mirror of https://github.com/CGAL/cgal
*** empty log message ***
This commit is contained in:
parent
7d69818b98
commit
67e5171bc2
|
|
@ -272,10 +272,28 @@ The concepts related to the spatial searching package are
|
|||
|
||||
\begin{itemize}
|
||||
|
||||
\item
|
||||
\ccc{QueryItem} denoting a $d$-dimensional spatial query object. The concepts
|
||||
\ccc{SpatialPoint}, \ccc{IsoBox_d}, and \ccc{Ball_d} refine \ccc{QueryItem}.
|
||||
|
||||
\item
|
||||
\ccc{SpatialPoint}
|
||||
denoting a $d$-dimensional point, as implemented by
|
||||
\ccc{CGAL::Point_2<R>}, \ccc{CGAL::Point_3<R>}, and \ccc{CGAL::Point_d<R>}.
|
||||
\ccc{CGAL::Point_2<Kernel>}, \ccc{CGAL::Point_3<Kernel>}, and \ccc{CGAL::Point_d<Kernel>}.
|
||||
|
||||
\item
|
||||
\ccc{IsoBox_d}
|
||||
denoting a $d$-dimensional iso-box, as implemented
|
||||
by
|
||||
\ccc{CGAL::Iso_rectangle_2<Kernel>}, \ccc{CGAL::Iso_cuboid_3<Kernel>},
|
||||
and \ccc{CGAL::Iso_box_d<Kernel>}.
|
||||
|
||||
\item
|
||||
\ccc{Ball_d}
|
||||
denoting a $d$-dimensional ball, as implemented by
|
||||
\ccc{CGAL::Circle_2<Kernel>}, \ccc{CGAL::Sphere_3<Kernel>},
|
||||
and \ccc{CGAL::Sphere_d<Kernel>}.
|
||||
|
||||
|
||||
\item
|
||||
\ccc{PointContainer} denoting a container, that stores points and
|
||||
|
|
@ -301,17 +319,6 @@ as implemented by \ccc{CGAL::Plane_separator<NT>}.
|
|||
\ccc{TreeTraits} denoting a traits class for the construction of a tree.
|
||||
\ccc{CGAL::Kd_tree_traits_point< SpatialPoint, Splitter >} provides an implementation.
|
||||
|
||||
\item
|
||||
\ccc{QueryItem} denoting a $d$-dimensional spatial query object. Implementations
|
||||
for point queries are provided by
|
||||
\ccc{CGAL::Point_2<R>}, \ccc{CGAL::Point_3<R>}, and \ccc{CGAL::Point_d<R>}.
|
||||
Implementations
|
||||
for spherical queries are provided by
|
||||
\ccc{CGAL::Circle_2<R>}, \ccc{CGAL::Sphere_3<R>}, and \ccc{CGAL::Sphere_d<R>}.
|
||||
Implementations
|
||||
for rectangular queries are provided by
|
||||
\ccc{CGAL::Iso_rectangle_2<R>}, \ccc{CGAL::Iso_cuboid_3<R>}, and \ccc{CGAL::Iso_box_d<R>}.
|
||||
|
||||
\item
|
||||
\ccc{GeneralDistance} denoting a general distance object. A general distance object should define distances between a query object
|
||||
and the points stored in a tree and between the query object and the rectangles associated with the nodes from the tree.
|
||||
|
|
@ -321,9 +328,9 @@ by \ccc{CGAL::Euclidean_distance<SpatialPoint>}, and
|
|||
a weighted Minkowski metric.
|
||||
|
||||
An implementation for queries defined by rectangles is provided by
|
||||
\ccc{CGAL::Manhattan_distance_rectangle_point<QueryItem,SpatialPoint>}.
|
||||
\ccc{CGAL::Manhattan_distance_rectangle_point<IsoBox_d,SpatialPoint>}.
|
||||
An implementation for queries defined by spheres is provided by
|
||||
\ccc{CGAL::Euclidean_distance_sphere_point<QueryItem,SpatialPoint>}.
|
||||
\ccc{CGAL::Euclidean_distance_sphere_point<Ball_d,SpatialPoint>}.
|
||||
|
||||
\item
|
||||
\ccc{OrthogonalDistance} denoting a distance object. An orthogonal distance object should define distances
|
||||
|
|
@ -336,7 +343,7 @@ by \ccc{CGAL::Euclidean_distance<SpatialPoint>}, and
|
|||
a weighted Minkowski metric.
