Merge remote-tracking branch 'cgal/master' into gsoc2022-isosurface

This commit is contained in:
Mael Rouxel-Labbé 2025-03-24 21:34:55 +01:00
commit 691fd789f9
1093 changed files with 22056 additions and 18097 deletions

35
.clang-format Normal file
View File

@ -0,0 +1,35 @@
---
Language: Cpp
BasedOnStyle: LLVM
AccessModifierOffset: -2
AllowShortFunctionsOnASingleLine: true
BinPackParameters: false
BreakConstructorInitializers: BeforeComma
BreakBeforeBraces: Custom
BraceWrapping:
AfterCaseLabel: false
AfterClass: true
AfterControlStatement: MultiLine
AfterEnum: false
AfterFunction: false
AfterNamespace: false
AfterObjCDeclaration: false
AfterStruct: true
AfterUnion: false
AfterExternBlock: false
BeforeCatch: false
BeforeElse: false
BeforeLambdaBody: false
BeforeWhile: false
IndentBraces: false
SplitEmptyFunction: false
SplitEmptyRecord: false
SplitEmptyNamespace: false
ColumnLimit: 120
# Force pointers to the type for C++.
DerivePointerAlignment: false
PointerAlignment: Left
# Control the spaces around conditionals
SpacesInConditionalStatement: false
SpaceBeforeParens: false
...

View File

@ -0,0 +1,55 @@
# Use an official Fedora as a parent image for the build stage
FROM fedora:latest AS sources_deps
# Set environment variables to non-interactive
ENV DEBIAN_FRONTEND=noninteractive
# Install dependencies
RUN dnf update -y && dnf install -y \
wget \
make \
gcc \
gcc-c++ \
patch \
cmake \
bison \
flex \
unzip \
python3 \
&& dnf clean all
# Copy the patch file to the build context
COPY cgal-NO_ADDITIONAL_DETAILS.patch .
FROM sources_deps AS build
# Build and install Doxygen from sources
ARG DOXYGEN_VERSION=1.9.6
ARG MAKEFLAGS=-j$(nproc)
RUN if [ -n "$DEBUG"];then set -x && make --version && ls -lZ /tmp && id; fi \
&& DOXYGEN_VERSION_UNDERSCORE=$(echo ${DOXYGEN_VERSION} | sed 's/\./_/g') \
&& wget https://github.com/doxygen/doxygen/archive/refs/tags/Release_${DOXYGEN_VERSION_UNDERSCORE}.zip \
&& unzip Release_${DOXYGEN_VERSION_UNDERSCORE}.zip \
&& cd doxygen-Release_${DOXYGEN_VERSION_UNDERSCORE} \
&& patch -p1 < ../cgal-NO_ADDITIONAL_DETAILS.patch \
&& mkdir build \
&& cd build \
&& cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release .. \
&& cmake --build . \
&& cmake --install . \
&& mkdir -p /usr/local/share/doc/doxygen && cp ../LICENSE /usr/local/share/doc/doxygen/LICENSE.TXT \
&& cd ../.. \
&& rm -rf doxygen-Release_${DOXYGEN_VERSION_UNDERSCORE} Release_${DOXYGEN_VERSION_UNDERSCORE}.zip
# Use a smaller base image for the final stage
FROM fedora:latest
# Install necessary runtime dependencies
RUN set -x \
&& dnf update -y && dnf install -y graphviz 'perl(Getopt::Std)' tex-bibtex cmake python3-lxml python3-pyquery \
&& dnf clean all
# Copy Doxygen from the build stage
COPY --from=build /usr/local/bin/doxygen /usr/local/bin
COPY --from=build /usr/local/share/doc/doxygen/LICENSE.TXT /usr/local/share/doc/doxygen/LICENSE.TXT
RUN doxygen --version

View File

@ -0,0 +1,23 @@
SHELL := /bin/bash
DOXYGEN_VERSIONS := 1.12.0 1.11.0 1.10.0 1.9.8 1.9.7 1.9.6
.PHONY: all build-% push-% build push
all: build
@echo "Use `$(MAKE) push` to push the images to the registry."
build-%:
@echo "MAKEFLAGS: $(MAKEFLAGS)"
@echo "Building Doxygen version $*..."
if [ "$$(getenforce || true)" == "Enforcing" ]; then Z=:z; else Z=; fi; \
F="$(MAKEFLAGS)"; F=$${F##*fifo:}; F=$${F%% *}; \
if [ -p "$$F" ]; then echo "The GNU make FIFO file exists:"; ls -l $$F; VOLUME_ARGS="-v $$F:$$F$$Z"; echo -- $$VOLUME_ARGS; fi; \
podman build --build-arg DOXYGEN_VERSION=$* --build-arg "MAKEFLAGS=$(MAKEFLAGS)" $$VOLUME_ARGS -t cgal/doxygen:$* .
push-%: build-%
@echo "Pushing cgal/doxygen:$*..."
podman push cgal/doxygen:$*
build: $(foreach version,$(DOXYGEN_VERSIONS),build-$(version))
push: $(foreach version,$(DOXYGEN_VERSIONS),push-$(version))

View File

@ -0,0 +1,44 @@
diff --git a/src/config.xml b/src/config.xml
index 13910958a6..31f1354e44 100644
--- a/src/config.xml
+++ b/src/config.xml
@@ -893,6 +893,18 @@ Go to the <a href="commands.html">next</a> section or return to the
\note This will also disable the warnings about undocumented members
that are normally produced when \ref cfg_warnings "WARNINGS" is
set to \c YES.
+]]>
+ </docs>
+ </option>
+ </group>
+ <group name='Build' docs='Build related configuration options'>
+ <option type='bool' id='NO_ADDITIONAL_DETAILS' defval='0'>
+ <docs>
+<![CDATA[
+ When the \c EXTRACT_ALL tag is set to \c YES and a member or class
+ as no documentation, no detailed section will be produced if
+ the \c NO_ADDITIONAL_DETAILS tag is set to \c YES.
+ This tag has no effect if the \c EXTRACT_ALL tag is set to \c NO.
]]>
</docs>
</option>
diff --git a/src/memberdef.cpp b/src/memberdef.cpp
index 08d9bf24c5..ab04e994c5 100644
--- a/src/memberdef.cpp
+++ b/src/memberdef.cpp
@@ -2501,6 +2501,7 @@ bool MemberDefImpl::hasDetailedDescription() const
if (!m_hasDetailedDescriptionCached)
{
bool extractAll = Config_getBool(EXTRACT_ALL);
+ bool xAllNoDetailedSec = Config_getBool(NO_ADDITIONAL_DETAILS);
bool alwaysDetailedSec = Config_getBool(ALWAYS_DETAILED_SEC);
bool repeatBrief = Config_getBool(REPEAT_BRIEF);
bool briefMemberDesc = Config_getBool(BRIEF_MEMBER_DESC);
@@ -2512,7 +2513,7 @@ bool MemberDefImpl::hasDetailedDescription() const
// the member has detailed documentation because the user added some comments
bool docFilter =
// extract all is enabled
- extractAll ||
+ (extractAll && !xAllNoDetailedSec) ||
// has detailed docs
!documentation().isEmpty() ||
// has inbody docs

View File

@ -0,0 +1,16 @@
{
"name": "CGAL Doxygen Dev Container, version 1.12.0, with CGAL patch",
"image": "docker.io/cgal/doxygen:1.12.0",
"features": {
"ghcr.io/devcontainers/features/git:1.3.2": {}
},
"customizations": {
"vscode": {
"extensions": [
"ms-vscode.cmake-tools",
"bbenoist.Doxygen",
"ms-vscode.cpptools"
]
}
},
}

View File

@ -0,0 +1,29 @@
[distrobox-doxygen-1.12.0]
image=cgal/doxygen:1.12.0
exported_bins="/usr/local/bin/doxygen /usr/bin/perl /usr/bin/cmake /usr/bin/python3"
exported_bins_path=$HOME/.local/bin-doxygen-1.12.0
[distrobox-doxygen-1.11.0]
image=cgal/doxygen:1.11.0
exported_bins="/usr/local/bin/doxygen /usr/bin/perl /usr/bin/cmake /usr/bin/python3"
exported_bins_path=$HOME/.local/bin-doxygen-1.11.0
[distrobox-doxygen-1.10.0]
image=cgal/doxygen:1.10.0
exported_bins="/usr/local/bin/doxygen /usr/bin/perl /usr/bin/cmake /usr/bin/python3"
exported_bins_path=$HOME/.local/bin-doxygen-1.10.0
[distrobox-doxygen-1.9.8]
image=cgal/doxygen:1.9.8
exported_bins="/usr/local/bin/doxygen /usr/bin/perl /usr/bin/cmake /usr/bin/python3"
exported_bins_path=$HOME/.local/bin-doxygen-1.9.8
[distrobox-doxygen-1.9.7]
image=cgal/doxygen:1.9.7
exported_bins="/usr/local/bin/doxygen /usr/bin/perl /usr/bin/cmake /usr/bin/python3"
exported_bins_path=$HOME/.local/bin-doxygen-1.9.7
[distrobox-doxygen-1.9.6]
image=cgal/doxygen:1.9.6
exported_bins="/usr/local/bin/doxygen /usr/bin/perl /usr/bin/cmake /usr/bin/python3"
exported_bins_path=$HOME/.local/bin-doxygen-1.9.6

3
.gitattributes vendored
View File

@ -44,11 +44,9 @@ Documentation/Doxyfile text eol=lf
Documentation/pkglist_filter text eol=lf
Installation/update_CHANGES text eol=lf
Scripts/developer_scripts/autotest_cgal text eol=lf
Scripts/developer_scripts/autotest_cgal_with_cmake text eol=lf
Scripts/developer_scripts/cgal_build text eol=lf
Scripts/developer_scripts/cgal_depend text eol=lf
Scripts/developer_scripts/cgal_git_update_hooks_for_client text eol=lf
Scripts/developer_scripts/cgal_test_with_cmake text eol=lf
Scripts/developer_scripts/cgal2gml text eol=lf
Scripts/developer_scripts/check_library_uses_no_gpl_files text eol=lf
Scripts/developer_scripts/check_licenses text eol=lf
@ -56,7 +54,6 @@ Scripts/developer_scripts/check_macro_names text eol=lf
Scripts/developer_scripts/check_no_CGAL_USE_without_includes_before text eol=lf
Scripts/developer_scripts/check_svn_keywords text eol=lf
Scripts/developer_scripts/create_cgal_test text eol=lf
Scripts/developer_scripts/create_cgal_test_with_cmake text eol=lf
Scripts/developer_scripts/create_internal_release text eol=lf
Scripts/developer_scripts/create_new_release text eol=lf
Scripts/developer_scripts/detect_files_with_mixed_eol_styles text eol=lf

View File

@ -7,9 +7,8 @@ permissions:
jobs:
build:
if: github.repository == 'CGAL/cgal' || github.event_name != 'push'
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: install dependencies

View File

@ -7,9 +7,8 @@ permissions:
jobs:
cmake-testsuite:
if: github.repository == 'CGAL/cgal' || github.event_name != 'push'
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: install dependencies
@ -21,9 +20,8 @@ jobs:
ctest -L Installation -j $(getconf _NPROCESSORS_ONLN)
cmake-testsuite-with-qt:
if: github.repository == 'CGAL/cgal' || github.event_name != 'push'
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: install dependencies

58
.gitignore vendored
View File

@ -9,7 +9,6 @@ AABB_tree/demo/AABB_tree/Makefile
AABB_tree/examples/AABB_tree/*.kdev*
AABB_tree/examples/AABB_tree/*_example
AABB_tree/examples/AABB_tree/Makefile
AABB_tree/examples/AABB_tree/cgal_test_with_cmake
AABB_tree/test/AABB_tree/*.kdev*
AABB_tree/test/AABB_tree/Makefile
AABB_tree/test/AABB_tree/aabb_correctness_triangle_test
@ -19,17 +18,14 @@ AABB_tree/test/AABB_tree/aabb_distance_triangle_test
AABB_tree/test/AABB_tree/aabb_intersection_triangle_test
AABB_tree/test/AABB_tree/aabb_naive_vs_tree_distance_segment_test
AABB_tree/test/AABB_tree/aabb_projection_triangle_test
AABB_tree/test/AABB_tree/cgal_test_with_cmake
Algebraic_foundations/test/Algebraic_foundations/Algebraic_extension_traits
Algebraic_foundations/test/Algebraic_foundations/Algebraic_structure_traits
Algebraic_foundations/test/Algebraic_foundations/Chinese_remainder_traits
Algebraic_foundations/test/Algebraic_foundations/Coercion_traits
Algebraic_foundations/test/Algebraic_foundations/Real_embeddable_traits
Algebraic_foundations/test/Algebraic_foundations/Scalar_factor_traits
Algebraic_foundations/test/Algebraic_foundations/cgal_test_with_cmake
Algebraic_foundations/test/Algebraic_foundations/extended_euclidean_algorithm
Algebraic_foundations/test/Algebraic_foundations/ipower
Algebraic_kernel_d/test/Algebraic_kernel_d/cgal_test_with_cmake
Algebraic_kernel_d/test/Algebraic_kernel_d/rs_isolator
Alpha_shapes_2/demo/Alpha_shapes_2/Makefile
Alpha_shapes_2/demo/Alpha_shapes_2/alpha_shapes_2
@ -38,7 +34,6 @@ Alpha_shapes_2/examples/Alpha_shapes_2/alpha_shapes_2
Alpha_shapes_3/demo/Alpha_shapes_3/Makefile
Alpha_shapes_3/demo/Alpha_shapes_3/alpha_shapes_3
Alpha_shapes_3/demo/Alpha_shapes_3/weighted_alpha_shapes_3
Alpha_shapes_3/test/Alpha_shapes_3/cgal_test_with_cmake
Alpha_shapes_3/test/Alpha_shapes_3/test_alpha_shape_3
Alpha_shapes_3/test/Alpha_shapes_3/test_fixed_alpha_shape_3
Alpha_shapes_3/test/Alpha_shapes_3/test_weighted_alpha_shape_3
@ -61,7 +56,6 @@ Arrangement_on_surface_2/examples/Arrangement_on_surface_2/batched_point_locatio
Arrangement_on_surface_2/examples/Arrangement_on_surface_2/bgl_dual_adapter
Arrangement_on_surface_2/examples/Arrangement_on_surface_2/bgl_primal_adapter
Arrangement_on_surface_2/examples/Arrangement_on_surface_2/bounded_planar_vertical_decomposition
Arrangement_on_surface_2/examples/Arrangement_on_surface_2/cgal_test_with_cmake
Arrangement_on_surface_2/examples/Arrangement_on_surface_2/circles
Arrangement_on_surface_2/examples/Arrangement_on_surface_2/circular_arcs
Arrangement_on_surface_2/examples/Arrangement_on_surface_2/circular_line_arcs
@ -104,30 +98,24 @@ Arrangement_on_surface_2/examples/Arrangement_on_surface_2/unbounded_rational_fu
Arrangement_on_surface_2/examples/Arrangement_on_surface_2/vertical_ray_shooting
Arrangement_on_surface_2/test/Arrangement_on_surface_2/test_point_location.cpp
BGL/examples/BGL_arrangement_2/Makefile
BGL/examples/BGL_arrangement_2/cgal_test_with_cmake
BGL/examples/BGL_arrangement_2/dual
BGL/examples/BGL_arrangement_2/primal
BGL/test/BGL/cgal_test_with_cmake
Boolean_set_operations_2/demo/Boolean_set_operations_2/Makefile
Boolean_set_operations_2/demo/Boolean_set_operations_2/boolean_operations_2
Box_intersection_d/test/Box_intersection_d/automated_test
Box_intersection_d/test/Box_intersection_d/benchmark.data
Box_intersection_d/test/Box_intersection_d/benchmark_box_intersection
Box_intersection_d/test/Box_intersection_d/box_grid
Box_intersection_d/test/Box_intersection_d/cgal_test_with_cmake
Box_intersection_d/test/Box_intersection_d/random_set_test
CGAL_ImageIO/demo/CGALimageIO/Makefile
CGAL_ImageIO/demo/CGALimageIO/cgal_test_with_cmake
CGAL_ImageIO/demo/CGALimageIO/image_to_vtk_viewer
CGAL_ImageIO/examples/CGALimageIO/Makefile
CGAL_ImageIO/examples/CGALimageIO/cgal_test_with_cmake
CGAL_ImageIO/examples/CGALimageIO/convert_raw_image_to_inr
CGAL_ImageIO/examples/CGALimageIO/makefile
CGAL_ImageIO/examples/CGALimageIO/test_imageio
CGAL_ImageIO/src/CGAL_ImageIO/Makefile
Circular_kernel_3/demo/Circular_kernel_3/Circular_kernel_3_demo
Circular_kernel_3/demo/Circular_kernel_3/Makefile
Circular_kernel_3/test/Circular_kernel_3/cgal_test_with_cmake
Circular_kernel_3/test/Circular_kernel_3/test_Exact_spherical_kernel
Circular_kernel_3/test/Circular_kernel_3/test_Lazy_Spherical_kernel
Circular_kernel_3/test/Circular_kernel_3/test_Lazy_spherical_kernel_basics
@ -138,7 +126,6 @@ Documentation/log/*.*
Documentation/output
Documentation/tags/*.*
Generator/examples/Generator/ball_d
Generator/examples/Generator/cgal_test_with_cmake
Generator/examples/Generator/cube_d
Generator/examples/Generator/grid_d
Generator/examples/Generator/random_convex_set
@ -150,7 +137,6 @@ Generator/examples/Generator/random_segments1
Generator/examples/Generator/random_segments2
Generator/examples/Generator/sphere_d
Generator/test/Generator/bug
Generator/test/Generator/cgal_test_with_cmake
Generator/test/Generator/random_poly_test
Generator/test/Generator/rcs_test
Generator/test/Generator/test_combination_enumerator
@ -179,7 +165,6 @@ GraphicsView/demo/Triangulation_2/Makefile
GraphicsView/demo/Triangulation_2/Regular_triangulation_2
GraphicsView/demo/Triangulation_2/qrc_*.cxx
GraphicsView/demo/Triangulation_2/ui_*.h
HalfedgeDS/test/HalfedgeDS/cgal_test_with_cmake
HalfedgeDS/test/HalfedgeDS/test_hds
HalfedgeDS/test/HalfedgeDS/test_hds_decorator
Inscribed_areas/test/Inscribed_areas/Makefile
@ -189,11 +174,8 @@ Installation/auxiliary/gdb/python/CGAL/printers.pyc
Installation/auxiliary/gdb/test
Installation/cmake/modules/*.tmp
Installation/test/Installation/cgal_test
/Installation/test/Installation/cgal_test_with_cmake
Installation/test/Installation/deprecation_warning
Interpolation/demo/Interpolation/cgal_test_with_cmake
Intersections_3/test/Intersections_3/bbox_other_do_intersect_test
Intersections_3/test/Intersections_3/cgal_test_with_cmake
Intersections_3/test/Intersections_3/circle_other
Intersections_3/test/Intersections_3/line_line
Intersections_3/test/Intersections_3/segment_segment
@ -207,7 +189,6 @@ Jet_fitting_3/examples/Jet_fitting_3/Single_estimation
Jet_fitting_3/examples/Jet_fitting_3/VC
Jet_fitting_3/test/Jet_fitting_3/Makefile
Jet_fitting_3/test/Jet_fitting_3/blind_1pt
/Jet_fitting_3/examples/Jet_fitting_3/cgal_test_with_cmake
/Jet_fitting_3/examples/Jet_fitting_3/data_ellipe0.003.off.4ogl.txt
Kernel_23/test/Kernel_23/Cartesian
Kernel_23/test/Kernel_23/Dimension
@ -221,7 +202,6 @@ Kernel_23/test/Kernel_23/Simple_cartesian
Kernel_23/test/Kernel_23/Simple_homogeneous
Kernel_23/test/Kernel_23/Test_IO.out
/Kernel_23/test/Kernel_23/Test-*IO.out
Kernel_23/test/Kernel_23/cgal_test_with_cmake
Kernel_23/test/Kernel_23/test_kernel__
Kinetic_data_structures/demo/Kinetic_data_structures/Delaunay_triangulation_2
Kinetic_data_structures/demo/Kinetic_data_structures/Delaunay_triangulation_stable_subset_2
@ -230,13 +210,11 @@ Kinetic_data_structures/demo/Kinetic_data_structures/KDS_Delaunay_triangulation_
Kinetic_data_structures/demo/Kinetic_data_structures/KDS_generate_data
Kinetic_data_structures/demo/Kinetic_data_structures/KDS_gui_2
Kinetic_data_structures/demo/Kinetic_data_structures/Makefile
Kinetic_data_structures/demo/Kinetic_data_structures/cgal_test_with_cmake
Kinetic_data_structures/demo/Kinetic_data_structures/generate_data
Kinetic_data_structures/demo/Kinetic_data_structures/gui_2
Kinetic_data_structures/test/Kinetic_data_structures/Delaunay_triangulation_2
Kinetic_data_structures/test/Kinetic_data_structures/Delaunay_triangulation_3
Kinetic_data_structures/test/Kinetic_data_structures/active_objects_tables
Kinetic_data_structures/test/Kinetic_data_structures/cgal_test_with_cmake
Kinetic_data_structures/test/Kinetic_data_structures/exact_kds
Kinetic_data_structures/test/Kinetic_data_structures/instantaneous_kernel
Kinetic_data_structures/test/Kinetic_data_structures/numbers
@ -249,8 +227,6 @@ Kinetic_data_structures/test/Kinetic_data_structures/test_KDS_Delaunay_triangula
Kinetic_data_structures/test/Kinetic_data_structures/timings
Linear_cell_complex/demo/Linear_cell_complex/Linear_cell_complex_3.qrc.depends
Linear_cell_complex/demo/Linear_cell_complex/Linear_cell_complex_3_demo
Linear_cell_complex/demo/Linear_cell_complex/cgal_test_with_cmake
Linear_cell_complex/examples/Linear_cell_complex/cgal_test_with_cmake
Linear_cell_complex/examples/Linear_cell_complex/linear_cell_complex_3
Linear_cell_complex/examples/Linear_cell_complex/linear_cell_complex_3_triangulation
Linear_cell_complex/examples/Linear_cell_complex/linear_cell_complex_3_with_colored_vertices
@ -298,7 +274,6 @@ Mesh_2/demo/Mesh_2/*.core
Mesh_2/demo/Mesh_2/*.moc
Mesh_2/demo/Mesh_2/.*.deps
Mesh_2/demo/Mesh_2/Makefile
Mesh_2/demo/Mesh_2/cgal_test_with_cmake
Mesh_2/demo/Mesh_2/conform
Mesh_2/demo/Mesh_2/depends
Mesh_2/demo/Mesh_2/filename.edg
@ -310,7 +285,6 @@ Mesh_2/demo/Mesh_2/semantic.cache
Mesh_2/doxygen
Mesh_2/examples/Mesh_2/*.core
Mesh_2/examples/Mesh_2/.*.deps
Mesh_2/examples/Mesh_2/cgal_test_with_cmake
Mesh_2/examples/Mesh_2/conform
Mesh_2/examples/Mesh_2/conforming
Mesh_2/examples/Mesh_2/depends
@ -325,7 +299,6 @@ Mesh_2/test/Mesh_2/*.core
Mesh_2/test/Mesh_2/.*.deps
Mesh_2/test/Mesh_2/Makefile
Mesh_2/test/Mesh_2/bench_double_map
Mesh_2/test/Mesh_2/cgal_test_with_cmake
Mesh_2/test/Mesh_2/conform_plus
Mesh_2/test/Mesh_2/depends
Mesh_2/test/Mesh_2/my_makefile
@ -374,7 +347,6 @@ Mesh_3/examples/Mesh_3/.*.deps
Mesh_3/examples/Mesh_3/random-image.inr
Mesh_3/examples/Mesh_3/Makefile
Mesh_3/examples/Mesh_3/applications
Mesh_3/examples/Mesh_3/cgal_test_with_cmake
Mesh_3/examples/Mesh_3/cgal_to_medit
Mesh_3/examples/Mesh_3/chair-after.mesh
Mesh_3/examples/Mesh_3/chair-after.png
@ -412,7 +384,6 @@ Mesh_3/examples/Mesh_3/test_off
/Mesh_3/test/Mesh_3/a.lua
/Mesh_3/test/Mesh_3/applications
/Mesh_3/test/Mesh_3/*.cgal
/Mesh_3/test/Mesh_3/cgal_test_with_cmake
/Mesh_3/test/Mesh_3/cgal_to_medit
/Mesh_3/test/Mesh_3/combined_spheres
/Mesh_3/test/Mesh_3/combined_spheres-with-sphere-oracle
@ -514,11 +485,9 @@ Min_ellipse_2/.tmp
Min_ellipse_2/Makefile
Min_ellipse_2/bin
Min_ellipse_2/doc_ps
Minkowski_sum_3/test/Minkowski_sum_3/cgal_test_with_cmake
Nef_2/test/Nef_2/EPoint-test
Nef_2/test/Nef_2/Nef_polyhedron_2-test
Nef_2/test/Nef_2/Polynomial-test
Nef_2/test/Nef_2/cgal_test_with_cmake
Nef_2/test/Nef_2/nef_2_point_location
Nef_3/demo/Nef_3/Makefile
Nef_3/examples/Nef_3/Makefile
@ -576,7 +545,6 @@ Number_types/test/Number_types/_test_valid_finite_double
Number_types/test/Number_types/_test_valid_finite_float
Number_types/test/Number_types/bench_interval
Number_types/test/Number_types/cgal_test
Number_types/test/Number_types/cgal_test_with_cmake
Number_types/test/Number_types/constant
Number_types/test/Number_types/double
Number_types/test/Number_types/doubletst
@ -627,7 +595,6 @@ Periodic_3_triangulation_3/demo/Periodic_3_triangulation_3/moc_*.cpp
Periodic_3_triangulation_3/demo/Periodic_3_triangulation_3/ui_*.h
Periodic_3_triangulation_3/demo/Periodic_Lloyd_3/Periodic_Lloyd_3.qch
Periodic_3_triangulation_3/test/Periodic_3_triangulation_3/Test_tds_IO_3
Periodic_3_triangulation_3/test/Periodic_3_triangulation_3/cgal_test_with_cmake
Periodic_3_triangulation_3/test/Periodic_3_triangulation_3/test_periodic_3_alpha_shape_3
Periodic_3_triangulation_3/test/Periodic_3_triangulation_3/test_periodic_3_delaunay_3
Periodic_3_triangulation_3/test/Periodic_3_triangulation_3/test_periodic_3_delaunay_hierarchy_3
@ -638,7 +605,6 @@ Periodic_3_triangulation_3/test/Periodic_3_triangulation_3/test_periodic_3_trian
Periodic_3_triangulation_3/test/Periodic_3_triangulation_3/test_periodic_3_triangulation_traits_H_3
Periodic_3_triangulation_3/test/Periodic_3_triangulation_3/test_periodic_3_triangulation_traits_SC_3
Periodic_3_triangulation_3/test/Periodic_3_triangulation_3/test_periodic_3_triangulation_traits_SH_3
Point_set_2/test/Point_set_2/cgal_test_with_cmake
Point_set_2/test/Point_set_2/nearest_nb1
Point_set_2/test/Point_set_2/nearest_nb_fcn
Point_set_2/test/Point_set_2/range_search_fcn
@ -684,7 +650,6 @@ Point_set_processing_3/test/Point_set_processing_3/smoothing_test
/Polygon_mesh_processing/test/Polygon_mesh_processing/elephant-oriented.off
/Polygon_mesh_processing/test/Polygon_mesh_processing/elephant-shuffled.off
/Polygon_mesh_processing/test/Polygon_mesh_processing/blobby_2cc_no_id.off
/Polygon_mesh_processing/test/Polygon_mesh_processing/cgal_test_with_cmake
/Polygon_mesh_processing/test/Polygon_mesh_processing/data/U.polylines.txt.off
/Polygon_mesh_processing/test/Polygon_mesh_processing/data/hole1.txt.off
/Polygon_mesh_processing/test/Polygon_mesh_processing/data/hole2.txt.off
@ -708,7 +673,6 @@ Polyhedron/demo/Polyhedron/snapshot.*
Polyhedron/demo/Polyhedron/ui_*.h
Polyhedron/test/Polyhedron/*.kdev*
Polyhedron/test/Polyhedron/Makefile
Polyhedron/test/Polyhedron/cgal_test_with_cmake
Polyhedron/test/Polyhedron/test_polyhedron
Polynomial/test/Polynomial/Exponent_vector
Polynomial/test/Polynomial/Interpolator
@ -716,7 +680,6 @@ Polynomial/test/Polynomial/Polynomial_traits_d
Polynomial/test/Polynomial/Polynomial_type_generator
Polynomial/test/Polynomial/Polynomial_using_core
Polynomial/test/Polynomial/Polynomial_using_leda
Polynomial/test/Polynomial/cgal_test_with_cmake
Polynomial/test/Polynomial/modular_gcd_utcf_algorithm_M
Polynomial/test/Polynomial/modular_gcd_utcf_dfai
Polynomial/test/Polynomial/modular_gcd_utcf_pure_wang
@ -746,10 +709,8 @@ Polytope_distance_d/.obj
Polytope_distance_d/.tmp
Polytope_distance_d/Makefile
Polytope_distance_d/bin
Polytope_distance_d/test/Polytope_distance_d/cgal_test_with_cmake
Polytope_distance_d/test/Polytope_distance_d/test_Polytope_distance_d_d
Principal_component_analysis/test/Principal_component_analysis/bounding_box
Principal_component_analysis/test/Principal_component_analysis/cgal_test_with_cmake
Principal_component_analysis/test/Principal_component_analysis/linear_least_squares_fitting_circles_2
Principal_component_analysis/test/Principal_component_analysis/linear_least_squares_fitting_cuboids_3
Principal_component_analysis/test/Principal_component_analysis/linear_least_squares_fitting_points_2
@ -774,7 +735,6 @@ Principal_component_analysis/test/Principal_component_analysis/test_linear_least
Principal_component_analysis/test/Principal_component_analysis/test_linear_least_squares_fitting_tetrahedra_3
Principal_component_analysis/test/Principal_component_analysis/test_linear_least_squares_fitting_triangles_2
Principal_component_analysis/test/Principal_component_analysis/test_linear_least_squares_fitting_triangles_3
/Profiling_tools/test/Profiling_tools/cgal_test_with_cmake
/Profiling_tools/test/Profiling_tools/test_memory_sizer
/Profiling_tools/test/Profiling_tools/test_timer
QP_solver/documentation/Degeneracies.aux
@ -806,7 +766,6 @@ Ridges_3/examples/Ridges_3/Compute_Ridges_Umbilics
Ridges_3/examples/Ridges_3/Makefile
Ridges_3/test/Ridges_3/Makefile
Ridges_3/test/Ridges_3/ridge_test
STL_Extension/test/STL_Extension/cgal_test_with_cmake
STL_Extension/test/STL_Extension/test_Cache
STL_Extension/test/STL_Extension/test_Compact_container
STL_Extension/test/STL_Extension/test_Concatenate_iterator
@ -828,7 +787,6 @@ STL_Extension/test/STL_Extension/test_nth_element
STL_Extension/test/STL_Extension/test_stl_extension
STL_Extension/test/STL_Extension/test_type_traits
STL_Extension/test/STL_Extension/test_vector
SearchStructures/test/RangeSegmentTrees/cgal_test_with_cmake
SearchStructures/test/RangeSegmentTrees/test_segment_tree_set_2
Skin_surface_3/.cdtproject
Skin_surface_3/.project
@ -839,7 +797,6 @@ Skin_surface_3/test/Skin_surface_3/err.txt
Skin_surface_3/test/Skin_surface_3/makefile
Skin_surface_3/test/Skin_surface_3/msgs.txt
Skin_surface_3/test/Skin_surface_3/subdivision_test
Spatial_sorting/test/Spatial_sorting/cgal_test_with_cmake
Stream_lines_2/demo/Stream_lines_2/Makefile
Stream_lines_2/demo/Stream_lines_2/streamlines
Surface_mesh_parameterization/examples/Surface_mesh_parameterization/*.eps
@ -967,20 +924,15 @@ Triangulation/test/Triangulation/output-pcds*
Triangulation/test/Triangulation/pc
Triangulation/test/Triangulation/pcds
Triangulation/test/Triangulation/torture
/Triangulation/examples/Triangulation/cgal_test_with_cmake
/Triangulation/test/Triangulation/cgal_test_with_cmake
/Triangulation/test/Triangulation/output-tds-*
Triangulation_2/cgal_test_with_cmake
Triangulation_2/demo/Triangulation_2/Makefile
Triangulation_2/demo/Triangulation_2/constrained
Triangulation_2/demo/Triangulation_2/constrained_delaunay_triangulation_2
Triangulation_2/demo/Triangulation_2/delaunay_triangulation_2
Triangulation_2/demo/Triangulation_2/regular_triangulation_2
Triangulation_2/examples/Triangulation_2/cgal_test_with_cmake
Triangulation_2/examples/Triangulation_2/regular
Triangulation_2/test/Triangulation_2/Makefile
Triangulation_2/test/Triangulation_2/T??.triangulation
Triangulation_2/test/Triangulation_2/cgal_test_with_cmake
Triangulation_2/test/Triangulation_2/file_tds*
Triangulation_2/test/Triangulation_2/makefile
Triangulation_2/test/Triangulation_2/test_cdt_degenerate_case
@ -998,10 +950,8 @@ Triangulation_2/test/Triangulation_2/test_triangulation_2_bis
Triangulation_2/test/Triangulation_2/test_triangulation_geom_traits
Triangulation_2/test/Triangulation_2/test_triangulation_tds
Triangulation_2/test/Triangulation_2/vrml_tds*
Triangulation_3/benchmark/Triangulation_3/cgal_test_with_cmake
Triangulation_3/benchmark/Triangulation_3/simple
Triangulation_3/examples/Triangulation_3/adding_handles_3
Triangulation_3/examples/Triangulation_3/cgal_test_with_cmake
Triangulation_3/examples/Triangulation_3/color
Triangulation_3/examples/Triangulation_3/fast_location_3
Triangulation_3/examples/Triangulation_3/find_conflicts_3
@ -1027,7 +977,6 @@ Triangulation_3/test/Triangulation_3/Test8_triangulation_IO_3_binary
Triangulation_3/test/Triangulation_3/Test??_triangulation_IO_3
Triangulation_3/test/Triangulation_3/Test?_triangulation_IO_3
Triangulation_3/test/Triangulation_3/Test_tds_IO_3
Triangulation_3/test/Triangulation_3/cgal_test_with_cmake
Triangulation_3/test/Triangulation_3/makefile
Triangulation_3/test/Triangulation_3/test_delaunay_3
Triangulation_3/test/Triangulation_3/test_delaunay_hierarchy_3
@ -1084,7 +1033,6 @@ ProgramOutput*
ErrorOutput*
CompilerOutput*
error.txt
cgal_test_with_cmake.log
# File created by the Semantic Bovinator (an Emacs package)
semantic.cache
@ -1141,9 +1089,7 @@ Doxyfile
gmon.*
# Unsorted file names:
/Point_set_processing_3/test/Point_set_processing_3/cgal_test_with_cmake
/Point_set_processing_3/test/Point_set_processing_3/read_test
/Nef_S2/test/Nef_S2/cgal_test_with_cmake
/Arrangement_on_surface_2/test/Arrangement_on_surface_2/construction_test_suite_generator
/Arrangement_on_surface_2/test/Arrangement_on_surface_2/ex_kernel_point
/Arrangement_on_surface_2/test/Arrangement_on_surface_2/ex_kernel_segment
@ -1191,15 +1137,11 @@ gmon.*
/Principal_component_analysis/examples/Principal_component_analysis/barycenter
/Principal_component_analysis/examples/Principal_component_analysis/bounding_box
/Principal_component_analysis/examples/Principal_component_analysis/centroid
/Principal_component_analysis/examples/Principal_component_analysis/cgal_test_with_cmake
/Principal_component_analysis/examples/Principal_component_analysis/linear_least_squares_fitting_points_2
/Principal_component_analysis/examples/Principal_component_analysis/linear_least_squares_fitting_triangles_3
/Polygon/examples/Polygon/cgal_test_with_cmake
/Polygon/test/Polygon/cgal_test_with_cmake
/Polygon/test/Polygon/polytest.ascii
/Polygon/test/Polygon/polytest.binary
/Polygon/test/Polygon/polytest.pretty
/Stream_support/test/Stream_support/cgal_test_with_cmake
/*.html
/Snap_rounding_2/test/Snap_rounding_2/data/out
Polygonal_surface_reconstruction/examples/build*

