Merge branch 'doxy-port-pmoeller' of ssh://scm.cgal.org/var/git/cgal into doxy-port-pmoeller

This commit is contained in:
Andreas Fabri 2012-11-21 11:19:35 +01:00
commit 656fdc78ed
6 changed files with 21 additions and 16 deletions

View File

@ -158,7 +158,7 @@ void print_polygon (const CGAL::Polygon_2<Kernel, Container>& P)
for (vit = P.vertices_begin(); vit != P.vertices_end(); ++vit)
std::cout << " (" << *vit << ')';
std::cout << " ]" << std::endl;
}
}
\endcode
In this section we use the term <I>polygon</I> to indicate a

View File

@ -1,6 +1,6 @@
This package consists of the implementation of Boolean set-operations
on point sets bounded by weakly x-monotone curves in 2-dimensional
Euclidean space. (Continuous planar curves or vertical segments.} In
Euclidean space. (Continuous planar curves or vertical segments.) In
particular, it contains the implementation of regularized Boolean
set-operations, intersection predicates, and point containment predicates.

View File

@ -281,7 +281,7 @@ computes the convex hull of a set of points in two dimensions:
// The resulting sequence is placed starting at position
// result, and the past-the-end iterator for the resulting
// sequence is returned. It is not specified at which point the
// cyclic sequence of extreme points is cut into a linear sequence.}
// cyclic sequence of extreme points is cut into a linear sequence.
template <class InputIterator, class OutputIterator>
OutputIterator
convex_hull_points_2(InputIterator first, InputIterator beyond,

View File

@ -74,7 +74,7 @@ template <class InputIterator, class OutputIterator, class Traits>
ch_graham_andrew( InputIterator first,
InputIterator beyond,
OutputIterator result,
const Traits & ch_traits);}
const Traits & ch_traits);
\endcode
You notice that there is a template parameter named `Traits`,

View File

@ -17,7 +17,7 @@ defined as
where \f$ \|{p-z}\|\f$ is the Euclidean distance between \f$ p\f$ and \f$ z\f$.
\f$ {p}^{(w)}\f$ and \f$ {z}^{(w)}\f$
are said to be <I>orthogonal</I> if \f$ \Pi{({p}^{(w)}-{z}^{(w)})}
= 0\f$ (see Figure \ref Triangulation3figortho).
= 0\f$ (see Figure \cgalFigureRef{Triangulation3figortho}).
Four weighted points have a unique common orthogonal weighted point called
the <I>power sphere</I>. A sphere \f$ {z}^{(w)}\f$ is said to be

View File

@ -47,8 +47,9 @@ of the underlying Euclidean space \f$ \R^3\f$ (see
indexed with 0, 1, 2, 3 in such a way that the neighbor indexed by \f$ i\f$
is opposite to the vertex with the same index.
\anchor Triangulation3figorient
\image html orient.gif "Orientation of a cell (3-dimensional case)."
\cgalFigureBegin{Triangulation3figorient,orient.gif}
Orientation of a cell (3-dimensional case).
\cgalFigureEnd
As in the underlying combinatorial triangulation (see
Chapter \ref chapterTDS3 "3D Triangulation Data Structure"),
@ -155,7 +156,7 @@ where \f$ \|{p-z}\|\f$ is the Euclidean distance between \f$ p\f$ and \f$ z\f$.
are said to be <I>orthogonal</I> iff \f$ \Pi{({p}^{(w)},{z}^{(w)})}
= 0\f$ (see \cgalFigureRef{Triangulation3figortho)}.
\cgalFigureBegin{Triangulation3figortho,ortho.gif]
\cgalFigureBegin{Triangulation3figortho,ortho.gif}
Orthogonal weighted points (picture in 2D).
\cgalFigureEnd
@ -545,6 +546,7 @@ version 4.3.2, under Linux (Fedora 10 distribution), with the compilation option
<TT>-O3 -DCGAL_NDEBUG</TT>. The computer used was equipped with a 64bit Intel
Xeon 3GHz processor and 32GB of RAM (a recent desktop machine as of 2009).
\cgalFigureAnchor{Triangulation3figbenchmarks}
<CENTER>
<TABLE CELLSPACING=5 >
<TR><TD ALIGN=LEFT NOWRAP COLSPAN=5><HR>
@ -718,10 +720,10 @@ Vertex removal
1.38e-04
<TR><TD ALIGN=LEFT NOWRAP COLSPAN=5><HR>
</TABLE>
</CENTER>
CAPTION Running times in seconds for algorithms on 3D triangulations.
\anchor Triangulation3figbenchmarks
\cgalFigureCaptionBegin{Triangulation3figbenchmarks}
Running times in seconds for algorithms on 3D triangulations.
\cgalFigureCaptionEnd
More benchmarks comparing \cgal to other software can be found
in \cite msri52:liu-snoeyink-05.
@ -752,6 +754,7 @@ internal bookkeeping is otherwise on the order of \f$ O(\sqrt{n})\f$.
points, as measured empirically using `Memory_sizer` for large triangulations
(\f$ 10^6\f$ random points).
\cgalFigureAnchor{Triangulation3figmemory}
<CENTER>
<TABLE CELLSPACING=5 >
<TR><TD ALIGN=LEFT NOWRAP COLSPAN=5><HR>
@ -803,10 +806,10 @@ points, as measured empirically using `Memory_sizer` for large triangulations
527
<TR><TD ALIGN=LEFT NOWRAP COLSPAN=5><HR>
</TABLE>
</CENTER>
CAPTION Memory usage in bytes per point for large data sets.
\anchor Triangulation3figmemory
\cgalFigureCaptionBegin{Triangulation3figmemory}
Memory usage in bytes per point for large data sets.
\cgalFigureCaptionEnd
\subsection Triangulation_3VariabilityDependingonthe Variability Depending on the Data Sets and the Kernel
@ -855,7 +858,7 @@ triangulation. General introductory information about these robustness issues
can be found in \cite cgta-kmpsy-08. More benchmarks around this issue can
also be found in \cite cgal:dp-eegpd-03.
\anchor Triangulation3figkernelsanddatasets
\cgalFigureAnchor{Triangulation3figkernelsanddatasets}
<CENTER>
<TABLE CELLSPACING=5 >
<TR><TD ALIGN=LEFT NOWRAP COLSPAN=6><HR>
@ -956,8 +959,10 @@ Number of points
75.2
<TR><TD ALIGN=LEFT NOWRAP COLSPAN=6><HR>
</TABLE>
<b>Running times (seconds) for various kernels and data sets.</b>
</CENTER>
\cgalFigureCaptionBegin{Triangulation3figkernelsanddatasets}
Running times (seconds) for various kernels and data sets.
\cgalFigureCaptionEnd
\cgalFigureBegin{Triangulation3figdatasets,api1_01.gif,b35-1.gif,HD.gif}