|
||||
|
||||
\item
|
||||
\ccc{SpatialTree} denoting a tree supporting spatial searching/
|
||||
\ccc{SpatialTree} denoting a tree supporting spatial searching
|
||||
\ccc{CGAL::Kd_tree<TreeTraits>} provides an implementation of $k$-$d$ trees.
|
||||
|
||||
\end{itemize}
|
||||
|
|
@ -398,7 +405,7 @@ supports also range searching using the method \\
|
|||
\ccc{template <class OutputIterator, class FuzzyQueryItem>} \\
|
||||
\ccc{OutputIterator CGAL::Kd_tree<Treetraits>::search(OutputIterator it, const FuzzyQueryItem& q)}.\\
|
||||
Implementations for the concept \ccc{FuzzyQueryItem} are provided by
|
||||
the class \ccc{CGAL::Fuzzy_iso_box_d<Point, IsoBox_d>}
|
||||
the class \ccc{CGAL::Fuzzy_iso_box_d<SpatialPoint, IsoBox_d>}
|
||||
and the class \ccc{CGAL::Fuzzy_sphere_d<SpatialPoint>}.
|
||||
For range searching of large data sets the user may set the parameter \ccc{bucket_size}
|
||||
used in building the $k$-$d$ tree to a large value (e.g. 100),
|
||||
|
|
|
|||
|
|
@ -0,0 +1,62 @@
|
|||
% +------------------------------------------------------------------------+
|
||||
% | Reference manual page: Ball_d.tex
|
||||
% +------------------------------------------------------------------------+
|
||||
% | 1.07.2001 Johan W.H. Tangelder
|
||||
% | Package: ASPAS
|
||||
% |
|
||||
\RCSdef{\RCSBalldRev}{$Revision$}
|
||||
\RCSdefDate{\RCSBalldDate}{$Date$}
|
||||
% |
|
||||
%%RefPage: end of header, begin of main body
|
||||
% +------------------------------------------------------------------------+
|
||||
|
||||
|
||||
\begin{ccRefConcept}{Ball_d}
|
||||
|
||||
%% \ccHtmlCrossLink{} %% add further rules for cross referencing links
|
||||
%% \ccHtmlIndexC[concept]{} %% add further index entries
|
||||
|
||||
\ccDefinition
|
||||
|
||||
The concept \ccRefName\ defines the requirements for $d$-dimensional balls.
|
||||
|
||||
{\bf Refines}
|
||||
|
||||
QueryItem
|
||||
|
||||
\ccParameters
|
||||
|
||||
\ccc{SpatialPoint} represents a $d$-dimensional point.
|
||||
|
||||
\ccTypes
|
||||
|
||||
\ccTypedef{Kernel_traits<SpatialPoint>::Kernel::FT NT;}{Number type.}
|
||||
|
||||
|
||||
\ccOperations
|
||||
|
||||
\ccMethod{SpatialPoint center();}
|
||||
{Returns the center of the ball.}
|
||||
|
||||
|
||||
\ccMethod{NT squared_radius();}
|
||||
{Returns the squared radius of the ball.}
|
||||
|
||||
|
||||
\ccHasModels
|
||||
|
||||
\ccc{CGAL::Iso_circle_2<Kernel>}, \ccc{CGAL::Iso_sphere_3<Kernel>},
|
||||
\ccc{CGAL::Iso_sphere_d<Kernel>}.
|
||||
|
||||
\ccSeeAlso
|
||||
|
||||
QueryItem, \ccc{CGAL::Iso_circle_2<Kernel>}, \ccc{CGAL::Iso_sphere_3<Kernel>},
|
||||
\ccc{CGAL::Iso_sphere_d<Kernel>}.
|
||||
|
||||
\end{ccRefConcept}
|
||||
|
||||
% +------------------------------------------------------------------------+
|
||||
%%RefPage: end of main body, begin of footer
|
||||
% EOF
|
||||
% +------------------------------------------------------------------------+
|
||||
|
||||
|
|
@ -48,7 +48,8 @@ The fourth template argument has default value \ccc{CGAL::Kd_tree<TreeTraits>}.
|
|||
\ccTypedef{TreeTraits::Point Point;}{Point type.}
|
||||
\ccTypedef{TreeTraits::NT NT;}{Number type.}
|
||||
\ccTypedef{std::pair<Point*,NT> Point_with_distance;}{Pair of point and distance.}
|
||||
\ccNestedType{iterator}{Input iterator for searching approximate neighbors.}
|
||||
\ccNestedType{iterator}{Input iterator for searching approximate neighbors
|
||||
with value type \ccc{Point_with_distance}.}
|
||||
|
||||
\newpage
|
||||
|
||||
|
|
|
|||
|
|
@ -20,27 +20,22 @@
|
|||
|
||||
The concept \ccRefName\ defines the requirements for $d$-dimensional iso-boxes.