7
.markdownlint.json Normal file
View File

@ -0,0 +1,7 @@
{
"default": true,
"line-length": false,
"no-duplicate-heading": {
"siblings_only": true
}
}

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(AABB_traits_benchmark)
find_package(CGAL REQUIRED OPTIONAL_COMPONENTS Core)
@ -13,7 +13,7 @@ create_single_source_cgal_program("tree_construction.cpp")
find_package(benchmark QUIET)
if(benchmark_FOUND)
create_single_source_cgal_program("tree_creation.cpp")
target_link_libraries(tree_creation benchmark::benchmark)
target_link_libraries(tree_creation PRIVATE benchmark::benchmark)
else()
message(STATUS "NOTICE: The benchmark 'tree_creation.cpp' requires the Google benchmark library, and will not be compiled.")
endif()

View File

@ -1,6 +1,6 @@
# This is the CMake script for compiling the AABB tree demo.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(AABB_tree_Demo)
# Find includes in corresponding build directories

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(AABB_tree_Examples)
find_package(CGAL REQUIRED)

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(AABB_tree_Tests)
find_package(CGAL REQUIRED)

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Advancing_front_surface_reconstruction_Examples)
find_package(CGAL REQUIRED)

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Advancing_front_surface_reconstruction_Tests)
find_package(CGAL REQUIRED)

View File

@ -5,7 +5,6 @@
/*!
\addtogroup PkgAlgebraicFoundationsRef
\todo check generated documentation
\cgalPkgDescriptionBegin{Algebraic Foundations,PkgAlgebraicFoundations}
\cgalPkgPicture{Algebraic_foundations2.png}

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Algebraic_foundations_Examples)
find_package(CGAL REQUIRED)

View File

@ -21,6 +21,7 @@
#include <CGAL/Algebraic_structure_traits.h>
#include <CGAL/Real_embeddable_traits.h>
#include <CGAL/Kernel/Same_uncertainty.h>
#include <boost/mpl/if.hpp>
namespace CGAL {
CGAL_NTS_BEGIN_NAMESPACE

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Algebraic_foundations_Tests)
find_package(CGAL REQUIRED COMPONENTS Core)

View File

@ -16,7 +16,6 @@
/*!
\addtogroup PkgAlgebraicKernelDRef
\todo check generated documentation
\cgalPkgDescriptionBegin{Algebraic Kernel,PkgAlgebraicKernelD}
\cgalPkgPicture{Algebraic_kernel_d.png}
\cgalPkgSummaryBegin

View File

@ -1,4 +1,4 @@
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Algebraic_kernel_d_Examples)
find_package(CGAL REQUIRED COMPONENTS Core)

View File

@ -1,4 +1,4 @@
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Algebraic_kernel_d_Tests)
# CGAL and its components

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Algebraic_kernel_for_circles_Tests)
find_package(CGAL REQUIRED)

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Algebraic_kernel_for_spheres_Tests)
find_package(CGAL REQUIRED)

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Alpha_shapes_2_Examples)
find_package(CGAL REQUIRED)

View File

@ -1442,7 +1442,7 @@ Alpha_shape_2<Dt,EACT>::find_alpha_solid() const
// takes O(#alpha_shape) time
Type_of_alpha alpha_solid = 0;
if (number_of_vertices()<3) return alpha_solid;
if (dimension()!=2) return alpha_solid;
Finite_vertices_iterator vertex_it;
// only finite vertices

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Alpha_shapes_2_Tests)
find_package(CGAL REQUIRED)

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Alpha_shapes_3_Demo)
# Find includes in corresponding build directories

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Alpha_shapes_3_Examples)
find_package(CGAL REQUIRED)

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Alpha_shapes_3_Tests)
find_package(CGAL REQUIRED)

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Alpha_wrap_3_Benchmark)
find_package(CGAL REQUIRED)

View File

@ -75,7 +75,7 @@ double mean_min_angle(const Mesh& mesh)
const Triangle_3 tr = surface_mesh_face_to_triangle(f, mesh);
std::array<FT, 3> angles = triangle_angles(tr);
FT min_angle = std::min({angles[0], angles[1], angles[2]});
FT min_angle = (std::min)({angles[0], angles[1], angles[2]});
min_angle = min_angle * (180.0 / CGAL_PI);
mean_min_angle += min_angle;
@ -93,7 +93,7 @@ double mean_max_angle(const Mesh& mesh)
const Triangle_3 tr = surface_mesh_face_to_triangle(f, mesh);
std::array<FT, 3> angles = triangle_angles(tr);
FT max_angle = std::max({angles[0], angles[1], angles[2]});
FT max_angle = (std::max)({angles[0], angles[1], angles[2]});
max_angle = max_angle * (180.0 / CGAL_PI);
mean_max_angle += max_angle;
@ -151,8 +151,8 @@ double mean_edge_ratio(const Mesh& mesh,
FT a = std::sqrt(CGAL::squared_distance(tr[0], tr[1]));
FT b = std::sqrt(CGAL::squared_distance(tr[1], tr[2]));
FT c = std::sqrt(CGAL::squared_distance(tr[2], tr[0]));
FT min_edge = std::min({a, b, c});
FT max_edge = std::max({a, b, c});
FT min_edge = (std::min)({a, b, c});
FT max_edge = (std::max)({a, b, c});
FT edge_ratio = max_edge / min_edge;
mean_edge_ratio += edge_ratio;
@ -181,7 +181,7 @@ double mean_aspect_ratio(const Mesh& mesh,
FT c = std::sqrt(CGAL::squared_distance(tr[2], tr[0]));
FT s = 0.5 * (a + b + c);
FT inscribed_radius = std::sqrt((s * (s - a) * (s - b) * (s - c)) / s);
FT max_edge = std::max({a, b, c});
FT max_edge = (std::max)({a, b, c});
FT aspect_ratio = max_edge / inscribed_radius;
aspect_ratio /= (2. * std::sqrt(3.)); // normalized
mean_aspect_ratio += aspect_ratio;

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Alpha_wrap_3_Examples)
find_package(CGAL REQUIRED)

View File

@ -97,7 +97,7 @@ template <typename Cb>
class Cell_base_with_timestamp
: public Cb
{
std::size_t time_stamp_;
std::size_t time_stamp_ = std::size_t(-2);
public:
using Has_timestamp = CGAL::Tag_true;
@ -112,7 +112,7 @@ public:
public:
template <typename... Args>
Cell_base_with_timestamp(const Args&... args)
: Cb(args...), time_stamp_(-1)
: Cb(args...)
{ }
Cell_base_with_timestamp(const Cell_base_with_timestamp& other)

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Alpha_wrap_3_Tests)
find_package(CGAL REQUIRED)

View File

@ -3,7 +3,6 @@
/// \ingroup PkgApolloniusGraph2Ref
/*!
\addtogroup PkgApolloniusGraph2Ref
\todo check generated documentation
\cgalPkgDescriptionBegin{2D Apollonius Graphs (Delaunay Graphs of Disks),PkgApolloniusGraph2}
\cgalPkgPicture{CircleVoronoi.png}
\cgalPkgSummaryBegin

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Apollonius_graph_2_Examples)
find_package(CGAL REQUIRED COMPONENTS Core)

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Apollonius_graph_2_Tests)
find_package(CGAL REQUIRED)

View File

@ -1,7 +1,7 @@
# Created by the script cgal_create_cmake_script
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Arithmetic_kernel_Tests)
find_package(CGAL REQUIRED COMPONENTS Core)

View File

@ -1,6 +1,6 @@
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Arrangement_on_surface_2_Demo)
if(NOT POLICY CMP0070 AND POLICY CMP0053)

View File

@ -1,6 +1,6 @@
# This is the CMake script for compiling a CGAL application.
cmake_minimum_required(VERSION 3.12...3.29)
cmake_minimum_required(VERSION 3.12...3.31)
project(Arrangement_on_surface_2_earth_Demo)
if(NOT POLICY CMP0070 AND POLICY CMP0053)
@ -16,7 +16,7 @@ find_package(Qt6 QUIET COMPONENTS Core Gui OpenGL OpenGLWidgets Widgets Xml)
find_package(CGAL COMPONENTS Qt6)
find_package(nlohmann_json QUIET 3.9)
if (NOT CGAL_FOUND OR NOT CGAL_Qt6_FOUND OR NOT Qt6_FOUND OR NOT Boost_FOUND OR NOT nlohmann_json_FOUND)
set(MISSING_DEPS "")
if (NOT CGAL_FOUND)
set(MISSING_DEPS "the CGAL library, ${MISSING_DEPS}")
endif()
@ -26,19 +26,16 @@ if (NOT CGAL_FOUND OR NOT CGAL_Qt6_FOUND OR NOT Qt6_FOUND OR NOT Boost_FOUND OR
if (NOT Qt6_FOUND)
set(MISSING_DEPS "the Qt6 library, ${MISSING_DEPS}")
endif()
if (NOT Boost_FOUND)
set(MISSING_DEPS "the Boost library, ${MISSING_DEPS}")
endif()
if (NOT nlohmann_json_FOUND)
set(MISSING_DEPS "JSON for Modern C++ 3.9+ (know as nlohmann_json), ${MISSING_DEPS}")
endif()
if (MISSING_DEPS)
message(STATUS "NOTICE: This project requires ${MISSING_DEPS}and will not be compiled.")
return()
endif()
add_compile_definitions(QT_NO_VERSION_TAGGING)
# AOS

View File

@ -62,7 +62,7 @@ void GUI_country_pick_handler::mouse_press_event(QMouseEvent* e) {
auto sd = sqrt(d);
auto t1 = (-b - sd) / (2 * a);
auto t2 = (-b + sd) / (2 * a);
if (t1 > 0 && t2 > 0) ti = std::min(t1, t2);
if (t1 > 0 && t2 > 0) ti = (std::min)(t1, t2);
else if (t1 > 0) ti = t1;
else ti = t2;
}

View File

@ -140,7 +140,7 @@ void Main_widget::initializeGL() {
for (auto& [country_name, triangle_points] : country_triangles_map) {
auto country_triangles = std::make_unique<Triangles>(triangle_points);
auto color = QVector4D(rndm(), rndm(), rndm(), 1);
auto m = std::max(color.x(), std::max(color.y(), color.z()));
auto m = (std::max)(color.x(), (std::max)(color.y(), color.z()));
color /= m;
color *= m_dimming_factor;
color.setW(1);

View File

@ -23,26 +23,25 @@ namespace CGAL {
template <typename Arrangement>
class Aos_observer {
public:
/// \name Types
/// @{
//! the type of the associated arrangement.
/// the type of the associated arrangement.
typedef unspecified_type Arrangement_2;
//! the point type.
/// the point type.
typedef typename Arrangement_2::Point_2 Point_2;
//! the \f$x\f$-monotone curve type.
/// the \f$x\f$-monotone curve type.
typedef typename Arrangement_2::X_monotone_curve_2 X_monotone_curve_2;
//! the type of a handle to an arrangement vertex.
/// the type of a handle to an arrangement vertex.
typedef typename Arrangement_2::Vertex_handle Vertex_handle;
//! the type of a handle to an arrangement halfedge.
/// the type of a handle to an arrangement halfedge.
typedef typename Arrangement_2::Halfedge_handle Halfedge_handle;
//! the type of a handle to an arrangement face.
/// the type of a handle to an arrangement face.
typedef typename Arrangement_2::Face_handle Face_handle;
/*! represents a connected component of the boundary (CCB), either an outer
@ -77,11 +76,11 @@ public:
/// \name Notifications on Global Arrangement Operations
/// @{
/*! issued just before the attached arrangement is assigned with the contents of another
* arrangement.
* \param arr The other arrangement. Notice that the arrangement type is the type used to
* instantiate the observer, which is conveniently defined as
* `Arrangement_2::Base_aos`.
/*! issued just before the attached arrangement is assigned with the contents
* of another arrangement.
* \param arr The other arrangement. Notice that the arrangement type is the
* type used to instantiate the observer, which is conveniently
* defined as `Arrangement_2::Base_aos`.
*/
virtual void before_assign(const typename Arrangement_2::Base_aos& arr);
@ -419,6 +418,6 @@ public:
virtual void after_remove_inner_ccb(Face_handle f);
/// @}
}; /* end Aos_observer */
} /* end namespace CGAL */

