, Matrix& spanning_vectors, Vector& c);
determines whether the linear
system \f$ M\cdot x = b\f$ is solvable. If yes, then \f$ (1/D) x\f$ is a
solution, if not then \f$ c^T \cdot M = 0\f$ and \f$ c^T \cdot b \not= 0\f$.
\pre `M.row_dimension() = b.dimension()`.
\pre `M.row_dimension() == b.dimension()`.
*/
static bool linear_solver(const Matrix& M, const Vector& b,
Vector& x, NT& D, Vector& c) ;
/*!
as above, but without the witness \f$ c\f$
\pre `M.row_dimension() = b.dimension()`.
\pre `M.row_dimension() == b.dimension()`.
*/
static bool linear_solver(const Matrix& M, const Vector& b,
Vector& x, NT& D) ;
@ -142,7 +142,7 @@ Vector& x, NT& D) ;
/*!
determines whether the system \f$ M \cdot x = b\f$ is solvable
\pre `M.row_dimension() = b.dimension()`.
\pre `M.row_dimension() == b.dimension()`.
*/
static bool is_solvable(const Matrix& M, const Vector& b)
;

View File

@ -325,7 +325,7 @@ Matrix operator-();
/*!
Multiplication.
\pre `M.column_dimension() = M1.row_dimension()`
\pre `M.column_dimension() == M1.row_dimension()`
*/
Matrix operator*(const Matrix& M1)
;
@ -334,7 +334,7 @@ Matrix operator*(const Matrix& M1)
Multiplication with
vector.
\pre `M.column_dimension() = vec.dimension()`
\pre `M.column_dimension() == vec.dimension()`
*/
Vector operator*(const Vector& vec) ;

View File

@ -119,14 +119,14 @@ Vector operator+(const Vector& v1) ;
/*!
Subtraction.
\pre `v.dimension() = v1.dimension()`.
\pre `v.dimension() == v1.dimension()`.
*/
Vector operator-(const Vector& v1) ;
/*!
Inner Product.
\pre `v.dimension() = v1.dimension()`.
\pre `v.dimension() == v1.dimension()`.
*/
NT operator*(const Vector& v1) ;