|
||||
|
||||
{\bf Refines}
|
||||
|
||||
QueryItem
|
||||
|
||||
\ccParameters
|
||||
|
||||
\ccc{SpatialPoint} represents a $d$-dimensional point.
|
||||
|
||||
\ccTypes
|
||||
|
||||
\ccTypedef{Kernel_traits<SpatialPoint>::Kernel::FT NT;}{Number type.}
|
||||
|
||||
\ccCreation
|
||||
\ccCreationVariable{b} %% choose variable name
|
||||
|
||||
\ccConstructor{IsoBox_d(SpatialPoint p, SpatialPoint q);}{introduces an iso-oriented box with diagonal opposite points
|
||||
\ccc{p} and \ccc{}q.}
|
||||
|
||||
\ccOperations
|
||||
|
||||
\ccMethod{NT min();}
|
||||
\ccMethod{SpatialPoint min();}
|
||||
{Returns the smallest vertex of the iso-oriented box.}
|
||||
|
||||
|
||||
\ccMethod{NT max();}
|
||||
\ccMethod{SpatialPoint max();}
|
||||
{Returns the largest vertex of the iso-oriented box.}
|
||||
|
||||
|
||||
|
|
@ -49,6 +44,12 @@ The concept \ccRefName\ defines the requirements for $d$-dimensional iso-boxes.
|
|||
\ccc{CGAL::Iso_rectangle_2<Kernel>}, \ccc{CGAL::Iso_cuboid_3<Kernel>},
|
||||
\ccc{CGAL::Iso_box_d<Kernel>}.
|
||||
|
||||
\ccSeeAlso
|
||||
|
||||
QueryItem, \ccc{CGAL::Iso_rectangle_2<Kernel>}, \ccc{CGAL::Iso_cuboid_3<Kernel>},
|
||||
\ccc{CGAL::Iso_box_d<Kernel>}.
|
||||
|
||||
|
||||
\end{ccRefConcept}
|
||||
|
||||
% +------------------------------------------------------------------------+
|
||||
|
|
|
|||
|
|
@ -34,15 +34,17 @@ for example \ccc{CGAL::Kd_tree_traits_point<Point,Splitter>}.
|
|||
\ccTypedef{TreeTraits::NT NT;}{Number type.}
|
||||
\ccTypedef{Kd_tree_node<TreeTraits> Node;}{Node type.}
|
||||
\ccTypedef{Kd_tree<TreeTraits> Tree;}{Tree type.}
|
||||
\ccTypedef{Compact_container<Node>::iterator Node_handle;}{Node handle.}
|
||||
\ccTypedef{std::vector<Point*>::iterator Point_iterator;} {Iterator over points.}
|
||||
\ccTypedef{std::list<Point>::iterator input_iterator;}{Input iterator.}
|
||||
% \ccTypedef{Compact_container<Node>::iterator Node_handle;}{Node handle.}
|
||||
\ccTypedef{std::vector<Point*>::iterator Point_iterator;} {Random access iterator
|
||||
with value type pointer to Point.}
|
||||
% \ccTypedef{std::list<Point>::iterator input_iterator;}{Input iterator.}
|
||||
|
||||
\ccCreation
|
||||
\ccCreationVariable{tree}
|
||||
|
||||
\ccConstructor
|
||||
{Kd_tree(input_iterator first, input_iterator beyond, traits t=TreeTraits());}
|
||||
\ccConstructor{
|
||||
template <class input_iterator>
|
||||
Kd_tree(input_iterator first, input_iterator beyond, traits t=TreeTraits());}
|
||||
{
|
||||
Constructs a $k$-$d$ tree on the elements from the sequence
|
||||
\ccc{first, beyond} using the splitting rule implemented by \ccc{t}.
|
||||
|
|
|
|||
|
|
@ -41,7 +41,7 @@ The third template argument has default value \ccc{CGAL::Kd_tree<TreeTraits>}.