View File

@ -1,60 +1,53 @@
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2TraitsClasses
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* The traits class `Arr_Bezier_curve_traits_2` is a model of the `AosTraits_2`
* concept that handles planar B&eacute;zier curves. A planar <I>B&eacute;zier
* curve</I> \f$B\f$ is a parametric curve defined by a sequence of <I>control
* points</I> \f$p_0, \ldots, p_n\f$ as follows:
The traits class `Arr_Bezier_curve_traits_2` is a model of the `ArrangementTraits_2`
concept that handles planar B&eacute;zier curves. A planar <I>B&eacute;zier curve</I>
\f$ B\f$ is a parametric curve defined by a sequence of <I>control points</I>
\f$ p_0, \ldots, p_n\f$ as follows:
\f{eqnarray*}{
B(t) = \left(X(t), Y(t)\right)
= \ccSum{k=0}{n}{p_k \cdot \frac{n!}{k! (n-k)!} \cdot
t^k (1-t)^{n-k}}\ .
* \f{eqnarray*}{
* B(t) = \left(X(t), Y(t)\right) = \ccSum{k=0}{n}{p_k \cdot \frac{n!}{k! (n-k)!} \cdot t^k (1-t)^{n-k}}\ ,
\f}
where \f$ t \in [0, 1]\f$. The degree of the curve is therefore \f$ n\f$ -
namely, \f$ X(t)\f$ and \f$ Y(t)\f$ are polynomials of degree \f$ n\f$. B&eacute;zier curves
have numerous applications in computer graphics and solid modelling. They
are used, for example, in free-form sketches and for defining the true-type
fonts.
* where \f$t \in [0, 1]\f$. The degree of the curve is therefore \f$n\f$,
* namely, \f$X(t)\f$ and \f$Y(t)\f$ are polynomials of degree \f$n\f$.
* B&eacute;zier curves have numerous applications in computer graphics and
* solid modelling. They are used, for example, in free-form sketches and for
* defining the true-type fonts.
In our representation, we assume that the coordinates of all control
points are rational numbers (namely they are given as objects of the
`RatKernel::Point_2` type), so both \f$ X(t)\f$ and \f$ Y(t)\f$ are polynomials
with rational coefficients. The intersection points between curves are
however algebraic numbers, and their exact computation is time-consuming.
The traits class therefore contains a layer of geometric filtering that
performs all computation in an approximate manner whenever possible, and
it resorts to exact computations only when the approximate computation
fails to produce an unambiguous result.
We therefore require separate representations of the control points and
the intersection points. The `NtTraits` should be instantiated with a class
that defines nested `Integer`, `Rational` and `Algebraic` number
types and supports various operations on them, yielding certified computation
results (for example, in can convert rational numbers to algebraic numbers
and can compute roots of polynomials with integer coefficients).
The other template parameters, `RatKernel` and `AlgKernel` should be
geometric kernels templated with the `NtTraits::Rational` and
`NtTraits::Algebraic` number types, respectively. It is recommended to
instantiate the `CORE_algebraic_number_traits` class as the `NtTraits`
parameter, with `Cartesian<NtTraits::Rational>` and
`Cartesian<NtTraits::Algebraic>` instantiating the two kernel types,
respectively. The number types in this case are provided by the \core
library, with its ability to exactly represent simple algebraic numbers.
While `Arr_Bezier_curve_traits_2` models the concept
`ArrangementDirectionalXMonotoneTraits_2`, the implementation of
the `Are_mergeable_2` operation does not enforce the input curves
to have the same direction as a precondition. Moreover, `Arr_Bezier_curve_traits_2`
supports the merging of curves of opposite directions.
\cgalModels{ArrangementTraits_2,ArrangementDirectionalXMonotoneTraits_2}
* In our representation, we assume that the coordinates of all control points
* are rational numbers (namely they are given as objects of the
* `RatKernel::Point_2` type), so both \f$X(t)\f$ and \f$Y(t)\f$ are
* polynomials with rational coefficients. The intersection points between
* curves are however algebraic numbers, and their exact computation is
* time-consuming. The traits class therefore contains a layer of geometric
* filtering that performs all computation in an approximate manner whenever
* possible, and it resorts to exact computations only when the approximate
* computation fails to produce an unambiguous result.
* We therefore require separate representations of the control points and the
* intersection points. The `NtTraits` should be instantiated with a class that
* defines nested `Integer`, `Rational` and `Algebraic` number types and
* supports various operations on them, yielding certified computation results
* (for example, in can convert rational numbers to algebraic numbers and can
* compute roots of polynomials with integer coefficients). The other template
* parameters, `RatKernel` and `AlgKernel` should be geometric kernels templated
* with the `NtTraits::Rational` and `NtTraits::Algebraic` number types,
* respectively. It is recommended to instantiate the
* `CORE_algebraic_number_traits` class as the `NtTraits` parameter, with
* `Cartesian<NtTraits::Rational>` and `Cartesian<NtTraits::Algebraic>`
* instantiating the two kernel types, respectively. The number types in this
* case are provided by the \core library, with its ability to exactly represent
* simple algebraic numbers.
* While `Arr_Bezier_curve_traits_2` models the concept
* `AosDirectionalXMonotoneTraits_2`, the implementation of the
* `Are_mergeable_2` operation does not enforce the input curves to have the
* same direction as a precondition. Moreover, `Arr_Bezier_curve_traits_2`
* supports the merging of curves of opposite directions.
*
* \cgalModels{AosTraits_2,AosDirectionalXMonotoneTraits_2}
*/
template <typename RatKernel, typename AlgKernel, typename NtTraits>
class Arr_Bezier_curve_traits_2 {
@ -63,31 +56,23 @@ public:
/// \name Types
/// @{
/*!
the `NtTraits::Rational` type
(and also the `RatKernel::FT` type).
/*! the `NtTraits::Rational` type (and also the `RatKernel::FT` type).
*/
typedef unspecified_type Rational;
/*!
the `NtTraits::Algebraic` type
(and also the `AlgKernel::FT` type).
/*! the `NtTraits::Algebraic` type (and also the `AlgKernel::FT` type).
*/
typedef unspecified_type Algebraic;
/// @}
/*!
The `Curve_2` class nested within the B&eacute;zier traits class is used
to represent a B&eacute;zier curve of arbitrary degree, which is defined by a
sequence of rational control points. In addition to the methods listed
below, the I/O operators \link PkgArrangementOnSurface2op_left_shift `operator<<` \endlink and \link PkgArrangementOnSurface2op_right_shift `operator>>` \endlink for
standard output-streams are also supported. The copy constructor and
assignment operator are supported as well.
/*! The `Curve_2` class nested within the B&eacute;zier traits class is used
* to represent a B&eacute;zier curve of arbitrary degree, which is defined by
* a sequence of rational control points. In addition to the methods listed
* below, the I/O operators \link PkgArrangementOnSurface2op_left_shift
* `operator<<` \endlink and \link PkgArrangementOnSurface2op_right_shift
* `operator>>` \endlink for standard output-streams are also supported. The
* copy constructor and assignment operator are supported as well.
*/
class Curve_2 {
public:
@ -95,18 +80,17 @@ public:
/// \name Creation
/// @{
/*!
default constructor.
/*! default constructor.
*/
Curve_2();
/*!
constructs a B&eacute;zier curve as defined by the given range of control
points. The value-type of `InputIterator` is `RatKernel::Point_2`.
\pre The input range must contain at least two control points.
/*! constructs a B&eacute;zier curve as defined by the given range of
* control points. The value-type of `InputIterator` is
* `RatKernel::Point_2`.
*
* \pre The input range must contain at least two control points.
*/
template <class InputIterator>
template <typename InputIterator>
Curve_2(InputIterator pts_begin, InputIterator pts_end);
/// @}
@ -114,28 +98,25 @@ Curve_2 (InputIterator pts_begin, InputIterator pts_end);
/// \name Access Functions
/// @{
/*!
returns the number of control points that define `B`.
/*! returns the number of control points that define `B`.
*/
size_t number_of_control_points () const;
std::size_t number_of_control_points() const;
/*!
returns the \f$ k\f$th control point. Note that the first control point equals
the curve source, while the last control point equals its target. The rest
of the control points do not lie on the curve.
\pre \f$ k\f$ is smaller than the number of control points.
/*! returns the \f$k\f$th control point. Note that the first control point
* equals the curve source, while the last control point equals its
* target. The rest of the control points do not lie on the curve.
*
* \pre \f$k\f$ is smaller than the number of control points.
*/
typename RatKernel::Point_2 control_point (size_t k) const;
typename RatKernel::Point_2 control_point(std::size_t k) const;
/*!
returns the point \f$ B(t)\f$ on the curve that corresponds to the given
rational parameter value.
/*! returns the point \f$B(t)\f$ on the curve that corresponds to the given
* rational parameter value.
*/
typename RatKernel::Point_2 operator()(const Rational& t) const;
/*!
returns the point \f$ B(t)\f$ on the curve that corresponds to the given
algebraic parameter value.
/*! returns the point \f$B(t)\f$ on the curve that corresponds to the given
* algebraic parameter value.
*/
typename AlgKernel::Point_2 operator()(const Algebraic& t) const;
@ -143,22 +124,19 @@ typename AlgKernel::Point_2 operator() (const Algebraic& t) const;
}; /* end Arr_Bezier_curve_traits_2::Curve_2 */
/*! The `Point_2` class nested within the B&eacute;zier traits class is used
* to represent: (i) an endpoint of a B&eacute;zier curve, (ii) a vertical
* tangency point of a curve, used to subdivide it into \f$x\f$-monotone
* subcurve, and (iii) an intersection point between two curves. While, points
* of type (i) have rational coordinates and are given as part of the input,
* points of the two latter types have algebraic coordinates. However, to
* speed up the arrangement construction, such point are not computed in an
* exact manner, and instead are given in an approximate representation. Note
* that the exact coordinates of a point may only be accessed if it is exactly
* computed.
/*!
The `Point_2` class nested within the B&eacute;zier traits class is used
to represent: (i) an endpoint of a B&eacute;zier curve, (ii) a vertical tangency
point of a curve, used to subdivide it into \f$ x\f$-monotone subcurve, and
(iii) an intersection point between two curves. While, points of type (i) have
rational coordinates and are given as part of the input, points of the two
latter types have algebraic coordinates. However, to speed up the arrangement
construction, such point are not computed in an exact manner, and instead
are given in an approximate representation. Note that the exact coordinates
of a point may only be accessed if it is exactly computed.
In addition to the methods listed below, the copy constructor and assignment
operator for `Point_2` objects are also supported.
* In addition to the methods listed below, the copy constructor and assignment
* operator for `Point_2` objects are also supported.
*/
class Point_2 {
public:
@ -188,36 +166,32 @@ Point_2 (const Curve_2& B, const Rational& t_0);
/// \name Access Functions
/// @{
/*!
returns the approximated coordinates of `p`.
/*! returns the approximated coordinates of `p`.
*/
std::pair<double, double> approximate() const;
/*!
returns whether the coordinates of `p` are computed in an exact manner.
/*! returns whether the coordinates of `p` are computed in an exact manner.
*/
bool is_exact() const;
/*!
returns the \f$ x\f$-coordinate of `p`.
\pre `p` is exactly computed.
/*! returns the \f$x\f$-coordinate of `p`.
*
* \pre `p` is exactly computed.
*/
Algebraic x() const;
/*!
returns the \f$ y\f$-coordinate of `p`.
\pre `p` is exactly computed.
/*! returns the \f$y\f$-coordinate of `p`.
*
* \pre `p` is exactly computed.
*/
Algebraic y() const;
/*!
returns whether the coordinates of `p` are rational numbers.
/*! returns whether the coordinates of `p` are rational numbers.
*/
bool is_rational() const;
/*!
casts `p` to a point with rational coordinates.
\pre `p` has rational coordinates.
/*! casts `p` to a point with rational coordinates.
* \pre `p` has rational coordinates.
*/
operator typename RatKernel::Point_2() const;
@ -225,21 +199,17 @@ operator typename RatKernel::Point_2 () const;
}; /* end Arr_Bezier_curve_traits_2::Point_2 */
/*!
The `X_monotone_curve_2` class nested within the B&eacute;zier traits is
used to represent \f$ x\f$-monotone subcurves of B&eacute;zier curves. The subcurve is
defined by a supporting B&eacute;zier curve \f$ B(t)\f$ and a range of definition in
the parameter space \f$ [t_1, t_2] \subseteq [0, 1]\f$, where \f$ B(t_1)\f$ is the
subcurve source and \f$ B(t_2)\f$ is its target. Note that as the point endpoints
may only be approximated, the parameter range defining the subcurve may
only be approximately known.
It is not possible to construct \f$ x\f$-monotone subcurves directly. Instead,
use the `Make_x_monotone_2` functor supplied by the traits class to
subdivide a `Curve_2` object into \f$ x\f$-monotone subcurves.
/*! The `X_monotone_curve_2` class nested within the B&eacute;zier traits is
* used to represent \f$x\f$-monotone subcurves of B&eacute;zier curves. The
* subcurve is defined by a supporting B&eacute;zier curve \f$B(t)\f$ and a
* range of definition in the parameter space \f$[t_1, t_2] \subseteq [0,1]\f$,
* where \f$B(t_1)\f$ is the subcurve source and \f$B(t_2)\f$ is its target.
* Note that as the point endpoints may only be approximated, the parameter
* range defining the subcurve may only be approximately known.
*
* It is not possible to construct \f$x\f$-monotone subcurves directly.
* Instead, use the `Make_x_monotone_2` functor supplied by the traits class to
* subdivide a `Curve_2` object into \f$x\f$-monotone subcurves.
*/
class X_monotone_curve_2 {
public:
@ -247,33 +217,27 @@ public:
/// \name Access Functions
/// @{
/*!
returns the supporting B&eacute;zier curve of `b`.
/*! returns the supporting B&eacute;zier curve of `b`.
*/
Curve_2 supporting_curve() const;
/*!
returns the source point of `b`.
/*! returns the source point of `b`.
*/
Point_2 source() const;
/*!
returns the target point of `b`.
/*! returns the target point of `b`.
*/
Point_2 target() const;
/*!
returns the left (\f$ xy\f$-lexicographically smaller) endpoint of `b`.
/*! returns the left (\f$xy\f$-lexicographically smaller) endpoint of `b`.
*/
Point_2 left() const;
/*!
returns the right (\f$ xy\f$-lexicographically smaller) endpoint of `b`.
/*! returns the right (\f$xy\f$-lexicographically smaller) endpoint of `b`.
*/
Point_2 right() const;
/*!
return the approximate parameter range defining the subcurve `b`.
/*! return the approximate parameter range defining the subcurve `b`.
*/
std::pair<double, double> parameter_range() const;
@ -286,14 +250,12 @@ public:
/// \name Creation
/// @{
/*!
Trims the given x-monotone curve to an from src to tgt.
\ pre `src` and `tgt` lies on the curve
/*! Trims the given \f$x\f$-monotone curve to an from `src` to `tgt`.
*
* \ pre `src` and `tgt` lies on the curve
*/
X_monotone_curve_2(const X_monotone_curve_2& xcv,
const Point_2& src,
const Point_2& tgt)const
const Point_2& src, const Point_2& tgt) const
/// @}

View File

@ -18,7 +18,6 @@ namespace CGAL {
template <typename Arrangement>
class Arr_accessor {
public:
/// \name Types
/// @{
@ -29,7 +28,6 @@ typedef unspecified_type Arrangement_2;
typedef typename Arrangement_2::Point_2 Point_2;
/*! the \f$x\f$-monotone curve type. */
typedef typename Arrangement_2::X_monotone_curve_2 X_monotone_curve_2;
/*! */
@ -63,8 +61,8 @@ Arr_accessor(Arrangement_2& arr);
*/
void notify_before_global_change();
/*! notifies the arrangement observer that a global change has taken place (for
* the usage of the global functions that operate on arrangements).
/*! notifies the arrangement observer that a global change has taken place
* (for the usage of the global functions that operate on arrangements).
*/
void notify_after_global_change();
@ -84,7 +82,8 @@ locate_around_vertex(Vertex_handle v, const X_monotone_curve_2& c) const;
* two halfedges do not belong to the same connected component, the function
* returns (-1).
*/
int halfedge_distance(Halfedge_const_handle e1, Halfedge_const_handle e2) const;
int halfedge_distance(Halfedge_const_handle e1,
Halfedge_const_handle e2) const;
/*! determines whether a new halfedge we are about to create, which is to be
* associated with the curve `c` and directed from `pred1->target()` to
@ -94,8 +93,9 @@ int halfedge_distance(Halfedge_const_handle e1, Halfedge_const_handle e2) const;
* \pre `pred1->target()` and `pred2->target()` are associated with `c`'s
* endpoints.
*
* \pre `pred1` and `pred2` belong to the same connected component, such that a
* new face is created by connecting `pred1->target()` and `pred2->target()`.
* \pre `pred1` and `pred2` belong to the same connected component, such that
* a new face is created by connecting `pred1->target()` and
* `pred2->target()`.
*/
bool is_inside_new_face(Halfedge_handle pred1,
Halfedge_handle pred2,
@ -109,7 +109,8 @@ const X_monotone_curve_2& c) const;
*/
bool point_is_in(const Point_2& p, Halfedge_const_handle he) const;
/*! determines whether `he` lies on the outer boundary of its incident face. */
/*! determines whether `he` lies on the outer boundary of its incident face.
*/
bool is_on_outer_boundary(Halfedge_const_handle he) const;
/*! determines whether `he` lies on the inner boundary of its incident face
@ -132,8 +133,8 @@ Vertex_handle create_vertex(const Point_2& p);
/*! inserts the curve `c` as a new inner CCBs (hole) of the face `f`,
* connecting the two isolated vertices `v1` and `v2`. `res` is the comparison
* result between these two end-vertices. The function returns a handle for one
* of the new halfedges corresponding to the inserted curve, directed from `v1`
* to `v2`.
* one of the new halfedges corresponding to the inserted curve, directed from
* `v1` to `v2`.
*
* \pre `v1` and `v2` are associated with `c`'s endpoints, that they lie of
* `f`'s interior and that and that they have no incident edges.
@ -163,16 +164,16 @@ Halfedge_handle insert_from_vertex_ex(const X_monotone_curve_2& c,
/*! inserts the curve `c` into the arrangement, such that both `c`'s endpoints
* correspond to existing arrangement vertices, given by `pred1->target()` and
* `pred2->target()`. `res` is the comparison result between these two
* end-vertices. The function creates a new halfedge pair that connects the two
* vertices (with `pred1` and `pred2` indicate the exact place for these
* end-vertices. The function creates a new halfedge pair that connects the
* two vertices (with `pred1` and `pred2` indicate the exact place for these
* halfedges around the two target vertices) and returns a handle for the
* halfedge directed from `pred1->target()` to `pred2->target()`. The output
* flag `new_face` indicates whether a new face has been created following the
* insertion of the new curve.
*
* \pre `pred1->target()` and `pred2->target()` are associated with `c`'s
* endpoints and that if a new face is created, then `is_inside_new_face (pred1,
* pred2, c)` is `true`.
* endpoints and that if a new face is created, then
* `is_inside_new_face(pred1, pred2, c)` is `true`.
*/
Halfedge_handle insert_at_vertices_ex(const X_monotone_curve_2& c,
Halfedge_handle pred1,
@ -195,8 +196,8 @@ void move_hole(Face_handle f1, Face_handle f2, Ccb_halfedge_circulator hole);
/*! moves the given isolated vertex from the interior of the face `f1`
* inside the face `f2`.
*
* \pre `v` is indeed an isolated vertex currently contained in `f1` and should
* be moved to `f2`.
* \pre `v` is indeed an isolated vertex currently contained in `f1` and
* should be moved to `f2`.
*/
bool move_isolated_vertex(Face_handle f1, Face_handle f2, Vertex_handle v);
@ -204,8 +205,8 @@ bool move_isolated_vertex(Face_handle f1, Face_handle f2, Vertex_handle v);
* immediately after a face has split due to the insertion of a new halfedge,
* namely after `insert_at_vertices_ex()` was invoked and indicated that a new
* face has been created. `he` is the halfedge returned by
* `insert_at_vertices_ex()`, such that `he->twin()->face` is the face that has
* just been split and `he->face()` is the newly created face.
* `insert_at_vertices_ex()`, such that `he->twin()->face` is the face that
* has just been split and `he->face()` is the newly created face.
*/
void relocate_in_new_face(Halfedge_handle he);
@ -226,9 +227,10 @@ void relocate_isolated_vertices_in_new_face(Halfedge_handle he);
*/
Vertex_handle modify_vertex_ex(Vertex_handle v, const Point_2& p);
/*! modifies the \f$ x\f$-monotone curve associated with the edge `e` (the curve
* `c` may be geometrically different than the one currently associated with
* `e`). The function returns a handle to the modified edge (same as `e`).
/*! modifies the \f$x\f$-monotone curve associated with the edge `e` (the
* curve `c` may be geometrically different than the one currently associated
* with `e`). The function returns a handle to the modified edge (same as
* `e`).
*
* \pre The interior of `c` is disjoint from all existing arrangement vertices
* and edges.
@ -236,8 +238,8 @@ Vertex_handle modify_vertex_ex(Vertex_handle v, const Point_2& p);
Halfedge_handle modify_edge_ex(Halfedge_handle e, const X_monotone_curve_2& c);
/*! splits a given edge into two at the split point `p`, and associate the
* x-monotone curves `c1` and `c2` with the resulting edges, such that `c1`
* connects `he->source()` with `p` and `c2` connects `p` with
* \f$x\f$-monotone curves `c1` and `c2` with the resulting edges, such that
* `c1` connects `he->source()` with `p` and `c2` connects `p` with
* `he->target()`. The function return a handle to the split halfedge directed
* from `he->source()` to the split point `p`.
*
@ -249,14 +251,14 @@ Halfedge_handle split_edge_ex(Halfedge_handle he, const Point_2& p,
const X_monotone_curve_2& c2);
/*! splits a given edge into two at by the vertex `v`, and associate the
* x-monotone curves `c1` and `c2` with the resulting edges, such that `c1`
* connects `he->source()` with `v` and `c2` connects `v` with
* \f$x\f$-monotone curves `c1` and `c2` with the resulting edges, such that
* `c1` connects `he->source()` with `v` and `c2` connects `v` with
* `he->target()`. The function return a handle to the split halfedge directed
* from `he->source()` to `v`.
*
* \pre The endpoints of `c1` and `c2` correspond to `v` and to `he`'s
* end-vertices, as indicated above. It is also assumed that `v` has no incident
* edges.
* end-vertices, as indicated above. It is also assumed that `v` has no
* incident edges.
*/
Halfedge_handle split_edge_ex(Halfedge_handle he, Vertex_handle v,
const X_monotone_curve_2& c1,
@ -265,16 +267,16 @@ Halfedge_handle split_edge_ex(Halfedge_handle he, Vertex_handle v,
/*! removes the edge `he` from the arrangement, such that if the edge removal
* causes the creation of a new hole (inner CCB), `he->target()` lies on the
* boundary of this hole. The flags `remove_source` and `remove_target`
* indicate whether the end-vertices of `he` should be removed as well, in case
* they have no other incident edges. If the operation causes two faces to
* merge, the merged face is returned. Otherwise, the face to which the edge
* was incident is returned.
* indicate whether the end-vertices of `he` should be removed as well, in
* case they have no other incident edges. If the operation causes two faces
* to merge, the merged face is returned. Otherwise, the face to which the
* edge was incident is returned.
*/
Face_handle remove_edge_ex(Halfedge_handle he,
bool remove_source = true,
bool remove_target = true);
/// @}
}; /* end Arr_accessor */
} /* end namespace CGAL */

View File

@ -3,12 +3,12 @@ namespace CGAL {
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* The traits class `Arr_algebraic_segment_traits_2` is a model of the
* `ArrangementTraits_2` concept that handles planar algebraic curves of
* arbitrary degree, and \f$ x\f$-monotone of such curves. A planar (real)
* <I>algebraic curve</I> is the vanishing set of a polynomial in two variables,
* that is, the curve is defined by the defining equation \f[
* f(x):=\sum_{i+j\leq n} a_{ij} x^i y^j =0, \f] where \f$ n\f$ is the degree of
* the curve.
* `AosTraits_2` concept that handles planar algebraic curves of arbitrary
* degree, and \f$x\f$-monotone of such curves. A planar (real) <I>algebraic
* curve</I> is the vanishing set of a polynomial in two variables, that is,
* the curve is defined by the defining equation
* \f[f(x):=\sum_{i+j\leq n} a_{ij} x^i y^j =0, \f] where \f$n\f$ is the
* degree of the curve.
*
* The traits class allows the construction of algebraic curves, by specifying
* their implicit equation. \f$x\f$-monotone and vertical segments of a curve
@ -18,7 +18,7 @@ namespace CGAL {
* supported as well as any instance of `CGAL::Sqrt_extension` that is
* instantiated with one of the integral types above.
*
* \cgalModels{ArrangementTraits_2}
* \cgalModels{AosTraits_2}
*/
template <typename Coefficient>
@ -50,8 +50,7 @@ public:
*/
typedef unspecified_type Algebraic_real_1;
/*! Typedef from `Algebraic_kernel_1::Bound`
*/
/// Typedef from `Algebraic_kernel_1::Bound`
typedef unspecified_type Bound;
/// @}
@ -77,7 +76,6 @@ public:
*/
class Construct_curve_2 {
public:
/// \name Object Creation Functors
/// @{
@ -102,13 +100,13 @@ public:
*/
class Construct_point_2 {
public:
/// \name Object Creation Functors
/// @{
/*! returns a `Point_2` object that represents the `arcno`-th
* point in the fiber of `cv` at \f$x\f$-coordinate `x`,
* counted from the bottom, starting with zero.
*
* \pre (`cv` must not have a vertical line at `x`,
* and \f$0\leq arcno < c\f$, where \f$c\f$ is the number of points
* in the fiber of `cv` at `x`.)
@ -117,6 +115,7 @@ public:
/*! returns a `Point_2` object that represents the
* point on `xcv` at \f$x\f$-coordinate `x`
*
* \pre (`x` is in the \f$x\f$-range of `xcv`.)
*/
Point_2 operator()(Algebraic_real_1 x, X_monotone_curve_2 xcv);
@ -145,7 +144,6 @@ public:
*/
class Construct_x_monotone_segment_2 {
public:
/// \name Object Creation Functors
/// @{
@ -173,43 +171,45 @@ public:
* given through an output iterator. These segments form an \f$x\f$-monotone
* (or vertical) segment of the curve `cv`.
*
* If `site_of_p==POINT_IN_INTERIOR`, the maximal segment is
* returned that contains `p` in its interior.
* If `site_of_p` == `POINT_IN_INTERIOR`, the maximal segment that contains
* `p` in its interior is returned .
*
* returned that contains `p` as its left endpoint.
* If `site_of_p` == `MIN_ENDPOINT`, the segment that contains
* `p` as its left endpoint returned .
*
* returned that contains `p` as its left endpoint.
* If `site_of_p` == `MAX_ENDPOINT`, the segment that contains
* `p` as its right endpoint returned .
*
* \pre (If `site_of_p==POINT_IN_INTERIOR`, `p`
* must be an interior point of an \f$x\f$-monotone or a vertical
* segment.
* must either have a unique \f$x\f$-monotone segment to the right,
* or a vertical segment from `p` upwards.
* must either have a unique \f$x\f$-monotone segment to the left,
* or a vertical segment from `p` downwards.)
* \pre If `site_of_p` == `POINT_IN_INTERIOR`, `p` must be an interior point
* of an \f$x\f$-monotone or a vertical segment.
*
* \pre If `site_of_p` == `MIN_ENDPOINT`, `p` must either have a unique
* \f$x\f$-monotone segment to the right, or a vertical segment from `p` upwards.
*
* \pre If `site_of_p` == `MAX_ENDPOINT`, `p` must either have a unique
* \f$x\f$-monotone segment to the left, or a vertical segment from `p` downwards.
*/
template <typename OutputIterator>
OutputIterator operator()(Curve_2 cv, Point_2 p, Site_of_point site_of_p,
OutputIterator out);
/*! inserts a sequence of `X_monotone_curve_2` objects into an output container
* given through an output iterator. These segments form a straight-line
* segment connecting the points `p` and `q`. If `p` and `q` share the same
* \f$x\f$-coordinate, the constructed vertical segment consists of only one
* `X_monotone_curve_2` object and can be computed efficiently. In the
* non-vertical case, the construction is only possible if `p` and `q` have both
* rational x- and y-coordinates.
/*! inserts a sequence of `X_monotone_curve_2` objects into an output
* container given through an output iterator. These segments form a
* straight-line segment connecting the points `p` and `q`. If `p` and `q`
* share the same \f$x\f$-coordinate, the constructed vertical segment
* consists of only one `X_monotone_curve_2` object and can be computed
* efficiently. In the non-vertical case, the construction is only possible
* if `p` and `q` have both rational \f$x\f$- and \f$y\f$-coordinates.
*
* \pre (`p` must not be equal to `q`.)
* \pre `p` must not be equal to `q`.
*/
template <typename OutputIterator>
OutputIterator operator()(Point_2 p, Point_2 q, OutputIterator out);
/// @}
}; /* end Arr_algebraic_segment_traits_2::Construct_x_monotone_segment_2 */
/*! A model of the the `ArrangementTraits_2::Curve_2` concept.
/*! A model of the the `AosTraits_2::Curve_2` concept.
* Represents algebraic curves. Internally, the type stores
* topological-geometric information about the particular curve.
* In order to use internal caching, instances should only be created
@ -229,19 +229,19 @@ public:
}; /* end Arr_algebraic_segment_traits_2::Curve_2 */
/*! A model of the `ArrangementBasicTraits_2::Point_2` concept.
/*! A model of the `AosBasicTraits_2::Point_2` concept.
* Represents points in \f$\mathbb{R}^2\f$. Intersection points of algebraic
* curves are in general non-rational, so we need a data structure that is
* capable of representing arbitrary points with algebraic coordinates.
*
* The traits class represents algebraic coordinates by the type
* `Algebraic_real_1`, which is a model of the `AlgebraicReal_1` concept.
* A point \f$ p\f$ is stored by a triple \f$ (x,cv,arcno)\f$,
* where \f$ x\f$ is the \f$ x\f$-coordinate of a point, \f$ cv\f$ is an instance
* of `Curve_2` that contains the point, (and has no vertical line at \f$ x\f$),
* and \f$ arcno\f$ is an `int`, denoting that \f$ p\f$ is met as the
* \f$arcno\f$-th point when shooting a vertical ray at \f$ x\f$, starting from
* \f$-\infty\f$ (where counting starts with \f$ 0\f$).
* `Algebraic_real_1`, which is a model of the `AlgebraicReal_1` concept. A
* point \f$p\f$ is stored by a triple \f$(x,cv,arcno)\f$, where \f$x\f$ is
* the \f$x\f$-coordinate of a point, \f$cv\f$ is an instance of `Curve_2`
* that contains the point, (and has no vertical line at \f$x\f$), and
* \f$arcno\f$ is an `int`, denoting that \f$p\f$ is met as the \f$arcno\f$-th
* point when shooting a vertical ray at \f$x\f$, starting from \f$-\infty\f$
* (where counting starts with \f$0\f$).
*
* In addition to the methods listed below, the copy constructor and assignment
* operator for `Point_2` objects are also supported.
@ -251,7 +251,6 @@ public:
class Point_2 {
public:
/// \name Modifiers
/// @{
@ -261,8 +260,8 @@ public:
/*! returns the \f$y\f$-coordinates of `p`.
*
* <B>Attention:</B> As described above, points are not stored
* by their \f$ y\f$-coordinate in `Algebraic_real_1` representation. In fact,
* <B>Attention:</B> As described above, points are not stored by their
* \f$y\f$-coordinate in `Algebraic_real_1` representation. In fact,
* this representation must be computed on demand, and might become quite
* costly for points defined by high-degree polynomials. Therefore, it is
* recommended to avoid to call this function as much as possible.
@ -285,7 +284,7 @@ public:
}; /* end Arr_algebraic_segment_traits_2::Point_2 */
/*! A model of the `ArrangementBasicTraits_2::X_monotone_curve_2` concept.
/*! A model of the `AosBasicTraits_2::X_monotone_curve_2` concept.
* Represents terminal segments of an algebraic curves, that means vertical
* segments or \f$x\f$-monotone segments with no critical \f$x\f$-coordinate
* in the interior of their \f$x\f$-range. Terminal segments might either be
@ -294,8 +293,8 @@ public:
* above, which is called the <I>arc number</I> of the segment (note the arc
* number at the endpoints might differ). Such segments are represented
* internally by a 4-tuple \f$(p,q,cv,arcno)\f$, where \f$p\f$ and \f$q\f$
* are the endpoints, \f$ cv\f$ is the <I>supporting curve</I> that the segment
* belongs to, and arcno is the arc number of the segment.
* are the endpoints, \f$cv\f$ is the <I>supporting curve</I> that the
* segment belongs to, and arcno is the arc number of the segment.
*
* Arbitrary (weakly) \f$x\f$-monotone segments are presented by a range
* of `X_monotone_curve_2` instances, whose union equals the segment.
@ -331,6 +330,7 @@ public:
int arcno() const;
/*! returns the \f$x\f$-coordinate of a vertical segment.
*
* \pre (The segment is vertical)
*/
Algebraic_real_1 x() const;
@ -338,7 +338,6 @@ public:
/// @}
}; /* end Arr_algebraic_segment_traits_2::X_monotone_curve_2 */
}; /* end Arr_algebraic_segment_traits_2 */
} /* end namespace CGAL */

View File

@ -31,8 +31,7 @@ namespace CGAL {
template <typename Traits, typename Dcel,
typename InputIterator, typename OutputIterator>
OutputIterator locate(const Arrangement_2<Traits, Dcel>& arr,
InputIterator begin,
InputIterator end,
InputIterator begin, InputIterator end,
OutputIterator oi);
} /* namespace CGAL */

View File

@ -10,18 +10,18 @@ namespace CGAL {
* The `Arr_bounded_planar_topology_traits_2` template has two parameters:
* <UL>
* <LI>The `GeometryTraits_2` template-parameter should be substituted by
* a model of the `ArrangementBasicTraits_2` concept. The traits
* a model of the `AosBasicTraits_2` concept. The traits
* class defines the types of \f$x\f$-monotone curves and two-dimensional
* points, namely `ArrangementBasicTraits_2::X_monotone_curve_2` and
* `ArrangementBasicTraits_2::Point_2`,
* points, namely `AosBasicTraits_2::X_monotone_curve_2` and
* `AosBasicTraits_2::Point_2`,
* respectively, and supports basic geometric predicates on them.
* <LI>The `Dcel` template-parameter should be substituted by
* a class that is a model of the `ArrangementDcel` concept. The
* a class that is a model of the `AosDcel` concept. The
* value of this parameter is by default
* `Arr_default_dcel<Traits>`.
* </UL>
*
* \cgalModels{ArrangementBasicTopologyTraits}
* \cgalModels{AosBasicTopologyTraits}
*
* \sa `Arr_default_dcel<Traits>`
* \sa `CGAL::Arr_geodesic_arc_on_sphere_traits_2<Kernel,x,y>`
@ -62,10 +62,10 @@ public:
/// \name Accessors
/// @{
/*! obtains the DCEL (const version). */
/*! obtains the \dcel (const version). */
const Dcel& dcel() const;
/*! obtains the DCEL (non-const version). */
/*! obtains the \dcel (non-const version). */
Dcel& dcel();
/*! obtains the unbounded face (const version). */

