diff --git a/Packages/Tutorial/tutorial/Polyhedron/doc/tutorial.pdf b/Packages/Tutorial/tutorial/Polyhedron/doc/tutorial.pdf index b60def32240..14e9a094aee 100644 Binary files a/Packages/Tutorial/tutorial/Polyhedron/doc/tutorial.pdf and b/Packages/Tutorial/tutorial/Polyhedron/doc/tutorial.pdf differ diff --git a/Packages/Tutorial/tutorial/Polyhedron/doc/tutorial.tex b/Packages/Tutorial/tutorial/Polyhedron/doc/tutorial.tex index 9e9673770fd..e0a0da5281c 100644 --- a/Packages/Tutorial/tutorial/Polyhedron/doc/tutorial.tex +++ b/Packages/Tutorial/tutorial/Polyhedron/doc/tutorial.tex @@ -34,14 +34,14 @@ Polyhedron}}\\ the example of subdivision surfaces} \author{\small \sffamily Pierre Alliez\footnote{GEOMETRICA, INRIA Sophia-Antipolis} -\and +\and \small \sffamily Andreas Fabri\footnote{GeometryFactory, Sophia-Antipolis} -\and +\and \small \sffamily Lutz Kettner\footnote{Max-Planck Institut für Informatik, Saarbrücken} -\and +\and \small \sffamily Le-Jeng Shiue\footnote{SurfLab, University of Florida} -\and +\and \small \sffamily Radu Ursu\footnote{GEOMETRICA, INRIA Sophia-Antipolis}} \maketitle @@ -49,18 +49,18 @@ Polyhedron}}\\ the example of subdivision surfaces} % ABSTRACT -\abstract{This document gives a description for a user to get -started with the halfedge data structure provided by the Computational -Geometry Algorithm Library (CGAL). Assuming the reader to be familiar -with the C++ template mechanisms and the key concepts of the Standard -Template Library (STL), we describe three different approaches with -increasing level of sophistication for implementing mesh subdivision -schemes. The simplest approach uses simple Euler operators to -implement the $\sqrt{3}$ subdivision scheme applicable to triangle -meshes. A second approach overloads the incremental builder already -provided by CGAL to implement the quad-triangle subdivision scheme -applicable to polygon meshes. The third approach is more generic and -offers an efficient way to design its own subdivision scheme through +\abstract{This document is a tutorial on how to get +started with the halfedge data structure provided by CGAL, the +Computational Geometry Algorithm Library. Assuming the reader to be +familiar with the C++ template mechanisms and the key concepts of the +STL (Standard Template Library), we describe three different +approaches with increasing level of sophistication for implementing +mesh subdivision schemes. The simplest approach uses simple Euler +operators to implement the $\sqrt{3}$ subdivision scheme applicable to +triangle meshes. A second approach overloads the incremental builder +already provided by CGAL to implement the quad-triangle subdivision +scheme applicable to polygon meshes. The third approach is generic and +offers a convenient way to design its own subdivision scheme through the definition of rule templates. Catmull-Clark, Loop and Doo-Sabin schemes are illustrated using the latter approach. Two companion applications, one developed on Windows with MS .NET, MFC and OpenGL,