|
|||
\ccTypedef{TreeTraits::Point Point;}{Point type.}
|
||||
\ccTypedef{TreeTraits::NT NT;}{Number type.}
|
||||
\ccTypedef{std::pair<Pair*,NT> Point_with_distance;}{Pair of point and distance}
|
||||
\ccNestedType{iterator}{Input iterator for searching approximate neighbors.}
|
||||
\ccNestedType{iterator}{Input iterator for searching approximate neighbors with value type \ccc{Point_with_distance}.}
|
||||
|
||||
\ccCreation
|
||||
\ccCreationVariable{s} %% choose variable name
|
||||
|
|
|
|||
|
|
@ -21,15 +21,14 @@
|
|||
The concept \ccClassTemplateName\ represents a
|
||||
$d$-dimensional spatial object.
|
||||
|
||||
\ccHasModels
|
||||
{\bf Is refined by}
|
||||
|
||||
\ccc{CGAL::Point_2<Kernel>, CGAL::Point_3<Kernel>, CGAL::Point_d<Kernel>,
|
||||
CGAL::Iso_rectangle_2<Kernel>, CGAL::Iso_cuboid_3<Kernel>, CGAL::Iso_box_d<Kernel>,
|
||||
CGAL::Circle_2<Kernel>, CGAL::Sphere_3<Kernel>, CGAL::Sphere_d<Kernel>}.
|
||||
IsoBox\_d, Ball\_d.
|
||||
|
||||
\ccSeeAlso
|
||||
|
||||
GeneralDistance, OrthogonalDistance.
|
||||
IsoBox\_d, Ball\_d, GeneralDistance, OrthogonalDistance.
|
||||
|
||||
|
||||
\end{ccRefConcept}
|
||||
|
||||
|
|
|
|||
|
|
@ -71,7 +71,7 @@ and returns the updated distance.}
|
|||
|
||||
\ccMethod{NT transformed_distance(NT d);} {Returns for $0 < p <\infty$ $d^p$. Returns for $p=\infty$ $d$.}
|
||||
|
||||
\ccMethod{NT inverse_of_transformed_distance(NT d);} {Returns for $0 < p <\infty$ $d^{1/p}$}.
|
||||
\ccMethod{NT inverse_of_transformed_distance(NT d);} {Returns for $0 < p <\infty$ $d^{1/p}$.}
|
||||
{Returns for $p=\infty$ $d$.}
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -35,7 +35,7 @@ that are described in the reference pages.
|
|||
|
||||
\ccHeading{Concepts}
|
||||
|
||||
|
||||
\ccRefConceptPage{Ball_d} \\
|
||||
\ccRefConceptPage{FuzzyQueryItem} \\
|
||||
\ccRefConceptPage{GeneralDistance} \\
|
||||
\ccRefConceptPage{IsoBox_d} \\
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@
|
|||
% +------------------------------------------------------------------------+
|
||||
% alfabatisch
|
||||
\input{introduction.tex}
|
||||
|
||||
\input{Ball_d.tex}
|
||||
\input{Euclidean_distance.tex}
|
||||
\input{Euclidean_distance_sphere_point.tex}
|
||||
\input{Fair.tex}
|
||||
|
|
|
|||
|
|
@ -272,10 +272,28 @@ The concepts related to the spatial searching package are
|
|||
|
||||
\begin{itemize}
|
||||
|
||||
\item
|
||||
\ccc{QueryItem} denoting a $d$-dimensional spatial query object. The concepts
|
||||
\ccc{SpatialPoint}, \ccc{IsoBox_d}, and \ccc{Ball_d} refine \ccc{QueryItem}.
|
||||
|
||||
\item
|
||||
\ccc{SpatialPoint}
|
||||
denoting a $d$-dimensional point, as implemented by
|
||||
\ccc{CGAL::Point_2<R>}, \ccc{CGAL::Point_3<R>}, and \ccc{CGAL::Point_d<R>}.
|
||||
\ccc{CGAL::Point_2<Kernel>}, \ccc{CGAL::Point_3<Kernel>}, and \ccc{CGAL::Point_d<Kernel>}.
|
||||
|
||||
\item
|
||||
\ccc{IsoBox_d}
|
||||
denoting a $d$-dimensional iso-box, as implemented
|
||||
by
|
||||
\ccc{CGAL::Iso_rectangle_2<Kernel>}, \ccc{CGAL::Iso_cuboid_3<Kernel>},
|
||||
and \ccc{CGAL::Iso_box_d<Kernel>}.
|
||||
|
||||
\item
|
||||
\ccc{Ball_d}
|
||||
denoting a $d$-dimensional ball, as implemented by
|
||||
\ccc{CGAL::Circle_2<Kernel>}, \ccc{CGAL::Sphere_3<Kernel>},
|
||||
and \ccc{CGAL::Sphere_d<Kernel>}.