View File

@ -3,7 +3,7 @@ namespace CGAL {
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* The class `Arr_circle_segment_traits_2` is a model of the
* `ArrangementTraits_2` concept and can be used to construct and maintain
* `AosTraits_2` concept and can be used to construct and maintain
* arrangements of circular arcs and line segments.
*
* The traits class must be instantiated with a geometric kernel, such that the
@ -11,34 +11,33 @@ namespace CGAL {
* the supporting lines of the line segments are of type `Kernel::Line_2`.
* Thus, the coordinates of the center of supporting circles, and its squared
* radius are of type `Kernel::FT`, which should be an exact rational
* number-type; similarly, the coefficients of each supporting line \f$ ax + by
* + c = 0\f$ are also of type `Kernel::FT`. Note however that the intersection
* point between two such arcs do not have rational coordinates in general. For
* this reason, we do not require the endpoints of the input arcs and segments
* to have rational coordinates.
* number-type; similarly, the coefficients of each supporting line
* \f$ax + by + c = 0\f$ are also of type `Kernel::FT`. Note however that the
* intersection point between two such arcs do not have rational coordinates in
* general. For this reason, we do not require the endpoints of the input arcs
* and segments to have rational coordinates.
*
* The nested `Point_2` type defined by the traits class is therefore
* <I>different</I> than the `Kernel::Point_2` type. Its coordinates are of type
* `CoordNT`, which an instantiation of `Sqrt_extension<NT,ROOT>` where `NT =
* ROOT = Kernel::FT`. Moreover, the third and fourth (hidden) template
* parameters of `Sqrt_extension<NT,ROOT>` are set to `CGAL::Tag_true`, which
* enables efficient comparison among different extensions.
* `CoordNT`, which an instantiation of `Sqrt_extension<NT,ROOT>` where
* `NT` = `ROOT` = `Kernel::FT`. Moreover, the third and fourth (hidden)
* template parameters of `Sqrt_extension<NT,ROOT>` are set to `CGAL::Tag_true`,
* which enables efficient comparison among different extensions.
*
* For more details see the documentation of `Sqrt_extension<NT,ROOT>`.
*
* While `Arr_circle_segment_traits_2` models the concept
* `ArrangementDirectionalXMonotoneTraits_2`, the implementation of the
* `AosDirectionalXMonotoneTraits_2`, the implementation of the
* `Are_mergeable_2` operation does not enforce the input curves to have the
* same direction as a precondition. Moreover, `Arr_circle_segment_traits_2`
* supports the merging of curves of opposite directions.
*
* \cgalModels{ArrangementTraits_2,ArrangementDirectionalXMonotoneTraits_2}
* \cgalModels{AosTraits_2,AosApproximateTraits_2,AosDirectionalXMonotoneTraits_2}
*
*/
template <typename Kernel>
class Arr_circle_segment_traits_2 {
public:
/*! The `Curve_2` class nested within the traits class can represent
* arbitrary circular arcs, full circles and line segments and support their
* construction in various ways. The copy and default constructor as well as
@ -88,7 +87,7 @@ public:
* center point with rational coordinates and whose <I>squared</I> radius is
* rational, with the given endpoints. The orientation of the arc is the
* same as the orientation of `circ`.
*
* \pre Both endpoints must lie on the given supporting circle.
*/
Curve_2(const typename Kernel::Circle_2& circ,
@ -162,7 +161,6 @@ public:
typename Kernel::Circle_2 supporting_circle() const;
/// @}
}; /* end Arr_circle_segment_traits_2::Curve_2 */
@ -172,16 +170,13 @@ public:
*/
class Point_2 {
public:
/// \name Types
/// @{
/*! the `Kernel::FT` type.
*/
/// the `Kernel::FT` type.
typedef unspecified_type Rational;
/*! the algebraic number-type.
*/
/// the algebraic number-type.
typedef unspecified_type CoordNT;
/// @}
@ -215,7 +210,6 @@ public:
CoordNT y() const;
/// @}
}; /* end Arr_circle_segment_traits_2::Point_2 */
@ -227,7 +221,6 @@ public:
*/
class X_monotone_curve_2 {
public:
/// \name Creation
/// @{
@ -315,7 +308,6 @@ public:
Bbox_2 bbox() const;
/// @}
}; /* end Arr_circle_segment_traits_2::X_monotone_curve_2 */
class Trim_2 {
@ -323,16 +315,15 @@ public:
/// \name Creation
/// @{
/*! trims the given x-monotone curve to an from src to tgt.
/*! trims the given \f$x\f$-monotone curve to an from `src` to `tgt`.
* \ pre `src` and `tgt` lies on the curve
*/
X_monotone_curve_2(const X_monotone_curve_2& xcv,
const Point_2& src,
const Point_2& tgt) const
/// @}
} /* end Arr_circle_segment_traits_2::Trim_2 */
}; /* end Arr_circle_segment_traits_2 */
} /* end namespace CGAL */

View File

@ -1,19 +1,14 @@
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2TraitsClasses
This class is a traits class for \cgal arrangements, built on top of a model of
concept `CircularKernel`.
It provides curves of type `CGAL::Circular_arc_2<CircularKernel>`.
\cgalModels{ArrangementTraits_2}
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* This class is a traits class for \cgal arrangements, built on top of a model
* of concept `CircularKernel`.
* It provides curves of type `CGAL::Circular_arc_2<CircularKernel>`.
*
* \cgalModels{AosTraits_2}
*/
template <typename CircularKernel>
class Arr_circular_arc_traits_2 {
public:
class Arr_circular_arc_traits_2 {};
}; /* end Arr_circular_arc_traits_2 */
} /* end namespace CGAL */

View File

@ -1,23 +1,17 @@
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2TraitsClasses
This class is a traits class for \cgal arrangements, built on top of a
model of concept `CircularKernel`. It provides curves that can be
of both types
`CGAL::Line_arc_2<CircularKernel>` or
`CGAL::Circular_arc_2<CircularKernel>`.
It uses the <A HREF="https://www.boost.org/doc/html/variant.html">std::variant</A>.
\cgalModels{ArrangementTraits_2}
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* This class is a traits class for \cgal arrangements, built on top of a model
* of concept `CircularKernel`. It provides curves that can be of both types
* `CGAL::Line_arc_2<CircularKernel>` or `CGAL::Circular_arc_2<CircularKernel>`.
*
* It uses the
* <A HREF="https://www.boost.org/doc/html/variant.html">std::variant</A>.
*
* \cgalModels{AosTraits_2}
*/
template <typename CircularKernel>
class Arr_circular_line_arc_traits_2 {
public:
class Arr_circular_line_arc_traits_2 {};
}; /* end Arr_circular_line_arc_traits_2 */
} /* end namespace CGAL */

View File

@ -2,7 +2,7 @@ namespace CGAL {
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* The class `Arr_conic_traits_2` is a model of the `ArrangementTraits_2`
* The class `Arr_conic_traits_2` is a model of the `AosTraits_2`
* concept and can be used to construct and maintain arrangements of bounded
* segments of algebraic curves of degree \f$2\f$ at most, also known as
* <I>conic curves</I>.
@ -30,12 +30,12 @@ namespace CGAL {
* <LI>A full ellipse (or a circle) \f$C\f$.
*
* <LI>The tuple \f$\langle C, p_s, p_t, o \rangle\f$, where \f$C\f$ is the
* supporting conic curve, with the arc endpoints being \f$ p_s\f$ and \f$
* p_t\f$ (the source and target points, respectively). The orientation \f$ o\f$
* indicates whether we proceed from \f$ p_s\f$ to \f$ p_t\f$ in a clockwise or
* in a counterclockwise direction. Note that \f$ C\f$ may also correspond to a
* line or to pair of lines---in this case \f$ o\f$ may specify a `COLLINEAR`
* orientation.
* supporting conic curve, with the arc endpoints being \f$p_s\f$ and
* \f$p_t\f$ (the source and target points, respectively). The orientation
* \f$o\f$ indicates whether we proceed from \f$p_s\f$ to \f$p_t\f$ in a
* clockwise or in a counterclockwise direction. Note that \f$C\f$ may also
* correspond to a line or to pair of lines---in this case \f$o\f$ may specify a
* `COLLINEAR` orientation.
*
* </UL>
*
@ -75,28 +75,25 @@ namespace CGAL {
* and defines a curve and \f$x\f$-monotone curve types, as detailed below.
*
* While the `Arr_conic_traits_2` models the concept
* `ArrangementDirectionalXMonotoneTraits_2`, the implementation of
* `AosDirectionalXMonotoneTraits_2`, the implementation of
* the `Are_mergeable_2` operation does not enforce the input curves
* to have the same direction as a precondition. Moreover, `Arr_conic_traits_2`
* supports the merging of curves of opposite directions.
*
* \cgalModels{ArrangementTraits_2,ArrangementLandmarkTraits_2,ArrangementDirectionalXMonotoneTraits_2}
* \cgalModels{AosTraits_2,AosLandmarkTraits_2,AosApproximateTraits_2,AosDirectionalXMonotoneTraits_2}
*
* \cgalHeading{Types}
*/
template <typename RatKernel, typename AlgKernel, typename NtTraits>
class Arr_conic_traits_2 {
public:
/// \name Types
/// @{
/*! the `NtTraits::Rational` type (and also the `RatKernel::FT` type).
*/
/// the `NtTraits::Rational` type (and also the `RatKernel::FT` type).
typedef unspecified_type Rational;
/*! the `NtTraits::Algebraic` type (and also the `AlgKernel::FT` type).
*/
/// the `NtTraits::Algebraic` type (and also the `AlgKernel::FT` type).
typedef unspecified_type Algebraic;
/// @}
@ -211,7 +208,6 @@ public:
void set_target(const Point_2 & pt);
/// @}
}; /* end Arr_conic_traits_2::Curve_2 */
/*! \class X_monotone_curve_2
@ -227,7 +223,6 @@ public:
*/
class X_monotone_curve_2 {
public:
/// \name Creation
/// @{
@ -249,7 +244,6 @@ public:
const Point_2& right() const;
/// @}
}; /* end Arr_conic_traits_2::X_monotone_curve_2 */
/*! The `Point_2` class nested within the conic-arc traits is
@ -366,7 +360,8 @@ public:
* respectively) is available, and their exact locations are given
* implicitly, specified by the intersections of the supporting conic curve
* with \f$r_1 x^2 + s_1 y^2 + t_1 x y + u_1 x + v_1 y + w_1 = 0\f$ and
* \f$r_2 x^2 + s_2 y^2 + t_2 x y + u_2 x + v_2 y + w_2 = 0\f$, respectively.
* \f$r_2 x^2 + s_2 y^2 + t_2 x y + u_2 x + v_2 y + w_2 = 0\f$,
* respectively.
*
* \pre The two auxiliary curves specifying the endpoints really intersect
* with the supporting conic curve, such that the arc endpoints define a
@ -407,11 +402,13 @@ public:
* \pre `source` and `target` must not be the same.
* \return A segment connecting `source` and `target`.
*/
X_monotone_curve_2 operator()(const Point_2& source, const Point_2& target) const;
X_monotone_curve_2 operator()(const Point_2& source,
const Point_2& target) const;
/*! constructs a special segment of a given line connecting to given
* endpoints.
* \param a, b, c The coefficients of the supporting line (\f$ax + by + c = 0\f$).
* \param a, b, c The coefficients of the supporting line
* (\f$ax + by + c = 0\f$).
* \param source The source point.
* \param target The target point.
* \pre `source` and `target` must not be the same.
@ -419,7 +416,8 @@ public:
*/
X_monotone_curve_2 operator()(const Algebraic& a, const Algebraic& b,
const Algebraic& c,
const Point_2& source, const Point_2& target) const;
const Point_2& source,
const Point_2& target) const;
};
/*! \class Construct_bbox_2
@ -440,56 +438,14 @@ public:
Bbox_2 operator()(const X_monotone_curve_2& xcv) const { return bbox(xcv); }
};
/*! \name Auxiliary Functor definitions, used gor, e.g., the landmarks
/*! \name Auxiliary Functor definitions, used for, e.g., the landmarks \
* point-location strategy and the drawing function.
*/
//@{
/// @{
typedef double Approximate_number_type;
typedef CGAL::Cartesian<Approximate_number_type> Approximate_kernel;
typedef Approximate_kernel::Point_2 Approximate_point_2;
/*! \class Approximate_2
* A functor that approximates a point and an \f$x\f$-monotone curve.
*/
class Approximate_2 {
public:
/*! obtains an approximation of a point coordinate.
* \param p The exact point.
* \param i The coordinate index (either 0 or 1).
* \pre `i` is either 0 or 1.
* \return An approximation of p's \f$x\f$-coordinate (if `i` == 0), or an
* approximation of p's \f$y\f$-coordinate (if `i` == 1).
*/
Approximate_number_type operator()(const Point_2& p, int i) const;
/*! obtains an approximation of a point.
* \param p The exact point.
*/
Approximate_point_2 operator()(const Point_2& p) const;
/*! approximates a given \f$x\f$-monotone curve. It computes a sequence of
* approximate points that represent an approximate polyline, and inserts
* them into an output container given through an output iterator. The
* first and last points in the sequence are always approximations of the
* endpoints of the given arc.
*
* \param oi An output iterator for the output container.
* \param error The error bound of the polyline approximation. This is the
* Hausdorff distance between the arc and the polyline that
* approximates the arc.
* \param xcv The exact \f$x\f$-monotone arc.
* \param l2r A Boolean flag that indicates whether the arc direction is
* left to right.
* \return The past-the-end iterator of the output container.
*
* \pre Dereferencing `oi` must yield an object of type
* `Arr_conic_traits_2::Approximate_point_2`.
*/
template <typename OutputIterator>
OutputIterator operator()(OutputIterator oi, double error,
const X_monotone_curve_2& xcv,
bool l2r = true) const;
};
/// @}
/*! \class Trim_2
* A functor that trims a conic arc.
@ -522,11 +478,7 @@ public:
/*! obtains a `Trim_2` functor. */
Trim_2 trim_2_object() const;
/*! obtains an `Approximate_2` functor. */
Approximate_2 approximate_2_object() const;
/// @}
}; /* end Arr_conic_traits_2 */
} /* end namespace CGAL */

View File

@ -1,10 +1,9 @@
namespace CGAL {
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* The class `Arr_consolidated_curve_data_traits_2` is a model of the concept
* `ArrangementTraits_2`, and serves as a decorator class that enables the
* `AosTraits_2`, and serves as a decorator class that enables the
* extension of the curve type defined by the `Traits` parameter. The traits
* class inherits its point type from `Traits::Point_2`, and defines the types
* `Curve_2` and `X_monotone_curve_2` extended with extraneous data fields of
@ -17,19 +16,16 @@ namespace CGAL {
* object, copied from the inducing curve. When an \f$x\f$-monotone curve is
* split, its data set is duplicated, and inserted into the sets of both
* resulting subcurves. In case two (or more) \f$x\f$-monotone curves overlap,
* their data sets are consolidated, and are inserted into the set of the \f$
* x\f$-monotone curve that represents the overlap.
* their data sets are consolidated, and are inserted into the set of the
* \f$x\f$-monotone curve that represents the overlap.
*
* \cgalModels{ArrangementTraits_2}
* \cgalModels{AosTraits_2}
*/
template <typename Traits, typename Data>
class Arr_consolidated_curve_data_traits_2
: public Arr_curve_data_traits_2<Traits, _Unique_list<Data>,
_Consolidate_unique_lists<Data>,
Data>
{
class Arr_consolidated_curve_data_traits_2 :
public Arr_curve_data_traits_2<Traits, _Unique_list<Data>,
_Consolidate_unique_lists<Data>, Data> {
public:
/// \name Types
/// @{
@ -59,14 +55,15 @@ public:
*/
class Data_container {
public:
/// \name Creation
/// @{
/*! constructs default */
/*! constructs default.
*/
Data_container();
/*! constructs set containing a single `data` object. */
/*! constructs set containing a single `data` object.
*/
Data_container(const Data& data);
/// @}
@ -74,21 +71,26 @@ public:
/// \name Access Functions
/// @{
/*! returns the number of data objects in the set. */
/*! returns the number of data objects in the set.
*/
std::size_t size() const;
/*! returns an iterator pointing to the first data object. */
/*! returns an iterator pointing to the first data object.
*/
Data_iterator begin() const;
/*! returns a past-the-end iterator for the data objects. */
/*! returns a past-the-end iterator for the data objects.
*/
Data_iterator end() const;
/*! returns the first data object inserted into the set.
*
* \pre The number of data objects is not \f$0\f$.
*/
const Data& front() const;
/*! returns the last data object inserted into the set.
*
* \pre The number of data objects is not \f$0\f$.
*/
const Data& back() const;
@ -123,13 +125,12 @@ public:
*/
bool erase(const Data& data);
/*! clears the set. */
/*! clears the set.
*/
void clear();
/// @}
}; /* end Arr_consolidated_curve_data_traits_2::Data_container */
}; /* end Arr_consolidated_curve_data_traits_2 */
} /* end namespace CGAL */

View File

@ -2,10 +2,10 @@ namespace CGAL {
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* The class `Arr_curve_data_traits_2` is a model of the `ArrangementTraits_2`
* The class `Arr_curve_data_traits_2` is a model of the `AosTraits_2`
* concept and serves as a decorator class that allows the extension of the
* curves defined by the base traits-class (the `Tr` parameter), which serves as
* a geometric traits-class (a model of the `ArrangementTraits_2` concept), with
* curves defined by the base traits-class (the `Tr` parameter), which serves
* as a geometric traits-class (a model of the `AosTraits_2` concept), with
* extraneous (non-geometric) data fields.
*
* The traits class inherits its point type from `Traits::Point_2`, and defines
@ -24,18 +24,15 @@ namespace CGAL {
* By default, the two data types are the same, so the conversion operator
* is trivial:
*
* <TABLE><TR><TD>
* `CData` =
* </TD>
* <TD>
* `XData`
* </TD></TR>
* <TR><TD>
* `Cnv` =
* </TD>
* <TD>
* `_Default_convert_functor<CData,XData>`
* </TD></TR>
* <TABLE>
* <TR>
* <TD>`CData` = </TD>
* <TD>`XData`</TD>
* </TR>
* <TR>
* <TD>`Cnv` =</TD>
* <TD>`_Default_convert_functor<CData,XData>`</TD>
* </TR>
* </TABLE>
*
* In case two (or more) \f$x\f$-monotone curves overlap, their data fields are
@ -49,45 +46,36 @@ namespace CGAL {
* `d1` and `d2`. The \f$x\f$-monotone curve that represents the overlap is
* associated with the output of this functor.
*
* \cgalModels{ArrangementTraits_2}
* \cgalModels{AosTraits_2}
*/
template <typename Tr, typename XData, typename Mrg, typename CData, typename Cnv>
class Arr_curve_data_traits_2 : public Tr {
public:
/// \name Types
/// @{
/*! the base traits-class.
*/
/// the base traits-class.
typedef Tr Base_traits_2;
/*! the base curve.
*/
/// the base curve.
typedef typename Base_traits_2::Curve_2 Base_curve_2;
/*! the base \f$ x\f$-monotone curve curve.
*/
/// the base \f$x\f$-monotone curve curve.
typedef typename Base_traits_2::X_monotone_curve_2 Base_x_monotone_curve_2;
/*! the point type.
*/
/// the point type.
typedef typename Base_traits_2::Point_2 Point_2;
/*! the merge functor.
*/
/// the merge functor.
typedef Mrg Merge;
/*! the conversion functor.
*/
/// the conversion functor.
typedef Cnv Convert;
/*! the type of data associated with curves.
*/
/// the type of data associated with curves.
typedef CData Curve_data;
/*! the type of data associated with \f$ x\f$-monotone curves.
*/
/// the type of data associated with \f$x\f$-monotone curves.
typedef XData X_monotone_curve_data;
/// @}
@ -97,7 +85,6 @@ public:
*/
class Curve_2 : public Base_curve_2 {
public:
/// \name Creation
/// @{
@ -129,7 +116,6 @@ public:
void set_data(const Curve_data& data);
/// @}
}; /* end Arr_curve_data_traits_2::Curve_2 */
/*! The `X_monotone_curve_2` class nested within the curve-data traits extends
@ -137,7 +123,6 @@ public:
*/
class X_monotone_curve_2 : public Base_x_monotone_curve_2 {
public:
/// \name Creation
/// @{
@ -149,8 +134,8 @@ public:
*/
X_monotone_curve_2(const Base_x_monotone_curve_2& base);
/*! constructs an \f$ x\f$-monotone curve from the given `base` \f$
* x\f$-monotone curve with an attached `data` field.
/*! constructs an \f$x\f$-monotone curve from the given `base`
* \f$x\f$-monotone curve with an attached `data` field.
*/
X_monotone_curve_2(const Base_x_monotone_curve_2& base,
const X_monotone_curve_data& data);
@ -170,9 +155,7 @@ public:
void set_data(const X_monotone_curve_data& data);
/// @}
}; /* end Arr_curve_data_traits_2::X_monotone_curve_2 */
}; /* end Arr_curve_data_traits_2 */
} /* end namespace CGAL */

View File

@ -7,8 +7,8 @@ namespace CGAL {
* class templates and other templates. It is parameterized by a geometry
* traits type and optionally by a vertex, halfedge, or face types. By default,
* the `Arr_dcel` class template uses the \link
* ArrangementBasicTraits_2::Point_2 `Point_2`\endlink and \link
* ArrangementBasicTraits_2::X_monotone_curve_2 `X_monotone_curve_2`\endlink
* AosBasicTraits_2::Point_2 `Point_2`\endlink and \link
* AosBasicTraits_2::X_monotone_curve_2 `X_monotone_curve_2`\endlink
* types nested in the traits type to instantiate the vertex and base halfedge
* types, respectively. Thus, by default the \dcel only stores the topological
* incidence relations and the geometric data attached to vertices and
@ -16,15 +16,15 @@ namespace CGAL {
* overridden. Notice that if the vertex and halfedge types are overridden, the
* traits type is ignored.
*
* \cgalModels{ArrangementDcelWithRebind}
* \cgalModels{AosDcelWithRebind}
*
* \tparam Traits a geometry traits type, which is a model of the
* `ArrangementBasicTraits_2` concept.
* \tparam V the vertex type, which is a model of the `ArrangementDcelVertex`
* `AosBasicTraits_2` concept.
* \tparam V the vertex type, which is a model of the `AosDcelVertex`
* concept.
* \tparam H the halfedge type, which is a model of the
* `ArrangementDcelHalfedge` concept.
* \tparam F the face type, which is a model of the `ArrangementDcelFace`
* `AosDcelHalfedge` concept.
* \tparam F the face type, which is a model of the `AosDcelFace`
* concept.
*
* \sa `Arr_dcel_base<V, H, F>`
@ -33,7 +33,6 @@ template <typename Traits,
typename V = Arr_vertex_base<typename Traits::Point_2>,
typename H = Arr_halfedge_base<typename Traits::X_monotone_curve_2>,
typename F = Arr_face_base>
class Arr_dcel : public Arr_dcel_base<V, H, F> {
};
class Arr_dcel : public Arr_dcel_base<V, H, F> {};
} /* end namespace CGAL */

View File

@ -1,71 +1,46 @@
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2DCEL
\anchor arr_refarr_dcel_base
The `Arr_dcel_base` class is an important ingredient in the
definition of \dcel data structures. It serves as a basis class for
any instance of the `Dcel` template parameter of the
`Arrangement_2` template. In particular it is the basis class of
the default `Dcel` template parameter, and the basis class of any
extended \dcel. The template parameters `V`, `H`, and `F`
must be instantiated with models of the concepts
`ArrangementDcelVertex`, `ArrangementDcelHalfedge`,
and `ArrangementDcelFace` respectively.
\cgalModels{ArrangementDcel}
/*! \ingroup PkgArrangementOnSurface2DCEL
*
* \anchor arr_refarr_dcel_base
*
* The `Arr_dcel_base` class is an important ingredient in the definition of
* \dcel data structures. It serves as a basis class for any instance of the
* `Dcel` template parameter of the `Arrangement_2` template. In particular it
* is the basis class of the default `Dcel` template parameter, and the basis
* class of any extended \dcel. The template parameters `V`, `H`, and `F` must
* be instantiated with models of the concepts `AosVertex`, `AosHalfedge`, and
* `AosFace` respectively.
*
* \cgalModels{Aos}
*/
template <typename V, typename H, typename F>
class Arr_dcel_base {
public:
/*!
The basic \dcel face type. Serves as a basis class for an extended
face record with auxiliary data fields.
\cgalModels{ArrangementDcelFace}
/*! The basic \dcel face type. Serves as a basis class for an extended
* face record with auxiliary data fields.
*
* \cgalModels{AosFace}
*/
class Arr_face_base {
}; /* end Arr_dcel_base::Arr_face_base */
/*!
The basic \dcel halfedge type. Serves as a basis class for an
extended halfedge record with auxiliary data fields. The `Curve`
parameter is the type of \f$ x\f$-monotone curves associated with the vertices.
\cgalModels{ArrangementDcelHalfedge}
class Arr_face_base {};
/*! The basic \dcel halfedge type. Serves as a basis class for an extended
* halfedge record with auxiliary data fields. The `Curve` parameter is the
* type of \f$x\f$-monotone curves associated with the vertices.
*
* \cgalModels{AosHalfedge}
*/
template <typename Curve>
class Arr_halfedge_base {
}; /* end Arr_dcel_base::Arr_halfedge_base */
/*!
The basic \dcel vertex type. Serves as a basis class for an extended
vertex record with auxiliary data fields. The `Point` parameter is
the type of points associated with the vertices.
\cgalModels{ArrangementDcelVertex}
class Arr_halfedge_base {};
/*! The basic \dcel vertex type. Serves as a basis class for an extended
* vertex record with auxiliary data fields. The `Point` parameter is the
* type of points associated with the vertices.
*
* \cgalModels{AosVertex}
*/
template <typename Point>
class Arr_vertex_base {
}; /* end Arr_dcel_base::Arr_vertex_base */
class Arr_vertex_base {};
}; /* end Arr_dcel_base */
} /* end namespace CGAL */

View File

@ -5,17 +5,17 @@ namespace CGAL {
* The default \dcel class used by the `Arrangement_2`,
* `Arr_bounded_planar_topology_traits_2`, `Arr_unb_planar_topology_traits_2`
* class templates and other templates. It is parameterized by a geometry
* traits type. It uses the \link ArrangementBasicTraits_2::Point_2
* `Point_2`\endlink and \link ArrangementBasicTraits_2::X_monotone_curve_2
* traits type. It uses the \link AosBasicTraits_2::Point_2
* `Point_2`\endlink and \link AosBasicTraits_2::X_monotone_curve_2
* `X_monotone_curve_2`\endlink types nested in the traits type to instantiate
* the vertex and base halfedge types, respectively. Thus, by default the \dcel
* only stores the topological incidence relations and the geometric data
* attached to vertices and edges.
*
* \cgalModels{ArrangementDcelWithRebind}
* \cgalModels{AosDcelWithRebind}
*
* \tparam Traits a geometry traits type, which is a model of the
* `ArrangementBasicTraits_2` concept.
* `AosBasicTraits_2` concept.
*
* \sa `Arr_dcel<Traits, V, H, F>`
* \sa `Arr_dcel_base<V, H, F>`

View File

@ -1,57 +1,45 @@
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2TraitsClasses
\ingroup PkgArrangementOnSurface2Overlay
An instance of `Arr_default_overlay_traits` should be used for overlaying two arrangements
of type `Arrangement` that store no auxiliary data with their \dcel records, where the resulting overlaid arrangement stores no auxiliary
\dcel data as well. This class simply gives empty implementation for all
traits-class functions.
\cgalModels{OverlayTraits}
\sa `overlay`
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
* \ingroup PkgArrangementOnSurface2Overlay
*
* An instance of `Arr_default_overlay_traits` should be used for overlaying two
* arrangements of type `Arrangement` that store no auxiliary data with their
* \dcel records, where the resulting overlaid arrangement stores no auxiliary
* \dcel data as well. This class simply gives empty implementation for all
* traits-class functions.
*
* \cgalModels{OverlayTraits}
*
* \sa `overlay`
*/
template <typename Arrangement>
class Arr_default_overlay_traits {
public:
}; /* end Arr_default_overlay_traits */
} /* end namespace CGAL */
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2TraitsClasses
\ingroup PkgArrangementOnSurface2Overlay
An instance of `Arr_face_overlay_traits` should be used for overlaying two arrangements
of types `Arr_A` and `Arr_B`, which are instantiated using the same
geometric traits-class and with the \dcel classes `Dcel_A` and
`Dcel_B` respectively, in order to store their overlay in an arrangement
of type `Arr_R`, which is instantiated using a third \dcel class
`Dcel_R`. All three \dcel classes are assumed to be instantiations of the
`Arr_face_extended_dcel` template with types `FaceData_A`,
`FaceData_B` and `FaceData_R`, respectively.
This class gives empty implementation for all overlay traits-class functions,
except the function that computes the overlay of two faces. In this case,
it uses the functor `OvlFaceData`, which accepts a `FaceData_A` object
and a `FaceData_B` object and computes a corresponding `FaceData_R`
object, in order to set the auxiliary data of the overlay face.
\cgalModels{OverlayTraits}
\sa `overlay`
\sa `CGAL::Arr_face_extended_dcel<Traits,FData,V,H,F>`
class Arr_default_overlay_traits {};
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
* \ingroup PkgArrangementOnSurface2Overlay
*
* An instance of `Arr_face_overlay_traits` should be used for overlaying two
* arrangements of types `Arr_A` and `Arr_B`, which are instantiated using the
* same geometric traits-class and with the \dcel classes `Dcel_A` and `Dcel_B`
* respectively, in order to store their overlay in an arrangement of type
* `Arr_R`, which is instantiated using a third \dcel class `Dcel_R`. All three
* \dcel classes are assumed to be instantiations of the
* `Arr_face_extended_dcel` template with types `FaceData_A`, `FaceData_B` and
* `FaceData_R`, respectively.
*
* This class gives empty implementation for all overlay traits-class functions,
* except the function that computes the overlay of two faces. In this case, it
* uses the functor `OvlFaceData`, which accepts a `FaceData_A` object and a
* `FaceData_B` object and computes a corresponding `FaceData_R` object, in
* order to set the auxiliary data of the overlay face.
*
* \cgalModels{OverlayTraits}
*
* \sa `overlay`
* \sa `CGAL::Arr_face_extended_dcel<Traits,FData,V,H,F>`
*/
template <typename Arr_A, typename Arr_B, typename Arr_R, typename OvlFaceData>
class Arr_face_overlay_traits {
public:
class Arr_face_overlay_traits {};
}; /* end Arr_face_overlay_traits */
} /* end namespace CGAL */

View File

@ -6,7 +6,7 @@ namespace CGAL {
* \f$x\f$-monotone curve. It is used by models geometry traits concept that
* handle boundary conditions.
*
* \sa `ArrangementOpenBoundaryTraits_2`
* \sa `AosOpenBoundaryTraits_2`
*/
enum Arr_curve_end { ARR_MIN_END, ARR_MAX_END };

View File

@ -1,76 +1,64 @@
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2DCEL
The `Arr_extended_dcel` class-template extends the topological-features of the \dcel
namely the vertex, halfedge, and face types. While it is possible to maintain
extra (non-geometric) data with the curves or points of the arrangement by
extending their types respectively, it is also possible to extend the vertex,
halfedge, or face types of the \dcel through inheritance. As the technique to
extend these types is somewhat cumbersome and difficult for inexperienced
users, the `Arr_extended_dcel` class-template provides a convenient way to do that.
Each one of the three features is extended with a corresponding data type
provided as parameters. This class template is also parameterized with a
traits class used to extract default values for the vertex, halfedge, and face
base classes, which are the remaining three template parameters respectively.
The default values follow:
<TABLE><TR><TD ALIGN=LEFT VALIGN=TOP NOWRAP>
`V` =
<TD ALIGN=LEFT VALIGN=TOP NOWRAP>
`Arr_vertex_base<typename Traits::Point_2>`
<TR><TD ALIGN=LEFT VALIGN=TOP NOWRAP>
`H` =
<TD ALIGN=LEFT VALIGN=TOP NOWRAP>
`Arr_halfedge_base<typename Traits::X_monotone_curve_2>`
<TR><TD ALIGN=LEFT VALIGN=TOP NOWRAP>
`F` =
<TD ALIGN=LEFT VALIGN=TOP NOWRAP>
`Arr_face_base`
</TABLE>
\cgalModels{ArrangementDcelWithRebind}
\sa `Arr_dcel_base<V,H,F>`
/*! \ingroup PkgArrangementOnSurface2DCEL
*
* The `Arr_extended_dcel` class-template extends the topological-features of
* the \dcel namely the vertex, halfedge, and face types. While it is possible
* to maintain extra (non-geometric) data with the curves or points of the
* arrangement by extending their types respectively, it is also possible to
* extend the vertex, halfedge, or face types of the \dcel through
* inheritance. As the technique to extend these types is somewhat cumbersome
* and difficult for inexperienced users, the `Arr_extended_dcel` class-template
* provides a convenient way to do that. Each one of the three features is
* extended with a corresponding data type provided as parameters. This class
* template is also parameterized with a traits class used to extract default
* values for the vertex, halfedge, and face base classes, which are the
* remaining three template parameters respectively. The default values follow:
*
* <TABLE><TR><TD ALIGN=LEFT VALIGN=TOP NOWRAP>
*
* `V` =
* <TD ALIGN=LEFT VALIGN=TOP NOWRAP>
* `Arr_vertex_base<typename Traits::Point_2>`
* <TR><TD ALIGN=LEFT VALIGN=TOP NOWRAP>
* `H` =
* <TD ALIGN=LEFT VALIGN=TOP NOWRAP>
* `Arr_halfedge_base<typename Traits::X_monotone_curve_2>`
* <TR><TD ALIGN=LEFT VALIGN=TOP NOWRAP>
* `F` =
* <TD ALIGN=LEFT VALIGN=TOP NOWRAP>
* `Arr_face_base`
*
* </TABLE>
*
* \cgalModels{AosDcelWithRebind}
*
* \sa `Arr_dcel_base<V,H,F>`
*/
template< typename Traits, typename VData, typename HData, typename FData, typename V, typename H, typename F >
class Arr_extended_dcel
: public Arr_dcel_base<Arr_extended_vertex<V, VData>,
template <typename Traits, typename VData, typename HData, typename FData,
typename V, typename H, typename F>
class Arr_extended_dcel : public Arr_dcel_base<Arr_extended_vertex<V, VData>,
Arr_extended_halfedge<H, HData>,
Arr_extended_face<F, FData>>
{
}; /* end Arr_extended_dcel */
} /* end namespace CGAL */
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2DCEL
The `Arr_extended_face` class-template extends the face topological-features of the
\dcel. It is parameterized by a face base-type `FaceBase` and a data type
`FData` used to extend the face base-type.
\cgalModels{ArrangementDcelFace}
\sa `Arr_dcel_base<V,H,F>`
{};
/*! \ingroup PkgArrangementOnSurface2DCEL
*
* The `Arr_extended_face` class-template extends the face topological-features
* of the \dcel. It is parameterized by a face base-type `FaceBase` and a data
* type `FData` used to extend the face base-type.
*
* \cgalModels{AosDcelFace}
*
* \sa `Arr_dcel_base<V,H,F>`
*/
template <typename FaceBase, typename FData>
class Arr_extended_face : FaceBase {
public:
/// \name Creation
/// @{
/*!
assigns `f` with the contents of the `other` vertex.
/*! assigns `f` with the contents of the `other` vertex.
*/
void assign(const Self & other);
@ -79,9 +67,8 @@ void assign (const Self & other);
/// \name Access Functions
/// @{
/*!
obtains the auxiliary data (a non-const version, returning a reference
to a mutable data object is also available).
/*! obtains the auxiliary data (a non-const version, returning a reference
* to a mutable data object is also available).
*/
const FData & data() const;
@ -90,39 +77,31 @@ const FData & data () const;
/// \name Modifiers
/// @{
/*!
sets the auxiliary data.
/*! sets the auxiliary data.
*/
void set_data(const FData & data);
/// @}
}; /* end Arr_extended_face */
} /* end namespace CGAL */
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2DCEL
The `Arr_extended_halfedge` class-template extends the halfedge topological-features of
the \dcel. It is parameterized by a halfedge base-type `HalfedgeBase`
and a data type `HData` used to extend the halfedge base-type.
\cgalModels{ArrangementDcelHalfedge}
\sa `Arr_dcel_base<V,H,F>`
/*! \ingroup PkgArrangementOnSurface2DCEL
*
* The `Arr_extended_halfedge` class-template extends the halfedge
* topological-features of the \dcel. It is parameterized by a halfedge
* base-type `HalfedgeBase` and a data type `HData` used to extend the halfedge
* base-type.
*
* \cgalModels{AosDcelHalfedge}
*
* \sa `Arr_dcel_base<V,H,F>`
*/
template <typename HalfedgeBase, typename HData>
class Arr_extended_halfedge : public HalfedgeBase {
public:
/// \name Creation
/// @{
/*!
assigns `he` with the contents of the `other` vertex.
/*! assigns `he` with the contents of the `other` vertex.
*/
void assign(const Self & other);
@ -131,9 +110,8 @@ void assign (const Self & other);
/// \name Access Functions
/// @{
/*!
obtains the auxiliary data (a non-const version, returning a reference
to a mutable data object is also available).
/*! obtains the auxiliary data (a non-const version, returning a reference
* to a mutable data object is also available).
*/
const HData & data() const;
@ -142,40 +120,31 @@ const HData & data () const;
/// \name Modifiers
/// @{
/*!
sets the auxiliary data.
/*! sets the auxiliary data.
*/
void set_data(const HData & data);
/// @}
}; /* end Arr_extended_halfedge */
} /* end namespace CGAL */
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2DCEL
The `Arr_extended_vertex` class-template extends the vertex
topological-features of the \dcel. It is parameterized by a
vertex base-type `VertexBase` and a data type `VData` used to extend
the vertex base-type.
\cgalModels{ArrangementDcelVertex}
\sa `Arr_dcel_base<V,H,F>`
/*! \ingroup PkgArrangementOnSurface2DCEL
*
* The `Arr_extended_vertex` class-template extends the vertex
* topological-features of the \dcel. It is parameterized by a
* vertex base-type `VertexBase` and a data type `VData` used to extend
* the vertex base-type.
*
* \cgalModels{AosDcelVertex}
*
* \sa `Arr_dcel_base<V,H,F>`
*/
template <typename VertexBase, typename VData>
class Arr_extended_vertex : public VertexBase {
public:
/// \name Creation
/// @{
/*!
assigns `v` with the contents of the `other` vertex.
/*! assigns `v` with the contents of the `other` vertex.
*/
void assign(const Self & other);
@ -184,9 +153,8 @@ void assign (const Self & other);
/// \name Access Functions
/// @{
/*!
obtains the auxiliary data (a non-const version, returning a reference
to a mutable data object is also available).
/*! obtains the auxiliary data (a non-const version, returning a reference
* to a mutable data object is also available).
*/
const VData & data() const;
@ -195,52 +163,46 @@ const VData & data () const;
/// \name Modifiers
/// @{
/*!
sets the auxiliary data.
/*! sets the auxiliary data.
*/
void set_data(const VData & data);
/// @}
}; /* end Arr_extended_vertex */
} /* end namespace CGAL */
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2DCEL
The `Arr_face_extended_dcel` class-template extends the \dcel face-records, making it
possible to store extra (non-geometric) data with the arrangement faces.
The class should be instantiated by an `FData` type which represents the
extra data stored with each face.
Note that all types of \dcel features (namely vertex, halfedge and face)
are provided as template parameters. However, by default they are defined
as follows:
<TABLE><TR><TD ALIGN=LEFT VALIGN=TOP NOWRAP>
`V` =
<TD ALIGN=LEFT VALIGN=TOP NOWRAP>
`Arr_vertex_base<typename Traits::Point_2>`
<TR><TD ALIGN=LEFT VALIGN=TOP NOWRAP>
`H` =
<TD ALIGN=LEFT VALIGN=TOP NOWRAP>
`Arr_halfedge_base<typename Traits::X_monotone_curve_2>`
<TR><TD ALIGN=LEFT VALIGN=TOP NOWRAP>
`F` =
<TD ALIGN=LEFT VALIGN=TOP NOWRAP>
`Arr_face_base`
</TABLE>
\cgalModels{ArrangementDcelWithRebind}
\sa `Arr_dcel_base<V,H,F>`
/*! \ingroup PkgArrangementOnSurface2DCEL
*
* The `Arr_face_extended_dcel` class-template extends the \dcel face-records,
* making it possible to store extra (non-geometric) data with the arrangement
* faces. The class should be instantiated by an `FData` type which represents
* the extra data stored with each face.
*
* Note that all types of \dcel features (namely vertex, halfedge and face)
* are provided as template parameters. However, by default they are defined
* as follows:
*
* <TABLE><TR><TD ALIGN=LEFT VALIGN=TOP NOWRAP>
*
* `V` =
* <TD ALIGN=LEFT VALIGN=TOP NOWRAP>
* `Arr_vertex_base<typename Traits::Point_2>`
* <TR><TD ALIGN=LEFT VALIGN=TOP NOWRAP>
* `H` =
* <TD ALIGN=LEFT VALIGN=TOP NOWRAP>
* `Arr_halfedge_base<typename Traits::X_monotone_curve_2>`
* <TR><TD ALIGN=LEFT VALIGN=TOP NOWRAP>
* `F` =
* <TD ALIGN=LEFT VALIGN=TOP NOWRAP>
* `Arr_face_base`
*
* </TABLE>
*
* \cgalModels{AosDcelWithRebind}
*
* \sa `Arr_dcel_base<V,H,F>`
*/
template <typename Traits, typename FData, typename V, typename H, typename F>
class Arr_face_extended_dcel : public Arr_dcel_base<V, H, Arr_extended_face<F, FData> > {
}; /* end Arr_face_extended_dcel */
class Arr_face_extended_dcel :
public Arr_dcel_base<V, H, Arr_extended_face<F, FData>> {};
} /* end namespace CGAL */

View File

@ -20,17 +20,15 @@ namespace CGAL {
*
* \sa `Arr_vertex_index_map<Arrangement>`
*/
template <typename Arrangement_>
class Arr_face_index_map: public Arrangement_::Observer {
public:
/// \name Types
/// @{
/*! the type of the attached arrangement.
*/
/// the type of the attached arrangement.
typedef Arrangement_ Arrangement_2;
typedef typename Arrangement_2::Base_aos Base_aos;
typedef boost::readable_property_map_tag category;
@ -41,12 +39,10 @@ namespace CGAL {
typedef Face_handle key_type;
/*! The face handle type.
*/
/// The face handle type.
typedef typename Base_aos::Face_handle Face_handle;
/*! The type of mapping of faces to indices.
*/
/// The type of mapping of faces to indices.
typedef Unique_hash_map<Face_handle, value_type> Index_map;
/// @}
@ -63,7 +59,6 @@ namespace CGAL {
Arr_face_index_map(Base_aos& arr);
/// @}
}; /* end Arr_accessor */
} /* end namespace CGAL */

View File

@ -3,7 +3,7 @@ namespace CGAL {
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* The traits class `Arr_geodesic_arc_on_sphere_traits_2` is a model of the
* `ArrangementTraits_2` concept. It enables the construction and
* `AosTraits_2` concept. It enables the construction and
* maintenance of arrangements of arcs of great circles (also known as
* geodesic arcs) that lie on the sphere (centered at the origin). Almost
* all operations on arrangements require a kernel that supports exact
@ -39,9 +39,8 @@ namespace CGAL {
* normalized vector \f$(x,y)\f$ in the \f$xy\f$-plane that bisects the
* identification curve.
* \cgalModels{ArrangementTraits_2,ArrangementLandmarkTraits_2,ArrangementSphericalBoundaryTraits_2}
* \cgalModels{AosTraits_2,AosLandmarkTraits_2,AosApproximateTraits_2,AosSphericalBoundaryTraits_2}
*/
template <typename Kernel, typename X, typename Y>
class Arr_geodesic_arc_on_sphere_traits_2 {
public:
@ -135,6 +134,7 @@ namespace CGAL {
* \param[in] is_full is the arc a full great circle?
* \param[in] is_degenerate is the arc degenerate (single point)?
* \param[in] is_empty is the arc empty?
*
* \pre Both endpoints lie on the given plane.
*/
X_monotone_curve_2(const Point_2& source,
@ -146,19 +146,21 @@ namespace CGAL {
bool is_degenerate = false,
bool is_empty = false);
/*! construct an \f$x\f$-monotone geodesic arc.
/*! constructs an \f$x\f$-monotone geodesic arc.
* \param[in] normal the normal of the plane containing the arc.
* \param[in] source the source-point direction.
* \param[in] target the target-point direction.
*
* \pre Both endpoints lie on the given plane.
*/
X_monotone_curve_2(const Point_2& source,
const Point_2& target,
const Direction_3& normal);
/*! construct a full great-circle.
/*! constructs a full great-circle.
* \param[in] point the endpoint of the full great-circle.
* \param[in] normal the normal of the plane containing the arc.
*
* \pre the point lies on the given plane.
* \pre the point pre-image lies on the identified left and right sides
* of the boundary of the parameter space.
@ -234,12 +236,11 @@ namespace CGAL {
*/
const Point_2& right() const;
/*! determines whether the arc is vertical.
/*! Determines whether the arc is vertical.
*/
bool is_vertical() const;
/*! determines whether the arc is directed lexicographically from left to
* right.
/*! determines whether the arc is directed lexicographically from left to right.
*/
bool is_directed_right() const;
@ -283,7 +284,6 @@ namespace CGAL {
*
* \cgalModels{Assignable,CopyConstructible,AdaptableUnaryFunction,AdaptableTernaryFunction}
*/
/*!
*/
class Construct_point_2 {
@ -335,14 +335,14 @@ namespace CGAL {
/*! constructs the minor geodesic arc from two endpoints. The minor arc
* is the one with the smaller angle among the two geodesic arcs with
* the given endpoints.
* 1. Find out whether the arc is x-monotone.
* 2. If it is x-monotone,
* 1. Find out whether the arc is \f$x\f$-monotone.
* 2. If it is \f$x\f$-monotone,
* 2.1 Find out whether it is vertical, and
* 2.2 whether the target is larger than the source (directed right).
*
* An arc is vertical, iff
* 1. one of its endpoint direction pierces a pole, or
* 2. the projections of the endpoint directions onto the xy-plane coincide.
* 2. the projections of the endpoint directions onto the \f$xy\f$-plane coincide.
* \param[in] p the first endpoint.
* \param[in] q the second endpoint.
* \pre p and q must not coincide.
@ -404,14 +404,14 @@ namespace CGAL {
/*! constructs the minor geodesic arc from two endpoints. The minor arc
* is the one with the smaller angle among the two geodesic arcs with
* the given endpoints.
* 1. Find out whether the arc is x-monotone.
* 2. If it is x-monotone,
* 1. Find out whether the arc is \f$x\f$-monotone.
* 2. If it is \f$x\f$-monotone,
* 1. Find out whether it is vertical, and
* 2. whether the target is larger than the source (directed right).
*
* An arc is vertical, iff
* 1. one of its endpoint direction pierces a pole, or
* 2. the projections of the endpoint directions onto the xy-plane coincide.
* 2. the projections of the endpoint directions onto the \f$xy\f$-plane coincide.
*
* \param[in] p the first endpoint.
* \param[in] q the second endpoint.
@ -428,6 +428,7 @@ namespace CGAL {
* \param[in] p the first endpoint.
* \param[in] q the second endpoint.
* \param[in] normal the normal to the oriented plane containing the arc.
*
* \pre Both endpoints lie on the given oriented plane.
*/
Curve_2 operator()(const Point_2& p, const Point_2& q,

View File

@ -1,62 +1,58 @@
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2PointLocation
\anchor arr_reflm_pl
The `Arr_landmarks_point_location` class implements a Jump & Walk algorithm, where special
points, referred to as "landmarks", are chosen in a preprocessing stage,
their place in the arrangement is found, and they are inserted into a
data-structure that enables efficient nearest-neighbor search (a
<span class="textsc">Kd</span>-tree). Given a query point, the nearest landmark is located and a
"walk" strategy is applied from the landmark to the query point.
There are various strategies to select the landmark set in the
arrangement, where the strategy is determined by the
`Generator` template parameter. The following landmark-generator
classes are available:
<DL>
<DT><B>`Arr_landmarks_vertices_generator` - </B><DD>
The arrangement vertices are used as the landmarks set.
<DT><B>`Arr_random_landmarks_generator` - </B><DD>
\f$ n\f$ random points in the bounding box of the arrangement are chosen
as the landmarks set.
<DT><B>`Arr_halton_landmarks_generator` - </B><DD>
\f$ n\f$ Halton points in the bounding box of the arrangement are chosen
as the landmarks set.
<DT><B>`Arr_middle_edges_landmarks_generator` - </B><DD>
The midpoint of each arrangement edge is computed, and the resulting
set of points is used as the landmarks set. This generator can be applied
only for arrangements of line segments.
<DT><B>`Arr_grid_landmarks_generator` - </B><DD>
A set of \f$ n\f$ landmarks are chosen on a
\f$ \lceil \sqrt{n} \rceil \times \lceil \sqrt{n} \rceil\f$
grid that covers the bounding box of the arrangement.
</DL>
The `Arr_landmarks_vertices_generator` class is the default generator
and used if no `Generator` parameter is specified.
It is recommended to use the landmarks point-location strategy
when the application frequently issues point-location queries on a
rather static arrangement that the changes applied to it are mainly
insertions of curves and not deletions of them.
\cgalModels{ArrangementPointLocation_2,ArrangementVerticalRayShoot_2}
\sa `ArrangementPointLocation_2`
\sa `ArrangementVerticalRayShoot_2`
\sa `CGAL::Arr_point_location_result<Arrangement>`
/*! \ingroup PkgArrangementOnSurface2PointLocation
*
* \anchor arr_reflm_pl
*
* The `Arr_landmarks_point_location` class implements a Jump & Walk algorithm,
* where special points, referred to as "landmarks", are chosen in a
* preprocessing stage, their place in the arrangement is found, and they are
* inserted into a data-structure that enables efficient nearest-neighbor search
* (a <span class="textsc">Kd</span>-tree). Given a query point, the nearest
* landmark is located and a "walk" strategy is applied from the landmark to the
* query point.
*
* There are various strategies to select the landmark set in the
* arrangement, where the strategy is determined by the
* `Generator` template parameter. The following landmark-generator
* classes are available:
* <DL>
* <DT><B>`Arr_landmarks_vertices_generator`</B><DD>
* The arrangement vertices are used as the landmarks set.
*
* <DT><B>`Arr_random_landmarks_generator`</B><DD>
* \f$n\f$ random points in the bounding box of the arrangement are chosen
* as the landmarks set.
*
* <DT><B>`Arr_halton_landmarks_generator`</B><DD>
* \f$n\f$ Halton points in the bounding box of the arrangement are chosen
* as the landmarks set.
*
* <DT><B>`Arr_middle_edges_landmarks_generator`</B><DD>
* The midpoint of each arrangement edge is computed, and the resulting
* set of points is used as the landmarks set. This generator can be applied
* only for arrangements of line segments.
*
* <DT><B>`Arr_grid_landmarks_generator`</B><DD>
* A set of \f$n\f$ landmarks are chosen on a
* \f$\lceil \sqrt{n} \rceil \times \lceil \sqrt{n} \rceil\f$
* grid that covers the bounding box of the arrangement.
* </DL>
* The `Arr_landmarks_vertices_generator` class is the default generator
* and used if no `Generator` parameter is specified.
*
* It is recommended to use the landmarks point-location strategy
* when the application frequently issues point-location queries on a
* rather static arrangement that the changes applied to it are mainly
* insertions of curves and not deletions of them.
*
* \cgalModels{AosPointLocation_2,AosVerticalRayShoot_2}
*
* \sa `AosPointLocation_2`
* \sa `AosVerticalRayShoot_2`
* \sa `CGAL::Arr_point_location_result<Arrangement>`
*/
template <typename Arrangement, typename Generator>
class Arr_landmarks_point_location {
public:
class Arr_landmarks_point_location {};
}; /* end Arr_landmarks_point_location */
} /* end namespace CGAL */

View File

@ -1,19 +1,14 @@
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2TraitsClasses
This class is a traits class for \cgal arrangements, built on top of a
model of concept `CircularKernel`. It provides curves of type
`CGAL::Line_arc_2<CircularKernel>`.
\cgalModels{ArrangementTraits_2}
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* This class is a traits class for \cgal arrangements, built on top of a
* model of concept `CircularKernel`. It provides curves of type
* `CGAL::Line_arc_2<CircularKernel>`.
*
* \cgalModels{AosTraits_2}
*/
template <typename CircularKernel>
class Arr_line_arc_traits_2 {
public:
class Arr_line_arc_traits_2 {};
}; /* end Arr_line_arc_traits_2 */
} /* end namespace CGAL */

View File

@ -3,10 +3,10 @@ namespace CGAL {
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* The traits class `Arr_linear_traits_2` is a model of the
* `ArrangementTraits_2` concept, which enables the construction and maintenance
* `AosTraits_2` concept, which enables the construction and maintenance
* of arrangements of linear objects. The linear objects may be bounded (line
* segments) or unbounded (rays and lines). Thus, it is also a model of the
* concept `ArrangementOpenBoundaryTraits_2`. The traits class is parameterized
* concept `AosOpenBoundaryTraits_2`. The traits class is parameterized
* parameterized with a \cgal-kernel model; see the reference page of
* `Arr_segment_traits_2<Kernel>` for further explanations and recommendations
* on choosing a kernel.
@ -21,28 +21,27 @@ namespace CGAL {
* we can find out its actual type and convert it to the respective kernel
* object (say, to a `Kernel::Ray_2`).
*
* \cgalModels{ArrangementTraits_2,ArrangementLandmarkTraits_2,ArrangementOpenBoundaryTraits_2}
* \cgalModels{AosTraits_2,AosLandmarkTraits_2,AosOpenBoundaryTraits_2}
*/
template <typename Kernel>
class Arr_linear_traits_2 {
public:
/// \name Types
/// @{
//!
///
typedef typename Kernel::Segment_2 Segment_2;
//!
///
typedef typename Kernel::Ray_2 Ray_2;
//!
///
typedef typename Kernel::Line_2 Line_2;
//!
///
typedef typename Kernel::Point_2 Point_2;
//!
///
typedef typename X_monotone_curve_2 Curve_2;
/// @}
@ -57,20 +56,19 @@ public:
*/
class X_monotone_curve_2 {
public:
/// \name Types
/// @{
//!
///
typedef typename Kernel::Point_2 Point_2;
//!
///
typedef typename Kernel::Segment_2 Segment_2;
//!
///
typedef typename Kernel::Ray_2 Ray_2;
//!
///
typedef typename Kernel::Line_2 Line_2;
/// @}
@ -139,7 +137,6 @@ public:
Point_2 target() const;
/// @}
}; /* end Arr_linear_traits_2::X_monotone_curve_2 */
class Trim_2 {
@ -147,7 +144,7 @@ public:
/// \name Creation
/// @{
/*! trims the given x-monotone curve to an from src to tgt.
/*! trims the given \f$x\f$-monotone curve to an from `src` to `tgt`.
* \ pre `src` and `tgt` lies on the curve
*/
X_monotone_curve_2 operator()(const X_monotone_curve_2& xcv,
@ -157,7 +154,6 @@ public:
} /* end Arr_linear_traits_2::Trim_2 */
Trim_2 trim_2_object() const;
}; /* end Arr_linear_traits_2 */
} /* end namespace CGAL */