|
||||
|
||||
|
||||
\item
|
||||
\ccc{PointContainer} denoting a container, that stores points and
|
||||
|
|
@ -301,17 +319,6 @@ as implemented by \ccc{CGAL::Plane_separator<NT>}.
|
|||
\ccc{TreeTraits} denoting a traits class for the construction of a tree.
|
||||
\ccc{CGAL::Kd_tree_traits_point< SpatialPoint, Splitter >} provides an implementation.
|
||||
|
||||
\item
|
||||
\ccc{QueryItem} denoting a $d$-dimensional spatial query object. Implementations
|
||||
for point queries are provided by
|
||||
\ccc{CGAL::Point_2<R>}, \ccc{CGAL::Point_3<R>}, and \ccc{CGAL::Point_d<R>}.
|
||||
Implementations
|
||||
for spherical queries are provided by
|
||||
\ccc{CGAL::Circle_2<R>}, \ccc{CGAL::Sphere_3<R>}, and \ccc{CGAL::Sphere_d<R>}.
|
||||
Implementations
|
||||
for rectangular queries are provided by
|
||||
\ccc{CGAL::Iso_rectangle_2<R>}, \ccc{CGAL::Iso_cuboid_3<R>}, and \ccc{CGAL::Iso_box_d<R>}.
|
||||
|
||||
\item
|
||||
\ccc{GeneralDistance} denoting a general distance object. A general distance object should define distances between a query object
|
||||
and the points stored in a tree and between the query object and the rectangles associated with the nodes from the tree.
|
||||
|
|
@ -321,9 +328,9 @@ by \ccc{CGAL::Euclidean_distance<SpatialPoint>}, and
|
|||
a weighted Minkowski metric.
|
||||
|
||||
An implementation for queries defined by rectangles is provided by
|
||||
\ccc{CGAL::Manhattan_distance_rectangle_point<QueryItem,SpatialPoint>}.
|
||||
\ccc{CGAL::Manhattan_distance_rectangle_point<IsoBox_d,SpatialPoint>}.
|
||||
An implementation for queries defined by spheres is provided by
|
||||
\ccc{CGAL::Euclidean_distance_sphere_point<QueryItem,SpatialPoint>}.
|
||||
\ccc{CGAL::Euclidean_distance_sphere_point<Ball_d,SpatialPoint>}.
|
||||
|
||||
\item
|
||||
\ccc{OrthogonalDistance} denoting a distance object. An orthogonal distance object should define distances
|
||||
|
|
@ -336,7 +343,7 @@ by \ccc{CGAL::Euclidean_distance<SpatialPoint>}, and
|
|||
a weighted Minkowski metric.
|
||||
|
||||
\item
|
||||
\ccc{SpatialTree} denoting a tree supporting spatial searching/
|
||||
\ccc{SpatialTree} denoting a tree supporting spatial searching
|
||||
\ccc{CGAL::Kd_tree<TreeTraits>} provides an implementation of $k$-$d$ trees.
|
||||
|
||||
\end{itemize}
|
||||
|
|
@ -398,7 +405,7 @@ supports also range searching using the method \\
|
|||
\ccc{template <class OutputIterator, class FuzzyQueryItem>} \\
|
||||
\ccc{OutputIterator CGAL::Kd_tree<Treetraits>::search(OutputIterator it, const FuzzyQueryItem& q)}.\\
|
||||
Implementations for the concept \ccc{FuzzyQueryItem} are provided by
|
||||
the class \ccc{CGAL::Fuzzy_iso_box_d<Point, IsoBox_d>}
|
||||
the class \ccc{CGAL::Fuzzy_iso_box_d<SpatialPoint, IsoBox_d>}
|
||||
and the class \ccc{CGAL::Fuzzy_sphere_d<SpatialPoint>}.