View File

@ -1,28 +1,22 @@
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2PointLocation
\anchor arr_refnaive_pl
The `Arr_naive_point_location` class implements a naive algorithm that traverses
all the vertices and halfedges in the arrangement in search for an
answer to a point-location query.
The query time is therefore linear in the complexity of the arrangement.
Naturally, this point-location strategy could turn into a heavy
time-consuming process when applied to dense arrangements.
\cgalModels{ArrangementPointLocation_2,ArrangementVerticalRayShoot_2}
\sa `ArrangementPointLocation_2`
\sa `ArrangementVerticalRayShoot_2`
\sa `CGAL::Arr_point_location_result<Arrangement>`
/*! \ingroup PkgArrangementOnSurface2PointLocation
*
* \anchor arr_refnaive_pl
*
* The `Arr_naive_point_location` class implements a naive algorithm that
* traverses all the vertices and halfedges in the arrangement in search for an
* answer to a point-location query. The query time is therefore linear in the
* complexity of the arrangement. Naturally, this point-location strategy could
* turn into a heavy time-consuming process when applied to dense arrangements.
*
* \cgalModels{AosPointLocation_2,AosVerticalRayShoot_2}
*
* \sa `AosPointLocation_2`
* \sa `AosVerticalRayShoot_2`
* \sa `CGAL::Arr_point_location_result<Arrangement>`
*/
template <typename Arrangement>
class Arr_naive_point_location {
public:
class Arr_naive_point_location {};
}; /* end Arr_naive_point_location */
} /* end namespace CGAL */

View File

@ -1,32 +1,26 @@
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2TraitsClasses
The traits class `Arr_non_caching_segment_basic_traits_2` is a model of the `ArrangementTraits_2`
concept that allow the construction and maintenance of arrangements of
sets of pairwise interior-disjoint line segments. It is templated with a
\cgal-Kernel model, and it is derived from it. This traits class is a
thin layer above the parameterized kernel. It inherits the `Point_2`
from the kernel and its `X_monotone_curve_2` type is defined as
`Kernel::Segment_2`. Most traits-class functor are inherited from the
kernel functor, and the traits class only supplies the necessary functors
that are not provided by the kernel. The kernel is parameterized with a
number type, which should support the arithmetic operations \f$ +\f$, \f$ -\f$ and
\f$ \times\f$ in an exact manner in order to avoid robustness problems.
Using `Cartesian<MP_Float>` or `Cartesian<Gmpz>` are possible
substitutions for the kernel. Using other (inexact) number types
(for example, instantiating the template with
`Simple_cartesian<double>`) is also possible, at the user's own
risk.
\cgalModels{ArrangementLandmarkTraits_2}
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* The traits class `Arr_non_caching_segment_basic_traits_2` is a model of the
* `AosTraits_2` concept that allow the construction and maintenance of
* arrangements of sets of pairwise interior-disjoint line segments. It is
* templated with a \cgal-Kernel model, and it is derived from it. This traits
* class is a thin layer above the parameterized kernel. It inherits the
* `Point_2` from the kernel and its `X_monotone_curve_2` type is defined as
* `Kernel::Segment_2`. Most traits-class functor are inherited from the kernel
* functor, and the traits class only supplies the necessary functors that are
* not provided by the kernel. The kernel is parameterized with a number type,
* which should support the arithmetic operations \f$+\f$, \f$-\f$ and
* \f$\times\f$ in an exact manner in order to avoid robustness problems. Using
* `Cartesian<MP_Float>` or `Cartesian<Gmpz>` are possible substitutions for the
* kernel. Using other (inexact) number types (for example, instantiating the
* template with `Simple_cartesian<double>`) is also possible, at the user's own
* risk.
*
* \cgalModels{AosLandmarkTraits_2}
*/
template <typename Kernel>
class Arr_non_caching_segment_basic_traits_2 {
public:
class Arr_non_caching_segment_basic_traits_2 {};
}; /* end Arr_non_caching_segment_basic_traits_2 */
} /* end namespace CGAL */

View File

@ -1,47 +1,41 @@
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2TraitsClasses
The traits class `Arr_non_caching_segment_traits_2` is a model of the `ArrangementTraits_2`
concept that allows the construction and maintenance of arrangements of
line segments. It is parameterized with a \cgal-Kernel type, and it
is derived from it. This traits class is a thin layer above the
parameterized kernel. It inherits the `Point_2` from the kernel and its
`X_monotone_curve_2` and `Curve_2` types are both defined as
`Kernel::Segment_2`. Most traits-class functor are inherited from the
kernel functor, and the traits class only supplies the necessary functors
that are not provided by the kernel. The kernel is parameterized with a
number type, which should support exact rational arithmetic in order to
avoid robustness problems, although other number types could be used at the
user's own risk.
The traits-class implementation is very simple, yet may lead to
a cascaded representation of intersection points with exponentially long
bit-lengths, especially if the kernel is parameterized with a number type
that does not perform normalization (e.g. `Quotient<MP_Float>`).
The `Arr_segment_traits_2` traits class avoids this cascading
problem, and should be the default choice for implementing arrangements of
line segments. It is recommended to use `Arr_non_caching_segment_traits_2` only for very sparse
arrangements of huge sets of input segments.
While `Arr_non_caching_segment_traits_2` models the concept
`ArrangementDirectionalXMonotoneTraits_2`, the implementation of
the `Are_mergeable_2` operation does not enforce the input curves
to have the same direction as a precondition. Moreover, `Arr_non_caching_segment_traits_2`
supports the merging of curves of opposite directions.
\cgalModels{ArrangementTraits_2,ArrangementLandmarkTraits_2,ArrangementDirectionalXMonotoneTraits_2}
\sa `Arr_segment_traits_2<Kernel>`
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* The traits class `Arr_non_caching_segment_traits_2` is a model of the
* `AosTraits_2` concept that allows the construction and maintenance of
* arrangements of line segments. It is parameterized with a \cgal-Kernel type,
* and it is derived from it. This traits class is a thin layer above the
* parameterized kernel. It inherits the `Point_2` from the kernel and its
* `X_monotone_curve_2` and `Curve_2` types are both defined as
* `Kernel::Segment_2`. Most traits-class functor are inherited from the kernel
* functor, and the traits class only supplies the necessary functors that are
* not provided by the kernel. The kernel is parameterized with a number type,
* which should support exact rational arithmetic in order to avoid robustness
* problems, although other number types could be used at the user's own risk.
*
* The traits-class implementation is very simple, yet may lead to a cascaded
* representation of intersection points with exponentially long bit-lengths,
* especially if the kernel is parameterized with a number type that does not
* perform normalization (e.g. `Quotient<MP_Float>`). The
* `Arr_segment_traits_2` traits class avoids this cascading problem, and should
* be the default choice for implementing arrangements of line segments. It is
* recommended to use `Arr_non_caching_segment_traits_2` only for very sparse
* arrangements of huge sets of input segments.
*
* While `Arr_non_caching_segment_traits_2` models the concept
* `AosDirectionalXMonotoneTraits_2`, the implementation of the
* `Are_mergeable_2` operation does not enforce the input curves to have the
* same direction as a precondition. Moreover,
* `Arr_non_caching_segment_traits_2` supports the merging of curves of opposite
* directions.
*
* \cgalModels{AosTraits_2,AosLandmarkTraits_2,AosDirectionalXMonotoneTraits_2}
*
* \sa `Arr_segment_traits_2<Kernel>`
*/
template <typename Kernel>
class Arr_non_caching_segment_traits_2
: public Arr_non_caching_segment_basic_traits_2<Kernel>
{
public:
class Arr_non_caching_segment_traits_2 :
public Arr_non_caching_segment_basic_traits_2<Kernel> {};
}; /* end Arr_non_caching_segment_traits_2 */
} /* end namespace CGAL */

View File

@ -1,66 +1,66 @@
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2Funcs
\brief Computes the overlay of two arrangements `arr1` and `arr2`, and sets
the output arrangement `res` to represent the overlaid arrangement.
\details
Computes the overlay of two input arrangement
objects, and returns the overlaid arrangement. All three arrangements
can be instantiated with different geometric traits classes and different
\dcel classes (encapsulated in the various topology-traits classes).
The geometry traits of the resulting arrangement is used to construct the
resulting arrangement. This means that all the types (e.g.,
`Traits::Point_2`, `Traits::Curve_2`, and `Traits::Point_2`)
of both input arrangements have to be convertible to the types in the
resulting arrangement. A given overlay-traits object is used to properly
construct the overlaid \dcel that represents the resulting arrangement.
\pre `res` does not refer to either `arr1` or `arr2` (that is, "self overlay" is not supported).
\pre The overlay-traits object `ovl_tr` must model the `OverlayTraits`
concept, which is able to construct records of the `ResDcel` class on
the basis of the `Dcel1` and `Dcel2` records that induce them.
\sa `OverlayTraits`
/*! \ingroup PkgArrangementOnSurface2Funcs
* \brief Computes the overlay of two arrangements `arr1` and `arr2`, and sets
* the output arrangement `res` to represent the overlaid arrangement.
*
* \details
* Computes the overlay of two input arrangement
* objects, and returns the overlaid arrangement. All three arrangements
* can be instantiated with different geometric traits classes and different
* \dcel classes (encapsulated in the various topology-traits classes).
* The geometry traits of the resulting arrangement is used to construct the
* resulting arrangement. This means that all the types (e.g.,
* `Traits::Point_2`, `Traits::Curve_2`, and `Traits::Point_2`)
* of both input arrangements have to be convertible to the types in the
* resulting arrangement. A given overlay-traits object is used to properly
* construct the overlaid \dcel that represents the resulting arrangement.
*
* \pre `res` does not refer to either `arr1` or `arr2` (that is,
* "self overlay" is not supported).
*
* \pre The overlay-traits object `ovl_tr` must model the `OverlayTraits`
* concept, which is able to construct records of the `ResDcel` class on
* the basis of the `Dcel1` and `Dcel2` records that induce them.
*
* \sa `OverlayTraits`
*/
template <class GeomTraitsA, class GeomTraitsB,
class GeomTraitsRes, class TopTraitsA,
class TopTraitsB, class TopTraitsRes,
class OverlayTraits>
template <typename GeomTraitsA, typename GeomTraitsB,
typename GeomTraitsRes, typename TopTraitsA,
typename TopTraitsB, typename TopTraitsRes,
typename OverlayTraits>
void overlay(const Arrangement_2<GeomTraitsA, TopTraitsA>& arr1,
const Arrangement_2<GeomTraitsB, TopTraitsB>& arr2,
Arrangement_2<GeomTraitsRes, TopTraitsRes>& arr_res,
OverlayTraits& ovl_tr);
/*!
\ingroup PkgArrangementOnSurface2Funcs
\brief Computes the overlay of two arrangements with history `arr1` and
`arr2`, and sets the output arrangement with history `res` to
represent the overlaid arrangement. The function also constructs a
consolidated set of curves that induce `res`.
\details
Computes the overlay of two input arrangement
objects, and returns the overlaid arrangement. All three arrangements
can be instantiated with different geometric traits classes and different
\dcel classes (encapsulated in the various topology-traits classes).
The geometry traits of the resulting arrangement is used to construct the
resulting arrangement. This means that all the types (e.g.,
`Traits::Point_2`, `Traits::Curve_2`, and `Traits::Point_2`)
of both input arrangements have to be convertible to the types in the
resulting arrangement. A given overlay-traits object is used to properly
construct the overlaid \dcel that represents the resulting arrangement.
\pre `res` does not refer to either `arr1` or `arr2` (that is, "self overlay" is not supported).
\pre The overlay-traits object `ovl_tr` must model the `OverlayTraits`
concept, which is able to construct records of the `ResDcel` class on
the basis of the `Dcel1` and `Dcel2` records that induce them.
\sa `OverlayTraits`
/*! \ingroup PkgArrangementOnSurface2Funcs
* \brief
* Computes the overlay of two arrangements with history `arr1` and
* `arr2`, and sets the output arrangement with history `res` to
* represent the overlaid arrangement. The function also constructs a
* consolidated set of curves that induce `res`.
*
* \details
* Computes the overlay of two input arrangement
* objects, and returns the overlaid arrangement. All three arrangements
* can be instantiated with different geometric traits classes and different
* \dcel classes (encapsulated in the various topology-traits classes).
* The geometry traits of the resulting arrangement is used to construct the
* resulting arrangement. This means that all the types (e.g.,
* `Traits::Point_2`, `Traits::Curve_2`, and `Traits::Point_2`)
* of both input arrangements have to be convertible to the types in the
* resulting arrangement. A given overlay-traits object is used to properly
* construct the overlaid \dcel that represents the resulting arrangement.
*
* \pre `res` does not refer to either `arr1` or `arr2` (that is,
* "self overlay" is not supported).
*
* \pre The overlay-traits object `ovl_tr` must model the `OverlayTraits`
* concept, which is able to construct records of the `ResDcel` class on
* the basis of the `Dcel1` and `Dcel2` records that induce them.
*
* \sa `OverlayTraits`
*/
template <typename Traits, typename Dcel1, typename Dcel2,
typename ResDcel, typename OverlayTraits>
@ -69,7 +69,4 @@ void overlay (const Arrangement_with_history_2<Traits,Dcel1>& arr1,
Arrangement_with_history_2<Traits,ResDcel>& res,
OverlayTraits& ovl_tr);
} /* end namespace CGAL */

View File

@ -8,16 +8,15 @@ namespace CGAL {
* \tparam Arrangement must be an instance of the
* `CGAL::Arrangement_on_surface_2<GeometryTraits,Topology>` class template.
*
* \sa `ArrangementPointLocation_2`
* \sa `ArrangementVerticalRayShoot_2`
* \sa `AosPointLocation_2`
* \sa `AosVerticalRayShoot_2`
* \sa `CGAL::Arr_naive_point_location<Arrangement>`
* \sa `CGAL::Arr_walk_along_line_point_location<Arrangement>`
* \sa `CGAL::Arr_landmarks_point_location<Arrangement,Generator>`
* \sa `CGAL::Arr_trapezoid_ric_point_location<Arrangement>`
*/
template <typename Arrangement>
struct Arr_point_location_result
{
struct Arr_point_location_result {
/*! The type of the arrangement feature that is the result of a
* point-location query or a vertical ray-shoot query, namely,
* `std::variant<Arrangement_on_surface_2::Vertex_const_handle, Arrangement_on_surface_2::Halfedge_const_handle, Arrangement_on_surface_2::Face_const_handle>`

View File

@ -1,4 +1,5 @@
namespace CGAL {
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* Note: The `SubcurveTraits_2` can comprise of Line_segments, Conic_arcs,
@ -10,8 +11,8 @@ namespace CGAL {
* or line segments. We call such a compound curve a polycurve. A polycurve
* is a chain of subcurves, where each two neighboring subcurves in the chain
* share a common endpoint; that is, the polycurve is continuous. Furthermore,
* the target of the \f$i\f$th segment of a polycurve has to coincide with
* the source of the \f$i+1\f$st segment; that is, the polycurve has to be
* the target of the \f$i\f$-th segment of a polycurve has to coincide with
* the source of the \f$i+1\f$-st segment; that is, the polycurve has to be
* \a well-oriented. Note that it is possible to construct general polycurves
* that are neither continuous nor well-oriented, as it is impossible to
* enforce this precondition (using the set of predicates required by the
@ -23,13 +24,13 @@ namespace CGAL {
* The type substituting the template parameter `SubcurveTraits_2` when
* the template Arr_polycurve_traits_2 is instantiated must be a model
* of the concepts
* - `ArrangementTraits_2` and
* - `ArrangementDirectionalXMonotoneTraits_2`.
* - `AosTraits_2` and
* - `AosDirectionalXMonotoneTraits_2`.
*
* If, in addition, the SubcurveTraits_2 models the concept
* `ArrangementApproximateTraits_2` then `Arr_polycurve_traits_2` models this
* `AosApproximatePointTraits_2` then `Arr_polycurve_traits_2` models this
* concept as well. The same holds for the concept
* `ArrangementOpenBoundaryTraits_2`. If no type is provided, then
* `AosOpenBoundaryTraits_2`. If no type is provided, then
* `Arr_segment_traits_2` (instantiated with
* `Exact_predicates_exact_constructions_kernel` as the kernel) is used.
* Otherwise,
@ -65,16 +66,14 @@ namespace CGAL {
* earlier) any object of the `X_monotone_curve_2` type nested in
* `Arr_polycurve_traits_2` which in that version was called
* `Arr_polyline_tratis_2` maintained a direction invariant; namely, its
* vertices were ordered in an \a ascending lexicographical \f$(xy)\f$-order.
* vertices were ordered in an \a ascending lexicographical \f$xy\f$-order.
* This restriction is no longer imposed and `X_monotone_curve_2` can be now
* directed either from right-to-left \a or left-to-right. If you wish to
* maintain a left-to-right orientations of the \f$x\f$-monotone polycurve,
* set the macro `CGAL_ALWAYS_LEFT_TO_RIGHT` to 1 before any \cgal header is
* included.
*
* \cgalModels{ArrangementTraits_2,ArrangementDirectionalXMonotoneTraits_2,
* ArrangementApproximateTraits_2 (if the type that substitutes
* the template parameter `SubcurveTraits_2` models the concept as well)}
* \cgalModels{AosTraits_2,AosDirectionalXMonotoneTraits_2,AosApproximatePointTraits_2 (if the type that substitutes the template parameter `SubcurveTraits_2` models the concept as well)}
*
* \sa `Arr_algebraic_segment_traits_2<Coefficient>`
* \sa `Arr_Bezier_curve_traits_2<RatKernel, AlgKernel, NtTraits>`
@ -86,24 +85,21 @@ namespace CGAL {
* \sa `Arr_rational_function_traits_2<AlgebraicKernel_d_1>`
* \sa `CGAL_ALWAYS_LEFT_TO_RIGHT`
*/
template <typename SubcurveTraits_2>
class Arr_polycurve_traits_2 {
public:
/// \name Types
/// @{
/*!
*/
// TODO: Have to turn these into links, so whenever I mention Point_2 it
// will point here and *not* to Kernel::Point_2 for instance.
///
typedef SubcurveTraits_2::Point_2 Point_2;
/*!
*/
///
typedef SubcurveTraits_2::Curve_2 Subcurve_2;
///
typedef SubcurveTraits_2::X_monotone_curve_2 X_monotone_subcurve_2;
/// @}
/*! Construction functor of a general (not necessarily \f$x\f$-monotone)
@ -122,6 +118,7 @@ namespace CGAL {
/*! obtains a polycurve that comprises of one given subcurve.
* \param subcurve input subcurve.
*
* \pre `subcurve` is not degenerated (not tested).
* \return A polycurve with one subcurve, namely `subcurve`.
*/
@ -130,12 +127,10 @@ namespace CGAL {
/*! constructs a well-oriented polycurve from a range of either
* `SubcurveTraits_2::Point_2` or `SubcurveTraits_2::Curve_2`.
*
* \param begin iterator pointing to the first element in the
* range.
* \param end iterator pointing to the past-the-end
* element in the range.
* \pre The given range form a continuous and well-oriented polycurve
* (not tested).
* \param begin iterator pointing to the first element in the range.
* \param end iterator pointing to the past-the-end element in the range.
*
* \pre The given range form a continuous and well-oriented polycurve (not tested).
* \pre Contains no degenerated subcurves (not tested)
* \return A polycurve using the corresponding construction implementation.
*/
@ -170,22 +165,23 @@ namespace CGAL {
/// \name Operations
/// @{
/*! appends a subcurve `subcurve` to an existing polycurve `cv` at the
* back. If `cv` is empty, `subcurve` will be its first subcurve.
/*! appends a subcurve `subcurve` to an existing polycurve `cv` at the back.
* If `cv` is empty, `subcurve` will be its first subcurve.
* \param cv a polycurve. Note, `cv` is (not necessarily) \f$x\f$-monotone.
* \param subcurve a subcurve (not necessarily \f$x\f$-monotone) to be
* appended to `cv`
*/
void operator()(Curve_2& cv, const Subcurve_2& subcurve) const;
/*! appends a subcurve `subcurve` to an existing \f$x\f$-monotone
* polycurve `xcv` at the back. If `xcv` is empty, `subcurve` will be its
* first subcurve.
/*! appends a subcurve `subcurve` to an existing \f$x\f$-monotone polycurve
* `xcv` at the back. If `xcv` is empty, `subcurve` will be its first
* subcurve.
* \param xcv existing \f$x\f$-monotone polycurve
* \param subcurve the subcurve to be added
* \pre If `xcv` is not empty then `subcurve` extends `xcv` to the right
* if `xcv` is oriented right-to-left. Otherwise, `subcurve` extends
* `xcv` to the left.
*
* \pre `subcurve` is not degenerated.
* \pre `xcv` and `subcurve` should have the same orientation
*/
@ -210,11 +206,12 @@ namespace CGAL {
*/
void operator()(Curve_2& cv, const Subcurve_2& subcurve) const;
/*! appends a subcurve `subcurve` to an existing \f$x\f$-monotone
* polycurve `xcv` at the front. If `xcv` is empty, `subcurve` will be its
* first subcurve.
/*! appends a subcurve `subcurve` to an existing \f$x\f$-monotone polycurve
* `xcv` at the front. If `xcv` is empty, `subcurve` will be its first
* subcurve.
* \param xcv existing \f$x\f$-monotone polycurve
* \param subcurve the subcurve to be added
*
* \pre If `xcv` is not empty then `subcurve` extends `xcv` to the left if
* `xcv` is oriented right-to-left. Otherwise, `subcurve` extends
* `xcv` to the right.
@ -231,7 +228,7 @@ namespace CGAL {
public:
/*! obtains a trimmed version of the polycurve with src and tgt as end
* vertices.
* Src and tgt will be swapped if they do not conform to the direction of
* `src` and `tgt` will be swapped if they do not conform to the direction of
* the polycurve.
*/
X_monotone_curve_2 operator()(const X_monotone_curve_2& xcv,
@ -254,7 +251,8 @@ namespace CGAL {
*
* \pre if `cv` is not empty, then it must be continuous and well-oriented.
* \pre Dereferencing `oi` must yield a polymorphic object of type
* `std::variant<`\link Arr_polycurve_traits_2::Point_2 `Point_2` \endlink, `X_monotone_curve_2>`.
* `std::variant<`\link Arr_polycurve_traits_2::Point_2 `Point_2` \endlink,
* `X_monotone_curve_2>`.
*/
template <typename OutputIterator>
OutputIterator operator()(const Curve_2& cv, OutputIterator oi) const;
@ -281,8 +279,6 @@ namespace CGAL {
*/
template <typename SubcurveType_2, typename PointType_2>
class Curve_2 {
public:
protected:
/// \name Types
/// @{
@ -324,7 +320,7 @@ namespace CGAL {
/// \name Creation
/// @{
/*! constructs Default; constructs an empty polycurve.
/*! constructs default; constructs an empty polycurve.
*/
Curve_2();
@ -385,7 +381,7 @@ namespace CGAL {
Subcurve_const_iterator end_subcurves() const;
/*! \deprecated
* Obtain an iterator pointing at the target point of the polycurve.
* obtains an iterator pointing at the target point of the polycurve.
*/
const_iterator rbegin() const;
@ -413,7 +409,8 @@ namespace CGAL {
*/
size_type number_of_subcurves() const;
/*! obtains the \f$ k\f$th subcurve of the polycurve.
/*! obtains the \f$k\f$-th subcurve of the polycurve.
*
* \pre \f$k\f$ is not greater than or equal to \f$n-1\f$, where
* \f$n\f$ is the number of subcurves.
*/
@ -434,6 +431,7 @@ namespace CGAL {
* that the `Push_back_2` functor does. Thus, it is
* recommended to use the latter.
* \param subcurve The new subcurve to be appended to the polycurve.
*
* \pre If the polycurve is not empty, the source of `subcurve` must
* coincide with the target point of the last subcurve in the
* polycurve.
@ -445,6 +443,7 @@ namespace CGAL {
* corresponding functor which is provided in the traits
* class.
* \param subcurve The new subcurve to be appended to the polycurve.
*
* \pre If the polycurve is not empty, the target of `subcurve` must
* coincide with the source point of the first subcurve in the
* polycurve.
@ -465,19 +464,18 @@ namespace CGAL {
}; /* end Arr_polycurve_traits_2::Curve_2 */
/*! The `X_monotone_curve_2` class nested within the polycurve
* traits is used to represent \f$ x\f$-monotone piecewise linear subcurves.
/*! The `X_monotone_curve_2` class nested within the polycurve traits is
* used to represent \f$x\f$-monotone piecewise linear subcurves.
*
* It inherits from the `Curve_2` type. `X_monotone_curve_2` can be
* constructed just like `Curve_2`. However, there is precondition
* (which is not tested) that the input defines an \f$
* x\f$-monotone polycurve. Furthermore, in contrast to the general
* `Curve_2` type, in this case, the subcurves that an
* `X_monotone_curve_2` comprises have to be instances of the type
* `SubcurveTraits_2::X_monotone_curve_2`. Note that the \f$
* x\f$-monotonicity ensures that an \f$ x\f$-monotone polycurve
* is not self-intersecting. (A self-intersecting polycurve is
* subdivided into several interior-disjoint \f$x\f$-monotone subcurves).
* constructed just like `Curve_2`. However, there is precondition (which is
* not tested) that the input defines an \f$x\f$-monotone
* polycurve. Furthermore, in contrast to the general `Curve_2` type, in this
* case, the subcurves that an `X_monotone_curve_2` comprises have to be
* instances of the type `SubcurveTraits_2::X_monotone_curve_2`. Note that the
* \f$x\f$-monotonicity ensures that an \f$x\f$-monotone polycurve is not
* self-intersecting. (A self-intersecting polycurve is subdivided into
* several interior-disjoint \f$x\f$-monotone subcurves).
*
* The defined \f$x\f$-monotone polycurve can be directed either from
* right-to-left (and in turn its vertices are stored in an ascending
@ -485,9 +483,7 @@ namespace CGAL {
* vertices are stored in a descending lexicographical \f$xy\f$-order).
*/
template <typename SubcurveType_2, typename PointType_2>
class X_monotone_curve_2 {
}; /* end Arr_polycurve_traits_2::X_monotone_curve_2 */
class X_monotone_curve_2 {};
/// \name Accessing Functor Objects
/// @{
@ -517,7 +513,6 @@ namespace CGAL {
Make_x_monotone_2 make_x_monotone_2_object() const;
/// @} /* End Accessing Functor Objects */
}; /* end Arr_polycurve_traits_2 */
} /* end namespace CGAL */