|
||||
For range searching of large data sets the user may set the parameter \ccc{bucket_size}
|
||||
used in building the $k$-$d$ tree to a large value (e.g. 100),
|
||||
|
|
|
|||
|
|
@ -0,0 +1,62 @@
|
|||
% +------------------------------------------------------------------------+
|
||||
% | Reference manual page: Ball_d.tex
|
||||
% +------------------------------------------------------------------------+
|
||||
% | 1.07.2001 Johan W.H. Tangelder
|
||||
% | Package: ASPAS
|
||||
% |
|
||||
\RCSdef{\RCSBalldRev}{$Revision$}
|
||||
\RCSdefDate{\RCSBalldDate}{$Date$}
|
||||
% |
|
||||
%%RefPage: end of header, begin of main body
|
||||
% +------------------------------------------------------------------------+
|
||||
|
||||
|
||||
\begin{ccRefConcept}{Ball_d}
|
||||
|
||||
%% \ccHtmlCrossLink{} %% add further rules for cross referencing links
|
||||
%% \ccHtmlIndexC[concept]{} %% add further index entries
|
||||
|
||||
\ccDefinition
|
||||
|
||||
The concept \ccRefName\ defines the requirements for $d$-dimensional balls.
|
||||
|
||||
{\bf Refines}
|
||||
|
||||
QueryItem
|
||||
|
||||
\ccParameters
|
||||
|
||||
\ccc{SpatialPoint} represents a $d$-dimensional point.
|
||||
|
||||
\ccTypes
|
||||
|
||||
\ccTypedef{Kernel_traits<SpatialPoint>::Kernel::FT NT;}{Number type.}
|
||||
|
||||
|
||||
\ccOperations
|
||||
|
||||
\ccMethod{SpatialPoint center();}
|
||||
{Returns the center of the ball.}
|
||||
|
||||
|
||||
\ccMethod{NT squared_radius();}
|
||||
{Returns the squared radius of the ball.}
|
||||
|
||||
|
||||
\ccHasModels
|
||||
|
||||
\ccc{CGAL::Iso_circle_2<Kernel>}, \ccc{CGAL::Iso_sphere_3<Kernel>},
|
||||
\ccc{CGAL::Iso_sphere_d<Kernel>}.
|
||||
|
||||
\ccSeeAlso
|
||||
|
||||
QueryItem, \ccc{CGAL::Iso_circle_2<Kernel>}, \ccc{CGAL::Iso_sphere_3<Kernel>},
|
||||
\ccc{CGAL::Iso_sphere_d<Kernel>}.
|
||||
|
||||
\end{ccRefConcept}
|
||||
|
||||
% +------------------------------------------------------------------------+
|
||||
%%RefPage: end of main body, begin of footer
|
||||
% EOF
|
||||
% +------------------------------------------------------------------------+
|
||||
|
||||
|
|
@ -48,7 +48,8 @@ The fourth template argument has default value \ccc{CGAL::Kd_tree<TreeTraits>}.
|
|||
\ccTypedef{TreeTraits::Point Point;}{Point type.}
|
||||
\ccTypedef{TreeTraits::NT NT;}{Number type.}
|
||||
\ccTypedef{std::pair<Point*,NT> Point_with_distance;}{Pair of point and distance.}
|
||||
\ccNestedType{iterator}{Input iterator for searching approximate neighbors.}
|
||||
\ccNestedType{iterator}{Input iterator for searching approximate neighbors
|
||||
with value type \ccc{Point_with_distance}.}
|
||||
|
||||
\newpage
|
||||
|
||||
|
|
|
|||
|
|
@ -20,27 +20,22 @@
|
|||
|
||||
The concept \ccRefName\ defines the requirements for $d$-dimensional iso-boxes.
|
||||
|
||||
{\bf Refines}
|
||||
|
||||
QueryItem
|
||||
|
||||
\ccParameters
|
||||
|
||||
\ccc{SpatialPoint} represents a $d$-dimensional point.
|
||||
|
||||
\ccTypes
|
||||
|
||||
\ccTypedef{Kernel_traits<SpatialPoint>::Kernel::FT NT;}{Number type.}
|
||||
|
||||
\ccCreation
|
||||
\ccCreationVariable{b} %% choose variable name
|
||||
|
||||
\ccConstructor{IsoBox_d(SpatialPoint p, SpatialPoint q);}{introduces an iso-oriented box with diagonal opposite points
|
||||
\ccc{p} and \ccc{}q.}
|
||||
|
||||
\ccOperations
|
||||
|
||||
\ccMethod{NT min();}
|
||||
\ccMethod{SpatialPoint min();}
|
||||
{Returns the smallest vertex of the iso-oriented box.}
|
||||
|
||||
|
||||
\ccMethod{NT max();}
|
||||
\ccMethod{SpatialPoint max();}
|
||||
{Returns the largest vertex of the iso-oriented box.}
|
||||
|
||||
|
||||
|
|
@ -49,6 +44,12 @@ The concept \ccRefName\ defines the requirements for $d$-dimensional iso-boxes.