View File

@ -30,15 +30,15 @@ namespace CGAL {
* The type substituting the template parameter `SegmentTraits_2` when
* the template Arr_polyline_traits_2 is instantiated must be a model
* of the concepts
* - `ArrangementTraits_2`,
* - `ArrangementDirectionalXMonotoneTraits_2`,
* - `ArrangementConstructXMonotoneCurveTraits_2`,
* - `ArrangementConstructCurveTraits_2`.
* - `AosTraits_2`,
* - `AosDirectionalXMonotoneTraits_2`,
* - `AosConstructXMonotoneCurveTraits_2`,
* - `AosConstructCurveTraits_2`.
*
* If, in addition, the GeometryTraits_2 models the concept
* `ArrangementApproximateTraits_2` then `Arr_polycurve_traits_2` models
* this concept as well. The same holds for the concept
* `ArrangementOpenBoundaryTraits_2`. If no type is provided, then
* `AosApproximateTraits_2` (or `AosApproximatePointTraits_2`) then
* `Arr_polycurve_traits_2` models this concept as well. The same holds for the
* concept `AosOpenBoundaryTraits_2`. If no type is provided, then
* `Arr_segment_traits_2` (instantiated with
* `Exact_predicates_exact_constructions_kernel` as the kernel) is used.
* Otherwise,
@ -57,12 +57,12 @@ namespace CGAL {
* other inexact number types could be used at the user's own risk.
*
* A polyline that comprises \f$n > 0\f$ segments has \f$n+1\f$ points, and
* they are represented as objects of type `SegmentTraits_2::Point_2`. Since the
* notion of a \a vertex is reserved to 0-dimensional elements of an
* they are represented as objects of type `SegmentTraits_2::Point_2`. Since
* the notion of a \a vertex is reserved to 0-dimensional elements of an
* arrangement, we use, in this context, the notion of \a points in order to
* refer to the vertices of a polyline. For example, an arrangement induced by a
* single non-self intersecting polyline has exactly two vertices regardless of
* the number of points. Finally, the types `Segment_2` and
* refer to the vertices of a polyline. For example, an arrangement induced by
* a single non-self intersecting polyline has exactly two vertices regardless
* of the number of points. Finally, the types `Segment_2` and
* `X_monotone_segment_2` nested in `Arr_polyline_traits_2` are nothing but
* `SegmentTraits_2::Curve_2` and `SegmentTraits_2::X_monotone_curve_2`,
* respectively.
@ -77,9 +77,9 @@ namespace CGAL {
* the macro `CGAL_ALWAYS_LEFT_TO_RIGHT` to 1 before any \cgal header is
* included.
*
* \cgalModels{ArrangementTraits_2,ArrangementDirectionalXMonotoneTraits_2,`ArrangementConstructXMonotoneCurveTraits_2`
* ArrangementConstructCurveTraits_2,ArrangementApproximateTraits_2 (if the type that substitutes
* the template parameter `SegmentTraits_2` models the concept as well)}
* \cgalModels{AosTraits_2,AosDirectionalXMonotoneTraits_2,AosConstructXMonotoneCurveTraits_2,AosConstructCurveTraits_2,AosApproximateTraits_2
* (if the type that substitutes the template parameter `SegmentTraits_2`
* models the concept as well)}
*
* \sa `Arr_polycurve_traits_2<SubcurveTraits_2>`
* \sa `Arr_Bezier_curve_traits_2<RatKernel, AlgKernel, NtTraits>`
@ -93,20 +93,21 @@ namespace CGAL {
template <typename SegmentTraits_2>
class Arr_polyline_traits_2 : public Arr_polycurve_traits_2<SegmentTraits_2> {
public:
/// \name Types
/// @{
/*!
*/
///
typedef SegmentTraits_2 Segment_traits_2;
// TODO: Have to turn these into links, so whenever I mention Point_2 it
// will point here and *not* to Kernel::Point_2 for instance.
///
typedef SegmentTraits_2::Point_2 Point_2;
/*!
*/
///
typedef SegmentTraits_2::Curve_2 Segment_2;
///
typedef SegmentTraits_2::X_monotone_curve_2 X_monotone_segment_2;
/// @}
/*! The `Curve_2` type nested within the traits class respresnts
@ -114,18 +115,18 @@ public:
*/
class Curve_2 {
public:
//! Const iterator of subcurves.
/// Const iterator of subcurves.
typedef std::vector<X_monotone_segment_2>::const_iterator
Segment_const_iterator;
//! Reverse const iterator of subcurves.
/// Reverse const iterator of subcurves.
typedef std::reverse_iterator<Segment_const_iterator>
Segment_const_reverse_iterator;
//! constructs default.
/// constructs default.
Curve_2();
//! constructs from a subcurve.
/// constructs from a subcurve.
Curve_2(const Segment_2& seg);
/*! constructs a polyline from a range of subcurves.
@ -137,16 +138,16 @@ public:
template <typename InputIterator>
void Curve_2(InputIterator begin, InputIterator end);
//! obtains an iterator for the polycurve subcurves.
/// obtains an iterator for the polycurve subcurves.
Segment_const_iterator begin_segments() const;
//! obtains a past-the-end iterator for the polycurve subcurves.
/// obtains a past-the-end iterator for the polycurve subcurves.
Segment_const_iterator end_segments() const;
//! obtains the first reverse iterator of the polyline subcurves.
/// obtains the first reverse iterator of the polyline subcurves.
Segment_const_reverse_iterator rbegin_segments() const;
//! obtains the past-the-end reverse iterator for the polyline points.
/// obtains the past-the-end reverse iterator for the polyline points.
Segment_const_reverse_iterator rend_segments() const;
/*! obtains the number of subcurves that comprise the poyline.
@ -161,11 +162,11 @@ public:
class X_monotone_curve_2 {
public:
//! Const iterator of subcurves.
/// Const iterator of subcurves.
typedef std::vector<X_monotone_segment_2>::const_iterator
Segment_const_iterator;
//! Reverse const iterator of subcurves.
/// Reverse const iterator of subcurves.
typedef std::reverse_iterator<Segment_const_iterator>
Segment_const_reverse_iterator;
@ -177,8 +178,8 @@ public:
/*! constructs from a range. Similar to the constructor of a general
* polycurve. Like in the case of general polycurve, for the sake of
* backwards compatibility we have to keep an implementation of construction
* from a range of points. DO NOT USE THIS CONSTRUCTION.
* backwards compatibility we have to keep an implementation of
* construction from a range of points. DO NOT USE THIS CONSTRUCTION.
*/
template <typename InputIterator>
X_monotone_curve_2(InputIterator begin, InputIterator end);
@ -222,15 +223,15 @@ public:
/*! obtains a polyline connecting the two given endpoints.
* \param p The first point.
* \param q The second point.
* \pre `p` and `q` are distinct.
* \return A segment connecting `p` and `q`.
* \pre `p` and `q` are distinct.
*/
Curve_2 operator()(const Point_2& p, const Point_2& q) const;
/*! obtains a polyline that comprises of one given segment.
* \param seg input segment
* \pre `seg` is not degenerated (not tested)
* \return A polyline with one segment, namely `seg`.
* \pre `seg` is not degenerated (not tested)
*/
Curve_2 operator()(const Segment_2& seg) const;
@ -239,10 +240,10 @@ public:
*
* \param begin iterator pointing to the first element in the range.
* \param end iterator pointing to the past-the-end element in the range.
* \return A polyline using the corresponding construction implementation.
* \pre The given range form a continuous and well-oriented polyline
* (not tested).
* \pre Contains no degenerated segments (not tested)
* \return A polyline using the corresponding construction implementation.
*/
template <typename ForwardIterator>
Curve_2 operator()(ForwardIterator begin, ForwardIterator end) const;
@ -382,7 +383,6 @@ public:
Push_front_2 push_front_2_object() const;
/// @} /* End Accessing Functor Objects */
}; /* end Arr_polyline_traits_2 */
} /* end namespace CGAL */

View File

@ -1,30 +1,28 @@
namespace CGAL {
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* The traits class `Arr_rational_function_traits_2` is a model of the
* `ArrangementTraits_2` concept. It handles bounded and unbounded arcs of
* `AosTraits_2` concept. It handles bounded and unbounded arcs of
* rational functions, referred to as <i>rational arcs</i> (in particular, such
* an arc may correspond to the entire graph of a rational function). It
* supports bounded and unbounded arcs. Thus, it is also a model of the concept
* `ArrangementOpenBoundaryTraits_2`. The traits class enables the construction
* `AosOpenBoundaryTraits_2`. The traits class enables the construction
* and maintenance of arrangements of such arcs.
*
* A rational function \f$y = \frac{P(x)}{Q(x)}\f$ is defined by two polynomials
* \f$P\f$ and \f$Q\f$ of arbitrary degrees. If \f$Q(x) = 1\f$ then the
* function is a simple polynomial function. Usually the domain is
* \f$\mathbb{R}\f$ but the function may also be restricted to a bounded
* interval \f$[x_{\rm min}, x_{\rm max}]\f$ or defined over a ray \f$(-\infty,
* x_{\rm max}]\f$ or over \f$[x_{\rm min}, \infty)\f$. Rational functions are
* represented by the nested type `Curve_2`. Note that a rational function may
* be not continuous since roots of \f$Q\f$ induce vertical asymptotes, which
* would contradict the notion of an \f$x\f$-monotone curve as it is introduced
* by the `ArrangementTraits_2` concept. Thus, continuous portions of rational
* functions are represented by the nested type `X_monotone_curve_2`, which is
* different from `Curve_2`. Constructors for both classes are provided by the
* traits. A `Curve_2` may be split up into several `X_monotone_curve_2` using
* `Make_x_monotone_2`.
* interval \f$[x_{\rm min}, x_{\rm max}]\f$ or defined over a ray
* \f$(-\infty,x_{\rm max}]\f$ or over \f$[x_{\rm min}, \infty)\f$. Rational
* functions are represented by the nested type `Curve_2`. Note that a rational
* function may be not continuous since roots of \f$Q\f$ induce vertical asymptotes,
* which would contradict the notion of an \f$x\f$-monotone curve as it is introduced
* by the `AosTraits_2` concept. Thus, continuous portions of rational functions are
* represented by the nested type `X_monotone_curve_2`, which is different from
* `Curve_2`. Constructors for both classes are provided by the traits. A `Curve_2`
* may be split up into several `X_monotone_curve_2` using `Make_x_monotone_2`.
*
* The template parameter of the traits must be a model of the concept
* `AlgebraicKernel_d_1`. A rational function is then represented by two
@ -44,12 +42,12 @@ namespace CGAL {
* cleans up the cache on demand.
*
* While `Arr_rational_function_traits_2` models the concept
* `ArrangementDirectionalXMonotoneTraits_2`, the implementation of the
* `AosDirectionalXMonotoneTraits_2`, the implementation of the
* `Are_mergeable_2` operation does not enforce the input curves to have the
* same direction as a precondition. Moreover, `Arr_rational_function_traits_2`
* supports the merging of curves of opposite directions.
*
* \cgalModels{ArrangementTraits_2,ArrangementDirectionalXMonotoneTraits_2,ArrangementOpenBoundaryTraits_2}
* \cgalModels{AosTraits_2,AosDirectionalXMonotoneTraits_2,AosOpenBoundaryTraits_2}
*/
template <typename AlgebraicKernel_d_1>
class Arr_rational_function_traits_2 {
@ -57,24 +55,19 @@ public:
/// \name Types
/// @{
/*!
*/
///
typedef AlgebraicKernel_d_1 Algebraic_kernel_d_1;
/*!
*/
///
typedef AlgebraicKernel_d_1::Coefficient Coefficient;
/*!
*/
///
typedef AlgebraicKernel_d_1::Polynomial_1 Polynomial_1;
/*!
*/
///
typedef AlgebraicKernel_d_1::Algebraic_real_1 Algebraic_real_1;
/*!
*/
///
typedef AlgebraicKernel_d_1::Bound Bound;
/// @}
@ -116,34 +109,27 @@ public:
*
* \cgalModels{Assignable,CopyConstructible,AdaptableBinaryFunction,AdaptableUnaryFunction}
*/
class Construct_curve_2 {
public:
/// \name Types
/// @{
/*!
*/
///
typedef AlgebraicKernel_d_1::Polynomial_1 Polynomial_1;
/*!
*/
///
typedef AlgebraicKernel_d_1::Algebraic_real_1 Algebraic_real_1;
/*!
*/
///
typedef Arr_rational_function_traits_2<AlgebraicKernel_d_1>::Curve_2 result_type;
/*!
*/
///
typedef Polynomial_1 argument_type;
/*!
*/
///
typedef Polynomial_1 first_argument_type;
/*!
*/
///
typedef Polynomial_1 second_argument_type;
/// @}
@ -196,8 +182,7 @@ public:
/*! constructs a curve representing the polynomial function \f$y = P(x)\f$,
* where the coefficients of \f$P\f$ are given in the range `[begin,end)`.
* The function is defined over the interval
* \f$[x,+\infty)\f$ if \f$ right\f$ is true and \f$(-\infty,x]\f$
* otherwise.
* \f$[x,+\infty)\f$ if \f$right\f$ is true and \f$(-\infty,x]\f$ otherwise.
*/
template <typename InputIterator>
Curve_2 operator()(InputIterator begin, InputIterator end,
@ -243,7 +228,6 @@ public:
const Algebraic_real_1& upper) const;
/// @}
}; /* end Arr_rational_function_traits_2::Construct_curve_2 */
/*! Functor to construct a `X_monotone_curve_2`. To enable caching the class is
@ -254,32 +238,25 @@ public:
*/
class Construct_x_monotone_curve_2 {
public:
/// \name Types
/// @{
/*!
*/
///
typedef AlgebraicKernel_d_1::Polynomial_1 Polynomial_1;
/*!
*/
///
typedef AlgebraicKernel_d_1::Algebraic_real_1 Algebraic_real_1;
/*!
*/
///
typedef Arr_rational_function_traits_2<AlgebraicKernel_d_1>::X_monotone_curve_2 result_type;
/*!
*/
///
typedef Polynomial_1 argument_type;
/*!
*/
///
typedef Polynomial_1 first_argument_type;
/*!
*/
///
typedef Polynomial_1 second_argument_type;
/// @}
@ -311,6 +288,7 @@ public:
/*! constructs an \f$x\f$-monotone curve supported by the rational function
* \f$y = P(x)/Q(x)\f$.
*
* \pre \f$Q\f$ has no real roots.
*/
X_monotone_curve_2 operator()(Polynomial_1 P, Polynomial_1 Q) const;
@ -319,6 +297,7 @@ public:
* \f$y = P(x)/Q(x)\f$. The function is defined over the interval
* \f$I=[x,+\infty)\f$ if \f$right\f$ is true and \f$I=(-\infty,x]\f$
* otherwise.
*
* \pre \f$Q\f$ has no real roots in the interior of \f$I\f$.
*/
X_monotone_curve_2 operator()(Polynomial_1 P, Polynomial_1 Q,
@ -378,6 +357,7 @@ public:
* `[begin_denom,end_denom)`, respectively. The function is defined over the
* interval \f$I=[x,+\infty)\f$ if \f$right\f$ is true and
* \f$I=(-\infty,x]\f$ otherwise.
*
* \pre \f$Q\f$ has no real roots in the interior of \f$I\f$.
*/
template <typename InputIterator>
@ -403,7 +383,6 @@ public:
const Algebraic_real_1& upper) const;
/// @}
}; /* end Arr_rational_function_traits_2::Construct_x_monotone_curve_2 */
/*! The `Curve_2` class nested within the traits is used to represent rational
@ -413,16 +392,13 @@ public:
*/
class Curve_2 {
public:
/// \name Types
/// @{
/*!
*/
///
typedef AlgebraicKernel_d_1::Polynomial_1 Polynomial_1;
/*!
*/
///
typedef AlgebraicKernel_d_1::Algebraic_real_1 Algebraic_real_1;
/// @}
@ -454,11 +430,13 @@ public:
Arr_parameter_space right_parameter_space_in_x() const;
/*! returns the \f$x\f$-coordinate of the left end.
*
* \pre `left_boundary_in_x()` == `ARR_INTERIOR`
*/
Algebraic_real_1 left_x() const;
/*! returns the \f$x\f$-coordinate of the right end.
*
* \pre `right_boundary_in_x()` == `ARR_INTERIOR`
*/
Algebraic_real_1 right_x() const;
@ -475,16 +453,13 @@ public:
/// \name Types
/// @{
/*!
*/
///
typedef AlgebraicKernel_d_1::Polynomial_1 Polynomial_1;
/*!
*/
///
typedef AlgebraicKernel_d_1::Algebraic_real_1 Algebraic_real_1;
/*!
*/
///
typedef AlgebraicKernel_d_1::Bound Bound;
/// @}
@ -509,7 +484,7 @@ public:
Algebraic_real_1 x() const;
/*! obtains the \f$y\f$-coordinates of the point. <B>Attention:</B> As
* described above, points are not stored by their y-coordinate in
* described above, points are not stored by their \f$y\f$-coordinate in
* `Algebraic_real_1` representation. In fact, this representation must be
* computed on demand, and might become quite costly for points defined by
* high-degree polynomials. Therefore, it is recommended to avoid calls to
@ -519,6 +494,7 @@ public:
/*! Computes a pair \f$p\f$ approximating the \f$x\f$-coordinate with
* respect to the given absolute precision \f$a\f$.
*
* \post \f$p.first \leq x \leq p.second\f$
* \post \f$p.second - p.first \leq 2^{-a}\f$
*/
@ -526,6 +502,7 @@ public:
/*! Computes a pair \f$p\f$ approximating the \f$y\f$-coordinate with
* respect to the given absolute precision \f$a\f$.
*
* \post \f$p.first \leq y \leq p.second\f$
* \post \f$p.second - p.first \leq 2^{-a}\f$
*/
@ -533,13 +510,15 @@ public:
/*! Computes a pair \f$p\f$ approximating the \f$x\f$-coordinate with
* respect to the given relative precision \f$r\f$.
*
* \post \f$p.first \leq x \leq p.second\f$
* \post \f$p.second - p.first \leq2^{-r}|x|\f$
*/
std::pair<Bound,Bound> approximate_relative_x(int r) const;
/*! Computes a pair \f$p\f$ approximating the \f$ y\f$-coordinate with
/*! computes a pair \f$p\f$ approximating the \f$y\f$-coordinate with
* respect to the given relative precision \f$r\f$.
*
* \post \f$p.first \leq y \leq p.second\f$
* \post \f$p.second - p.first \leq2^{-r}|y|\f$
*/
@ -550,7 +529,7 @@ public:
}; /* end Arr_rational_function_traits_2::Point_2 */
/*! The `X_monotone_curve_2` class nested within the traits is used to represent
* \f$ x\f$-monotone parts of rational functions. In particular, such an
* \f$x\f$-monotone parts of rational functions. In particular, such as
* \f$x\f$-monotone curve may not contain a vertical asymptote in its interior
* \f$x\f$-range.
*
@ -558,20 +537,16 @@ public:
*/
class X_monotone_curve_2 {
public:
/// \name Types
/// @{
/*!
*/
///
typedef AlgebraicKernel_d_1::Polynomial_1 Polynomial_1;
/*!
*/
///
typedef AlgebraicKernel_d_1::Algebraic_real_1 Algebraic_real_1;
/*!
*/
///
typedef Arr_rational_function_traits_2<AlgebraicKernel_d_1>::Point_2 Point_2;
/// @}
@ -604,6 +579,7 @@ public:
const Point_2& source() const;
/*! returns the \f$x\f$-coordinate of the source point.
*
* \pre The \f$x\f$-coordinate of the source point is finite.
*/
Algebraic_real_1 source_x() const;
@ -625,6 +601,7 @@ public:
const Point_2& target() const;
/*! returns the \f$x\f$-coordinate of the target point.
*
* \pre The \f$x\f$-coordinate of the target point is finite.
*/
Algebraic_real_1 target_x() const;
@ -640,11 +617,13 @@ public:
Arr_parameter_space left_parameter_space_in_y() const;
/*! returns the left point of the arc.
*
* \pre Both the \f$x\f$- and \f$y\f$-coordinates of the left point is finite.
*/
const Point_2& left() const;
/*! returns the \f$x\f$-coordinate of the left point.
*
* \pre The \f$x\f$-coordinate of the left point is finite.
*/
Algebraic_real_1 left_x() const;
@ -666,6 +645,7 @@ public:
const Point_2& right() const;
/*! returns the \f$x\f$-coordinate of the right point.
*
* \pre The \f$x\f$-coordinate of the right point is finite.
*/
Algebraic_real_1 right_x() const;
@ -677,7 +657,6 @@ public:
/// @}
}; /* end Arr_rational_function_traits_2::X_monotone_curve_2 */
}; /* end Arr_rational_function_traits_2 */
} /* end namespace CGAL */

View File

@ -3,7 +3,7 @@ namespace CGAL {
/*! \ingroup PkgArrangementOnSurface2TraitsClasses
*
* The traits class `Arr_segment_traits_2` is a model of the
* `ArrangementTraits_2` concept, which allows the construction and maintenance
* `AosTraits_2` concept, which allows the construction and maintenance
* of arrangements of line segments. It is parameterized with a
* \cgal-kernel model that is templated in turn with a number type. To avoid
* numerical errors and robustness problems, the number type should support
@ -47,81 +47,82 @@ namespace CGAL {
* `Arr_non_caching_segment_traits_2` traits-class.
*
* While `Arr_segment_traits_2` models the concept
* `ArrangementDirectionalXMonotoneTraits_2`, the implementation of the
* `AosDirectionalXMonotoneTraits_2`, the implementation of the
* `Are_mergeable_2` operation does not enforce the input curves to have the
* same direction as a precondition. Moreover, `Arr_segment_traits_2` supports
* the merging of curves of opposite directions.
*
* \cgalModels{ArrangementTraits_2,ArrangementLandmarkTraits_2,ArrangementDirectionalXMonotoneTraits_2}
* \cgalModels{AosTraits_2,AosLandmarkTraits_2,AosApproximateTraits_2,AosDirectionalXMonotoneTraits_2}
*/
template <typename Kernel>
class Arr_segment_traits_2 : public Kernel {
public:
/// \name Types
/// @{
//! \name Types
//! @{
//! the segment type.
/// the segment type.
typedef typename Kernel::Segment_2 Segment_2;
//! the line type.
/// the line type.
typedef typename Kernel::Line_2 Line_2;
//! the point type.
/// the point type.
typedef typename Kernel::Point_2 Point_2;
//! @}
/// @}
/*! The `X_monotone_curve_2` class nested within the traits class is
* used to represent segments.
*/
class X_monotone_curve_2 {
public:
//! \name Creation
//! @{
/// \name Creation
/// @{
/*! constructs default. */
X_monotone_curve_2();
//! @}
/// @}
//! \name Access Functions
//! @{
/// \name Access Functions
/// @{
//! obtains the (lexicographically) left endpoint.
/// obtains the (lexicographically) left endpoint.
const Point_2& left() const;
//! obtains the (lexicographically) right endpoint.
/// obtains the (lexicographically) right endpoint.
const Point_2& right() const;
//! obtains the supporting line.
/// obtains the supporting line.
const Line_2& line() const;
//! determines whether the curve is vertical.
/// determines whether the curve is vertical.
bool is_vertical() const;
//! determines whether the curve is directed lexicographic from left to right
/// determines whether the curve is directed lexicographic from left to right
bool is_directed_right() const;
//! @}
/// @}
};
//! The curve type.
/// The curve type.
typedef X_monotone_curve_2 Curve_2;
//! A functor that trims curves.
/// A functor that trims curves.
class Trim_2 {
public:
//! \name Creation
//! @{
/// \name Creation
/// @{
/*! trims the given x-monotone curve to an from src to tgt.
/*! trims the given \f$x\f$-monotone curve to an from `src` to `tgt`.
*
* \ pre `src` and `tgt` lies on the curve
*/
X_monotone_curve_2(const X_monotone_curve_2& xcv,
const Point_2& src, const Point_2& tgt) const;
//! @}
} /* end Arr_segment_traits_2::Trim_2 */
}; /* end Arr_segment_traits_2 */
} /* end namespace CGAL */

View File

@ -10,18 +10,18 @@ namespace CGAL {
* The `Arr_spherical_topology_traits_2` template has two parameters:
* <UL>
* <LI>The `GeometryTraits_2` template-parameter should be substituted by
* a model of the `ArrangementBasicTraits_2` concept. The traits
* a model of the `AosBasicTraits_2` concept. The traits
* class defines the types of \f$x\f$-monotone curves and two-dimensional
* points, namely `ArrangementBasicTraits_2::X_monotone_curve_2` and
* `ArrangementBasicTraits_2::Point_2`,
* points, namely `AosBasicTraits_2::X_monotone_curve_2` and
* `AosBasicTraits_2::Point_2`,
* respectively, and supports basic geometric predicates on them.
* <LI>The `Dcel` template-parameter should be substituted by
* a class that is a model of the `ArrangementDcel` concept. The
* a class that is a model of the `AosDcel` concept. The
* value of this parameter is by default
* `Arr_default_dcel<Traits>`.
* </UL>
*
* \cgalModels{ArrangementBasicTopologyTraits}
* \cgalModels{AosBasicTopologyTraits}
*
* \sa `Arr_default_dcel<Traits>`
* \sa `CGAL::Arr_geodesic_arc_on_sphere_traits_2<Kernel,x,y>`
@ -62,10 +62,10 @@ public:
/// \name Accessors
/// @{
/*! obtains the DCEL (const version). */
/*! obtains the \dcel (const version). */
const Dcel& dcel() const;
/*! obtains the DCEL (non-const version). */
/*! obtains the \dcel (non-const version). */
Dcel& dcel();
/*! obtains the spherical face (const version). */

View File

@ -17,14 +17,10 @@ namespace CGAL {
* \sa `Arr_closed_side_tag`
* \sa `Arr_contracted_side_tag`
* \sa `Arr_identified_side_tag`
* \sa `ArrangementBasicTraits_2`
* \sa `AosBasicTraits_2`
*/
struct Arr_oblivious_side_tag {};
}
namespace CGAL {
/*! \ingroup PkgArrangementOnSurface2Tags
*
* This type tag is used to indicate that a side of the parameter space, either
@ -35,7 +31,7 @@ namespace CGAL {
* `Bottom_side_category`, and `Top_side_category`, nested in every geometry
* traits class, must be convertible to the type `Arr_open_side_tag`. For
* example, all categories above, nested in every model of the
* `ArrangementOpenBoundaryTraits_2` concept, must be convertible to
* `AosOpenBoundaryTraits_2` concept, must be convertible to
* `Arr_open_side_tag`, as curves are expected to approach all the four boundary
* sides of the parameter space (i.e., left, right, bottom, and top).
*
@ -46,14 +42,10 @@ namespace CGAL {
* \sa `Arr_closed_side_tag`
* \sa `Arr_contracted_side_tag`
* \sa `Arr_identified_side_tag`
* \sa `ArrangementOpenBoundaryTraits_2`
* \sa `AosOpenBoundaryTraits_2`
*/
struct Arr_open_side_tag : {};
}
namespace CGAL {
/*! \ingroup PkgArrangementOnSurface2Tags
*
* This type tag is used to indicate that a side of the parameter space, either
@ -73,14 +65,10 @@ namespace CGAL {
* \sa `Arr_open_side_tag`
* \sa `Arr_contracted_side_tag`
* \sa `Arr_identified_side_tag`
* \sa `ArrangementOpenBoundaryTraits_2`
* \sa `AosOpenBoundaryTraits_2`
*/
struct Arr_closed_side_tag {};
}
namespace CGAL {
/*! \ingroup PkgArrangementOnSurface2Tags
*
* This type tag is used to indicate that a side of the parameter space, either
@ -92,7 +80,7 @@ namespace CGAL {
* nested in every geometry traits class, must be convertible to the type
* `Arr_contracted_side_tag`. For example, the `Bottom_side_category` and
* `Top_side_category` category types, nested in every model of the
* `ArrangementSphericalBoundaryTraits_2 concept` (such as any instance of the
* `AosSphericalBoundaryTraits_2 concept` (such as any instance of the
* `Arr_geodesic_arc_on_sphere_traits_2` class template) must be convertible to
* `Arr_contracted_side_tag`
*
@ -103,14 +91,10 @@ namespace CGAL {
* \sa `Arr_open_side_tag`
* \sa `Arr_closed_side_tag`
* \sa `Arr_identified_side_tag`
* \sa `ArrangementOpenBoundaryTraits_2`
* \sa `AosOpenBoundaryTraits_2`
*/
struct Arr_contracted_side_tag {};
}
namespace CGAL {
/*! \ingroup PkgArrangementOnSurface2Tags
*
* This type tag is used to indicate that a side of the parameter space, either
@ -122,7 +106,7 @@ namespace CGAL {
* nested in every geometry traits class, must be convertible to the type
* `Arr_identified_side_tag`. For example, the `Left_side_category` and
* `Right_side_category` category types, nested in every model of the
* `ArrangementSphericalBoundaryTraits_2 concept` (such as any instance of the
* `AosSphericalBoundaryTraits_2 concept` (such as any instance of the
* `Arr_geodesic_arc_on_sphere_traits_2` class template) must be convertible to
* `Arr_identified_side_tag`
*
@ -133,7 +117,7 @@ namespace CGAL {
* \sa `Arr_open_side_tag`
* \sa `Arr_closed_side_tag`
* \sa `Arr_contracted_side_tag`
* \sa `ArrangementOpenBoundaryTraits_2`
* \sa `AosOpenBoundaryTraits_2`
*/
struct Arr_identified_side_tag {};