|
|||
\ccc{CGAL::Iso_rectangle_2<Kernel>}, \ccc{CGAL::Iso_cuboid_3<Kernel>},
|
||||
\ccc{CGAL::Iso_box_d<Kernel>}.
|
||||
|
||||
\ccSeeAlso
|
||||
|
||||
QueryItem, \ccc{CGAL::Iso_rectangle_2<Kernel>}, \ccc{CGAL::Iso_cuboid_3<Kernel>},
|
||||
\ccc{CGAL::Iso_box_d<Kernel>}.
|
||||
|
||||
|
||||
\end{ccRefConcept}
|
||||
|
||||
% +------------------------------------------------------------------------+
|
||||
|
|
|
|||
|
|
@ -34,15 +34,17 @@ for example \ccc{CGAL::Kd_tree_traits_point<Point,Splitter>}.
|
|||
\ccTypedef{TreeTraits::NT NT;}{Number type.}
|
||||
\ccTypedef{Kd_tree_node<TreeTraits> Node;}{Node type.}
|
||||
\ccTypedef{Kd_tree<TreeTraits> Tree;}{Tree type.}
|
||||
\ccTypedef{Compact_container<Node>::iterator Node_handle;}{Node handle.}
|
||||
\ccTypedef{std::vector<Point*>::iterator Point_iterator;} {Iterator over points.}
|
||||
\ccTypedef{std::list<Point>::iterator input_iterator;}{Input iterator.}
|
||||
% \ccTypedef{Compact_container<Node>::iterator Node_handle;}{Node handle.}
|
||||
\ccTypedef{std::vector<Point*>::iterator Point_iterator;} {Random access iterator
|
||||
with value type pointer to Point.}
|
||||
% \ccTypedef{std::list<Point>::iterator input_iterator;}{Input iterator.}
|
||||
|
||||
\ccCreation
|
||||
\ccCreationVariable{tree}
|
||||
|
||||
\ccConstructor
|
||||
{Kd_tree(input_iterator first, input_iterator beyond, traits t=TreeTraits());}
|
||||
\ccConstructor{
|
||||
template <class input_iterator>
|
||||
Kd_tree(input_iterator first, input_iterator beyond, traits t=TreeTraits());}
|
||||
{
|
||||
Constructs a $k$-$d$ tree on the elements from the sequence
|
||||
\ccc{first, beyond} using the splitting rule implemented by \ccc{t}.
|
||||
|
|
|
|||
|
|
@ -41,7 +41,7 @@ The third template argument has default value \ccc{CGAL::Kd_tree<TreeTraits>}.
|
|||
\ccTypedef{TreeTraits::Point Point;}{Point type.}
|
||||
\ccTypedef{TreeTraits::NT NT;}{Number type.}
|
||||
\ccTypedef{std::pair<Pair*,NT> Point_with_distance;}{Pair of point and distance}
|
||||
\ccNestedType{iterator}{Input iterator for searching approximate neighbors.}
|
||||
\ccNestedType{iterator}{Input iterator for searching approximate neighbors with value type \ccc{Point_with_distance}.}
|
||||
|
||||
\ccCreation
|
||||
\ccCreationVariable{s} %% choose variable name
|
||||
|
|
|
|||
|
|
@ -21,15 +21,14 @@
|
|||
The concept \ccClassTemplateName\ represents a
|
||||
$d$-dimensional spatial object.
|
||||
|
||||
\ccHasModels
|
||||
{\bf Is refined by}
|
||||
|
||||
\ccc{CGAL::Point_2<Kernel>, CGAL::Point_3<Kernel>, CGAL::Point_d<Kernel>,
|
||||
CGAL::Iso_rectangle_2<Kernel>, CGAL::Iso_cuboid_3<Kernel>, CGAL::Iso_box_d<Kernel>,
|
||||
CGAL::Circle_2<Kernel>, CGAL::Sphere_3<Kernel>, CGAL::Sphere_d<Kernel>}.
|
||||
IsoBox\_d, Ball\_d.
|
||||
|
||||
\ccSeeAlso
|
||||
|
||||
GeneralDistance, OrthogonalDistance.
|
||||
IsoBox\_d, Ball\_d, GeneralDistance, OrthogonalDistance.
|
||||
|
||||
|
||||
\end{ccRefConcept}
|
||||
|
||||
|
|
|
|||
|
|
@ -71,7 +71,7 @@ and returns the updated distance.}
|
|||
|
||||
\ccMethod{NT transformed_distance(NT d);} {Returns for $0 < p <\infty$ $d^p$. Returns for $p=\infty$ $d$.}
|
||||
|
||||
\ccMethod{NT inverse_of_transformed_distance(NT d);} {Returns for $0 < p <\infty$ $d^{1/p}$}.
|
||||
\ccMethod{NT inverse_of_transformed_distance(NT d);} {Returns for $0 < p <\infty$ $d^{1/p}$.}
|
||||
{Returns for $p=\infty$ $d$.}
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -35,7 +35,7 @@ that are described in the reference pages.
|
|||
|
||||
\ccHeading{Concepts}
|
||||
|
||||
|
||||
\ccRefConceptPage{Ball_d} \\
|
||||
\ccRefConceptPage{FuzzyQueryItem} \\
|
||||
\ccRefConceptPage{GeneralDistance} \\
|
||||
\ccRefConceptPage{IsoBox_d} \\
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@
|
|||
% +------------------------------------------------------------------------+
|
||||
% alfabatisch
|
||||
\input{introduction.tex}
|
||||
|
||||
\input{Ball_d.tex}
|
||||
\input{Euclidean_distance.tex}
|
||||
\input{Euclidean_distance_sphere_point.tex}
|
||||
\input{Fair.tex}
|
||||
|
|
|
|||
|
|
@ -45,6 +45,8 @@ namespace CGAL {
|
|||
assert(the_dimension>0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
Euclidean_distance(const int d) : the_dimension(d) {}
|
||||
|
||||
~Euclidean_distance() {}
|
||||
|
|
|
|||
|
|
@ -38,6 +38,7 @@ namespace CGAL {
|
|||
|
||||
public:
|
||||
|
||||
|
||||
// default constructor
|
||||
Euclidean_distance_sphere_point() {
|
||||
Point p;
|
||||
|
|
@ -45,6 +46,7 @@ namespace CGAL {
|
|||
assert(the_dimension>0);
|
||||
}
|
||||
|
||||
|
||||
Euclidean_distance_sphere_point(const int d) : the_dimension(d) {}
|
||||
|
||||
~Euclidean_distance_sphere_point() {}
|
||||
|
|
|
|||
|
|
@ -43,6 +43,7 @@ namespace CGAL {
|
|||
// default constructor
|
||||
Fuzzy_iso_box_d() {}
|
||||
|
||||
|
||||
// constructor
|
||||
Fuzzy_iso_box_d(const Point& p, const Point& q, NT epsilon=NT(0)) :
|
||||
eps(epsilon), dim(p.dimension())
|
||||
|
|
|
|||
|
|
@ -43,9 +43,7 @@ namespace CGAL {
|
|||
// default constructor
|
||||
Fuzzy_iso_rectangle_d() {}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// constructor
|
||||
Fuzzy_iso_rectangle_d(const Point& p, const Point& q, NT epsilon=NT(0)) :
|
||||
eps(epsilon), dim(p.dimension())
|
||||
|
|
|
|||
|
|
@ -39,7 +39,7 @@ public:
|
|||
|
||||
typedef typename TreeTraits::Point Point;
|
||||
typedef typename TreeTraits::Container Point_container;
|
||||
typedef typename std::list<Point>::iterator input_iterator;
|
||||
// typedef typename std::list<Point>::iterator input_iterator;
|
||||
typedef typename TreeTraits::NT NT;
|
||||
typedef Kd_tree_node<TreeTraits> Node;
|
||||
typedef Kd_tree<TreeTraits> Tree;
|
||||
|
|
@ -175,6 +175,7 @@ public:
|
|||
//introduced for backward compability
|
||||
Kd_tree() {}
|
||||
|
||||
template <class input_iterator>
|
||||
Kd_tree(input_iterator first, input_iterator beyond,
|
||||
TreeTraits t = TreeTraits()) : tr(t) {
|
||||
assert(first != beyond);
|
||||
|
|
|
|||
|
|
@ -46,6 +46,7 @@ namespace CGAL {
|
|||
assert(the_dimension>0);
|
||||
}
|
||||
|
||||
|
||||
Manhattan_distance_rectangle_point(const int d) : the_dimension(d) {}
|
||||
|
||||
//copy constructor
|
||||
|
|
|
|||
|
|
@ -45,7 +45,6 @@ namespace CGAL {
|
|||
|
||||
public:
|
||||
|
||||
|
||||
// default constructor
|
||||
Weighted_Minkowski_distance(): power(2)
|
||||
{
|
||||
|
|
|
|||
Loading…
Reference in New Issue