View File

@ -1,66 +1,69 @@
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2PointLocation
\anchor arr_reftrap_pl
The `Arr_trapezoid_ric_point_location` class implements the incremental randomized algorithm
introduced by Mulmuley \cgalCite{m-fppa-90} as presented by
Seidel \cgalCite{s-sfira-91} (see also [\cgalCite{bkos-cgaa-00} Chapter 6).
It subdivides each arrangement face to pseudo-trapezoidal cells, each
of constant complexity, and constructs and maintains a linear-size search
structure on top of these cells, such that each query can be answered
in \cgalBigO{\log n} time, where \f$ n\f$ is the complexity of the arrangement.
Constructing the search structures takes \cgalBigO{n \log n} expected time
and may require a small number of rebuilds \cgalCite{hkh-iiplgtds-12}. Therefore
attaching a trapezoidal point-location object to an existing arrangement
may incur some overhead in running times. In addition, the point-location
object needs to keep its auxiliary data structures up-to-date as the
arrangement goes through structural changes. It is therefore recommended
to use this point-location strategy for static arrangements (or arrangement
that do not alter frequently), and when the number of issued queries
is relatively large.
This strategy supports arbitrary subdivisions, including unbounded ones.
\cgalModels{ArrangementPointLocation_2,ArrangementVerticalRayShoot_2}
\sa `ArrangementPointLocation_2`
\sa `ArrangementVerticalRayShoot_2`
\sa `CGAL::Arr_point_location_result<Arrangement>`
/*! \ingroup PkgArrangementOnSurface2PointLocation
*
* \anchor arr_reftrap_pl
*
* The `Arr_trapezoid_ric_point_location` class implements the incremental
* randomized algorithm introduced by Mulmuley \cgalCite{m-fppa-90} as presented
* by Seidel \cgalCite{s-sfira-91} (see also [\cgalCite{bkos-cgaa-00} Chapter
* 6). It subdivides each arrangement face to pseudo-trapezoidal cells, each of
* constant complexity, and constructs and maintains a linear-size search
* structure on top of these cells, such that each query can be answered in
* \cgalBigO{\log n} time, where \f$n\f$ is the complexity of the arrangement.
*
* Constructing the search structures takes \cgalBigO{n \log n} expected time
* and may require a small number of rebuilds
* \cgalCite{hkh-iiplgtds-12}. Therefore attaching a trapezoidal point-location
* object to an existing arrangement may incur some overhead in running
* times. In addition, the point-location object needs to keep its auxiliary
* data structures up-to-date as the arrangement goes through structural
* changes. It is therefore recommended to use this point-location strategy for
* static arrangements (or arrangement that do not alter frequently), and when
* the number of issued queries is relatively large.
*
* This strategy supports arbitrary subdivisions, including unbounded ones.
*
* \cgalModels{AosPointLocation_2,AosVerticalRayShoot_2}
*
* \sa `AosPointLocation_2`
* \sa `AosVerticalRayShoot_2`
* \sa `CGAL::Arr_point_location_result<Arrangement>`
*/
template <typename Arrangement>
class Arr_trapezoid_ric_point_location {
public:
/// \name Creation
/// @{
/*!
If with_guarantees is set to true, the construction performs rebuilds in order to guarantee a resulting structure with linear size and logarithmic query time. Otherwise the structure has expected linear size and expected logarithmic query time.
/*! If `with_guarantees` is set to true, the construction performs rebuilds in
* order to guarantee a resulting structure with linear size and logarithmic
* query time. Otherwise the structure has expected linear size and expected
* logarithmic query time.
*/
Arr_trapezoid_ric_point_location(bool with_guarantees = true);
/*!
Constructs a point location search structure for the given arrangement. If with_guarantees is set to true, the construction performs rebuilds in order to guarantee a resulting structure with linear size and logarithmic query time. Otherwise the structure has expected linear size and expected logarithmic query time.
/*! constructs a point location search structure for the given arrangement.
* If with_guarantees is set to true, the construction performs rebuilds in
* order to guarantee a resulting structure with linear size and logarithmic
* query time. Otherwise the structure has expected linear size and expected
* logarithmic query time.
*/
Arr_trapezoid_ric_point_location (const Arrangement& arr, bool with_guarantees = true);
Arr_trapezoid_ric_point_location(const Arrangement& arr,
bool with_guarantees = true);
/// @}
/// \name Modifiers
/// @{
/*!
If with_guarantees is set to true, the structure will guarantee linear size and logarithmic query time, that is, this function may cause a reconstruction of the data structure.
/*! If with_guarantees is set to true, the structure will guarantee linear
* size and logarithmic query time, that is, this function may cause a
* reconstruction of the data structure.
*/
void with_guarantees(bool with_guarantees);
/// @}
}; /* end Arr_trapezoid_ric_point_location */
} /* end namespace CGAL */

View File

@ -14,13 +14,12 @@ namespace CGAL {
* (especially when the number of modifications applied to the arrangement is
* high) and provided only for educational purposes.
*
* \cgalModels{ArrangementPointLocation_2,ArrangementVerticalRayShoot_2}
* \cgalModels{AosPointLocation_2,AosVerticalRayShoot_2}
*
* \sa `ArrangementPointLocation_2`
* \sa `ArrangementVerticalRayShoot_2`
* \sa `AosPointLocation_2`
* \sa `AosVerticalRayShoot_2`
* \sa `CGAL::Arr_point_location_result<Arrangement>`
*/
template <typename Arrangement_>
class Arr_triangulation_point_location : public Arrangement_::Observer {}

View File

@ -10,18 +10,18 @@ namespace CGAL {
* The `Arr_unb_planar_topology_traits_2` template has two parameters:
* <UL>
* <LI>The `GeometryTraits_2` template-parameter should be substituted by
* a model of the `ArrangementBasicTraits_2` concept. The traits
* a model of the `AosBasicTraits_2` concept. The traits
* class defines the types of \f$x\f$-monotone curves and two-dimensional
* points, namely `ArrangementBasicTraits_2::X_monotone_curve_2` and
* `ArrangementBasicTraits_2::Point_2`,
* points, namely `AosBasicTraits_2::X_monotone_curve_2` and
* `AosBasicTraits_2::Point_2`,
* respectively, and supports basic geometric predicates on them.
* <LI>The `Dcel` template-parameter should be substituted by
* a class that is a model of the `ArrangementDcel` concept. The
* a class that is a model of the `AosDcel` concept. The
* value of this parameter is by default
* `Arr_default_dcel<Traits>`.
* </UL>
*
* \cgalModels{ArrangementBasicTopologyTraits}
* \cgalModels{AosBasicTopologyTraits}
*
* \sa `Arr_default_dcel<Traits>`
* \sa `CGAL::Arr_geodesic_arc_on_sphere_traits_2<Kernel,x,y>`
@ -62,10 +62,10 @@ public:
/// \name Accessors
/// @{
/*! obtains the DCEL (const version). */
/*! obtains the \dcel (const version). */
const Dcel& dcel() const;
/*! obtains the DCEL (non-const version). */
/*! obtains the \dcel (non-const version). */
Dcel& dcel();
/*! obtains the unbounded face (const version). */

View File

@ -20,17 +20,15 @@ namespace CGAL {
*
* \sa `Arr_face_index_map<Arrangement>`
*/
template <typename Arrangement_>
class Arr_vertex_index_map: public Arrangement_::Observer {
public:
/// \name Types
/// @{
/*! the type of the attached arrangement.
*/
/// the type of the attached arrangement.
typedef Arrangement_ Arrangement_2;
typedef typename Arrangement_2::Base_aos Base_aos;
typedef boost::readable_property_map_tag category;
@ -41,12 +39,10 @@ namespace CGAL {
typedef Vertex_handle key_type;
/*! The vertex handle type.
*/
/// The vertex handle type.
typedef typename Base_aos::Vertex_handle Vertex_handle;
/*! The type of mapping of vertices to indices.
*/
/// The type of mapping of vertices to indices.
typedef Unique_hash_map<Vertex_handle, value_type> Index_map;
/// @}
@ -63,7 +59,6 @@ namespace CGAL {
Arr_vertex_index_map(Base_aos& arr);
/// @}
}; /* end Arr_accessor */
} /* end namespace CGAL */

View File

@ -1,38 +1,31 @@
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2PointLocation
\anchor arr_refwalk_pl
The `Arr_walk_along_line_point_location` class implements a very simple point-location (and
vertical ray-shooting) strategy that improves the naive one.
The algorithm considers an imaginary vertical ray emanating from the
query point, and simulates a walk along the zone of this ray, starting
from the unbounded face until reaching the query point.
In dense arrangements this walk can considerably reduce the number
of traversed arrangement edges, with respect to the na&iuml;ve
algorithm.
The walk-along-a-line point-location object (just like the na&iuml;ve one)
does not use any auxiliary data structures. Thus, attaching it to an
existing arrangement takes constant time, and any ongoing updates to
this arrangement do not affect the point-location object.
It is therefore recommended to use the "walk" point-location strategy
for arrangements that are constantly changing, especially if the number
of issued queries is not large.
\cgalModels{ArrangementPointLocation_2,ArrangementVerticalRayShoot_2}
\sa `ArrangementPointLocation_2`
\sa `ArrangementVerticalRayShoot_2`
\sa `CGAL::Arr_point_location_result<Arrangement>`
/*! \ingroup PkgArrangementOnSurface2PointLocation
*
* \anchor arr_refwalk_pl
*
* The `Arr_walk_along_line_point_location` class implements a very simple
* point-location (and vertical ray-shooting) strategy that improves the naive
* one. The algorithm considers an imaginary vertical ray emanating from the
* query point, and simulates a walk along the zone of this ray, starting from
* the unbounded face until reaching the query point. In dense arrangements
* this walk can considerably reduce the number of traversed arrangement edges,
* with respect to the na&iuml;ve algorithm.
*
* The walk-along-a-line point-location object (just like the na&iuml;ve one)
* does not use any auxiliary data structures. Thus, attaching it to an existing
* arrangement takes constant time, and any ongoing updates to this arrangement
* do not affect the point-location object. It is therefore recommended to use
* the "walk" point-location strategy for arrangements that are constantly
* changing, especially if the number of issued queries is not large.
*
* \cgalModels{AosPointLocation_2,AosVerticalRayShoot_2}
*
* \sa `AosPointLocation_2`
* \sa `AosVerticalRayShoot_2`
* \sa `CGAL::Arr_point_location_result<Arrangement>`
*/
template <typename Arrangement>
class Arr_walk_along_line_point_location {
public:
class Arr_walk_along_line_point_location {};
}; /* end Arr_walk_along_line_point_location */
} /* end namespace CGAL */

View File

@ -16,13 +16,13 @@ namespace CGAL {
* The `Arrangement_2` template has two parameters:
* <UL>
* <LI>The `Traits` template-parameter should be instantiated with
* a model of the `ArrangementBasicTraits_2` concept. The traits
* a model of the `AosBasicTraits_2` concept. The traits
* class defines the types of \f$x\f$-monotone curves and two-dimensional
* points, namely `ArrangementBasicTraits_2::X_monotone_curve_2` and
* `ArrangementBasicTraits_2::Point_2`,
* points, namely `AosBasicTraits_2::X_monotone_curve_2` and
* `AosBasicTraits_2::Point_2`,
* respectively, and supports basic geometric predicates on them.
* <LI>The `Dcel` template-parameter should be instantiated with
* a class that is a model of the `ArrangementDcel` concept. The
* a class that is a model of the `AosDcel` concept. The
* value of this parameter is by default
* `Arr_default_dcel<Traits>`.
* </UL>
@ -30,9 +30,9 @@ namespace CGAL {
* The available traits classes and \dcel classes are
* described below.
*
* \sa `ArrangementDcel`
* \sa `AosDcel`
* \sa `Arr_default_dcel<Traits>`
* \sa `ArrangementBasicTraits_2`
* \sa `AosBasicTraits_2`
* \sa `CGAL::overlay()`
* \sa `CGAL::is_valid()`
*
@ -156,6 +156,7 @@ public:
/// @}
}; /* end Arrangement_2 */
} /* end namespace CGAL */
namespace CGAL {
@ -171,14 +172,14 @@ namespace CGAL {
*
* <UL>
* <LI>If the curve is \f$x\f$-monotone curve then The instantiated
* `Traits` class must model the `ArrangementXMonotoneTraits_2`
* `Traits` class must model the `AosXMonotoneTraits_2`
* concept. In case that the curve is not \f$x\f$-monotone then the
* instantiated `Traits` class must model the
* `ArrangementTraits_2` concept. That is, it should define the
* `ArrtTraits_2` concept. That is, it should define the
* `Curve_2` type, and support its subdivision into \f$x\f$-monotone
* subcurves (and perhaps isolated points).
* <LI>The point-location object `pl`, must model the
* `ArrangementPointLocation_2` concept.
* `AosPointLocation_2` concept.
* </UL>
*/
@ -247,9 +248,9 @@ void insert(Arrangement_2<Traits, Dcel>& arr,
*
* <UL>
* <LI>The instantiated `Traits` class must model the restricted
* `ArrangementBasicTraits_2` concept, as no intersections are computed.
* `AosBasicTraits_2` concept, as no intersections are computed.
* <LI>The point-location object `pl` must model the
* `ArrangementPointLocation_2` concept.
* `AosPointLocation_2` concept.
* </UL>
*/
template <typename Traits, typename Dcel,typename PointLocation>
@ -270,7 +271,7 @@ insert_non_intersecting_curve(Arrangement_2<Traits,Dcel>& arr,
*
* <UL>
* <LI>The instantiated `Traits` class must model the
* `ArrangementBasicTraits_2` concept, as no intersections are computed.
* `AosBasicTraits_2` concept, as no intersections are computed.
* <LI>`InputIterator::value_type` must be `Traits::X_monotone_curve_2`
* </UL>
*/
@ -296,11 +297,11 @@ void insert_non_intersecting_curves(Arrangement_2<Traits,Dcel>& arr,
*
* <UL>
* <LI>The instantiated `Traits` class must model the
* `ArrangementXMonotoneTraits_2` concept. Not all expressions listed
* `AosXMonotoneTraits_2` concept. Not all expressions listed
* by this concept are required. In fact the traits class must model the
* `ArrangementBasicTraits_2` concept, and support the splitting functionality.
* `AosBasicTraits_2` concept, and support the splitting functionality.
* <LI>The point-location object `pl`, must model the
* `ArrangementPointLocation_2` concept.
* `AosPointLocation_2` concept.
* </UL>
*/
template <typename Traits, typename Dcel, typename PointLocation>
@ -337,7 +338,7 @@ bool is_valid(const Arrangement_2<Traits, Dcel>& arr);
* its endpoints become isolated, they are removed as well. The call
* `remove_edge(arr, e)` is equivalent to the call `arr.remove_edge (e, true,
* true)`. However, this free function requires that `Traits` be a model of the
* refined concept `ArrangementXMonotoneTraits_2`, which requires merge
* refined concept `AosXMonotoneTraits_2`, which requires merge
* operations on \f$x\f$-monotone curves. If one of the end-vertices of the
* given edge becomes redundant after the edge is removed (see `remove_vertex()`
* for the definition of a redundant vertex), it is removed, and its incident
@ -349,7 +350,7 @@ bool is_valid(const Arrangement_2<Traits, Dcel>& arr);
*
* <UL>
* <LI>The instantiated traits class must model the concept
* `ArrangementXMonotoneTraits_2`.
* `AosXMonotoneTraits_2`.
* </UL>
*/
template <typename Traits, typename Dcel>
@ -362,17 +363,17 @@ remove_edge(Arrangement_2<Traits,Dcel>& arr,
* Attempts to removed a given vertex from a given arrangement. The vertex can
* be removed if it is either an isolated vertex, (and has no incident edge,) or
* if it is a <I>redundant</I> vertex. That is, it has exactly two incident
* edges, whose associated curves can be merged to form a single \f$
* x\f$-monotone curve. The function returns a boolean value that indicates
* edges, whose associated curves can be merged to form a single \f$x\f$-monotone
* curve. The function returns a boolean value that indicates
* whether it succeeded removing the vertex from the arrangement.
*
* \cgalHeading{Requirements}
*
* <UL>
* <LI>The instantiated `Traits` class must model the
* `ArrangementXMonotoneTraits_2` concept. Not all expressions listed
* `AosXMonotoneTraits_2` concept. Not all expressions listed
* by this concept are required. In fact the traits class must model the
* `ArrangementBasicTraits_2` concept and support the merging functionality.
* `AosBasicTraits_2` concept and support the merging functionality.
* </UL>
*/
template <typename Traits, typename Dcel>

View File

@ -18,21 +18,21 @@ namespace CGAL {
* <UL>
* <LI>The `GeometryTraits` template-parameter should be substituted by
* a model of a geometry traits. The minimal requirements are defined by the
* `ArrangementBasicTraits_2` concept. A model of this concept defines
* `AosBasicTraits_2` concept. A model of this concept defines
* the types of \f$x\f$-monotone curves and two-dimensional points, namely
* `ArrangementBasicTraits_2::X_monotone_curve_2` and
* `ArrangementBasicTraits_2::Point_2`, respectively, and supports basic
* `AosBasicTraits_2::X_monotone_curve_2` and
* `AosBasicTraits_2::Point_2`, respectively, and supports basic
* geometric predicates on them.
* <LI>The `TopologyTraits` template-parameter should be substituted by a
* class that is a model of the `ArrangementTopologyTraits` concept.
* class that is a model of the `AosTopologyTraits` concept.
* </UL>
*
* The available traits classes and <span class="textsc">Dcel</span> classes are
* described below.
* \sa `ArrangementDcel`
* \sa `AosDcel`
* \sa `Arr_default_dcel<Traits>`
* \sa `ArrangementBasicTraits_2`
* \sa `AosBasicTraits_2`
* \sa `CGAL::overlay()`
* Insertion Functions
@ -62,10 +62,10 @@ public:
/// \name Types
/// @{
/*! the geometry traits class in use. */
/// the geometry traits class in use.
typedef GeometryTraits Geometry_traits_2;
/*! the topology traits class in use. */
/// the topology traits class in use.
typedef TopologyTraits Topology_traits;
/*! a private type used as an abbreviation of the
@ -78,13 +78,13 @@ public:
*/
typedef typename Topology_traits::Dcel Dcel;
/*! the point type, as defined by the traits class. */
/// the point type, as defined by the traits class.
typedef typename Geometry_traits_2::Point_2 Point_2;
/*! the \f$ x\f$-monotone curve type, as defined by the traits class. */
/// the \f$x\f$-monotone curve type, as defined by the traits class.
typedef typename Geometry_traits_2::X_monotone_curve_2 X_monotone_curve_2;
/*! the size type (equivalent to `size_t`). */
/// the size type (equivalent to `std::size_t`).
typedef typename Dcel::Size Size;
/*! \ingroup PkgArrangementOnSurface2DCEL
@ -152,7 +152,6 @@ public:
Arr_parameter_space parameter_space_in_y() const;
/// @}
}; /* end Vertex */
/*! \ingroup PkgArrangementOnSurface2DCEL
@ -372,7 +371,7 @@ public:
/// Mutable
/// @{
/*! a handle to an arrangement vertex. */
/// a handle to an arrangement vertex.
typedef unspecified_type Vertex_handle;
/*! a handle to a halfedge.
@ -380,7 +379,7 @@ public:
*/
typedef unspecified_type Halfedge_handle;
/*! a handle to an arrangement face. */
/// a handle to an arrangement face.
typedef unspecified_type Face_handle;
/*! a bidirectional iterator over the
@ -458,7 +457,7 @@ public:
*/
typedef unspecified_type Halfedge_const_handle;
/*! a handle to an arrangement face. */
/// a handle to an arrangement face.
typedef unspecified_type Face_const_handle;
/*! a bidirectional iterator over the
@ -878,12 +877,17 @@ public:
* fictitious halfedge that should contain the vertex at infinity that
* corresponds to the unbounded left end of `c`. The function returns a
* handle for one of the new halfedges directed (lexicographically) from right
* to left. \pre The interior of `c` is disjoint from all existing
* arrangement vertices and edges. `c` must have a bounded right endpoint and
* an unbounded left end. \pre `pred->target()` is associated with the right
* endpoint of `c`, and `c` should be inserted after `pred` in a clockwise
* order around this vertex. \pre `fict_pred` is a fictitious halfedge that
* contains the unbounded left end of `c`.
* to left.
*
* \pre The interior of `c` is disjoint from all existing arrangement vertices
* and edges. `c` must have a bounded right endpoint and an unbounded left
* end.
*
* \pre `pred->target()` is associated with the right endpoint of `c`, and `c`
* should be inserted after `pred` in a clockwise order around this vertex.
*
* \pre `fict_pred` is a fictitious halfedge that contains the unbounded left
* end of `c`.
*/
Halfedge_handle insert_from_right_vertex(const X_monotone_curve_2& c,
Halfedge_handle pred,
@ -968,11 +972,13 @@ public:
/*! merges the edges represented by `e1` and `e2` into
* a single edge, associated with the given merged curve `c`. Denote `e1`'s
* end-vertices as \f$u_1\f$ and \f$v\f$, while `e2`'s end-vertices are
* denoted \f$ u_2\f$ and \f$ v\f$. The function removes the common vertex \f$
* v\f$ returns a handle for one of the merged halfedges, directed from \f$
* u_1\f$ to \f$ u_2\f$.
* denoted \f$u_2\f$ and \f$v\f$. The function removes the common vertex
* \f$v\f$ returns a handle for one of the merged halfedges, directed from
* \f$u_1\f$ to \f$u_2\f$.
*
* \pre `e1` and `e2` share a common end-vertex, such that the two other
* end-vertices of the two edges are associated with `c`'s endpoints.
* \pre `e1` and `e2` have the same direction.
*/
Halfedge_handle merge_edge(Halfedge_handle e1,
Halfedge_handle e2,
@ -1007,8 +1013,8 @@ public:
bool is_valid() const;
/// @}
}; /* end Arrangement_on_surface_2 */
} /* end namespace CGAL */
namespace CGAL {
@ -1024,14 +1030,14 @@ namespace CGAL {
*
* <UL>
* <LI>If the curve is \f$x\f$-monotone curve then The instantiated
* `Traits` class must model the `ArrangementXMonotoneTraits_2`
* `Traits` class must model the `AosXMonotoneTraits_2`
* concept. In case that the curve is not \f$x\f$-monotone then the
* instantiated `Traits` class must model the
* `ArrangementTraits_2` concept. That is, it should define the
* `AosTraits_2` concept. That is, it should define the
* `Curve_2` type, and support its subdivision into \f$x\f$-monotone
* subcurves (and perhaps isolated points).
* <LI>The point-location object `pl`, must model the
* `ArrangementPointLocation_2` concept.
* `AosPointLocation_2` concept.
* </UL>
*/
@ -1112,13 +1118,13 @@ void insert(Arrangement_on_surface_2<GeometryTraits, TopologyTraits>& arr,
*
* <UL>
* <LI>If `c` is \f$x\f$-monotone then the instantiated `GeometryTraits`
* class must model the `ArrangementXMonotoneTraits_2` concept. If
* class must model the `AosXMonotoneTraits_2` concept. If
* `c` is a curve then the instantiated `GeometryTraits` class must
* model the `ArrangementTraits_2` concept. That is, it should
* model the `AosTraits_2` concept. That is, it should
* define the `Curve_2` type, and support its subdivision into
* \f$x\f$-monotone subcurves (and perhaps isolated points).
* <LI>The point-location object `pl`, must model the
* `ArrangementPointLocation_2` concept.
* `AosPointLocation_2` concept.
* </UL>
*/
template <typename GeometryTraits, typename TopologyTraits, typename Curve,
@ -1152,9 +1158,9 @@ bool do_intersect(Arrangement_on_surface_2<GeometryTraits, TopologyTraits>& arr,
*
* <UL>
* <LI>The instantiated `Traits` class must model the restricted
* `ArrangementBasicTraits_2` concept, as no intersections are computed.
* `AosBasicTraits_2` concept, as no intersections are computed.
* <LI>The point-location object `pl` must model the
* `ArrangementPointLocation_2` concept.
* `AosPointLocation_2` concept.
* </UL>
*/
template <typename GeometryTraits, typename TopologyTraits,
@ -1180,7 +1186,7 @@ insert_non_intersecting_curve
*
* <UL>
* <LI>The instantiated `Traits` class must model the
* `ArrangementBasicTraits_2` concept, as no intersections are computed.
* `AosBasicTraits_2` concept, as no intersections are computed.
* <LI>`InputIterator::value_type` must be `Traits::X_monotone_curve_2`
* </UL>
*/
@ -1209,12 +1215,12 @@ void insert_non_intersecting_curves
*
* <UL>
* <LI>The instantiated `Traits` class must model the
* `ArrangementXMonotoneTraits_2` concept. Not all expressions listed
* `AosXMonotoneTraits_2` concept. Not all expressions listed
* by this concept are required. In fact the traits class must model the
* `ArrangementBasicTraits_2` concept, and support the splitting
* `AosBasicTraits_2` concept, and support the splitting
* functionality.
* <LI>The point-location object `pl`, must model the
* `ArrangementPointLocation_2` concept.
* `AosPointLocation_2` concept.
* </UL>
*/
template <typename GeometryTraits, typename TopologyTraits,
@ -1253,7 +1259,7 @@ bool is_valid
* its endpoints become isolated, they are removed as well. The call
* `remove_edge(arr, e)` is equivalent to the call `arr.remove_edge (e, true,
* true)`. However, this free function requires that `Traits` be a model of the
* refined concept `ArrangementXMonotoneTraits_2`, which requires merge
* refined concept `AosXMonotoneTraits_2`, which requires merge
* operations on \f$x\f$-monotone curves. If one of the end-vertices of the
* given edge becomes redundant after the edge is removed (see `remove_vertex()`
* for the definition of a redundant vertex), it is removed, and its incident
@ -1265,7 +1271,7 @@ bool is_valid
*
* <UL>
* <LI>The instantiated traits class must model the concept
* `ArrangementXMonotoneTraits_2`.
* `AosXMonotoneTraits_2`.
* </UL>
*/
template <typename GeometryTraits, typename TopologyTraits>
@ -1287,9 +1293,9 @@ remove_edge
*
* <UL>
* <LI>The instantiated `Traits` class must model the
* `ArrangementXMonotoneTraits_2` concept. Not all expressions listed
* `AosXMonotoneTraits_2` concept. Not all expressions listed
* by this concept are required. In fact the traits class must model the
* `ArrangementBasicTraits_2` concept and support the merging
* `AosBasicTraits_2` concept and support the merging
* functionality.
* </UL>
*/
@ -1323,9 +1329,9 @@ bool remove_vertex
*
* \pre If provided, `pl` must be attached to the given arrangement `arr`.
* \pre The instantiated `GeometryTraits` class must model the
* `ArrangementXMonotoneTraits_2` concept.
* `AosXMonotoneTraits_2` concept.
* \pre The point-location object `pl`, must model the
* `ArrangementPointLocation_2` concept.
* `AosPointLocation_2` concept.
* \pre Dereferencing `oi` must yield a polymorphic object of type
* `std::variant<Arrangement_on_surface_2::Vertex_handle, Arrangement_on_surface_2::Halfedge_handle, Arrangement_on_surface_2::Face_handle>`.
*

View File

@ -5,9 +5,9 @@ namespace CGAL {
* \anchor arr_refaos_with_hist
*
* An object `arr` of the class `Arrangement_on_surface_with_history_2`
* represents the planar subdivision induced by a set of input curves \f$ \cal
* C\f$. The arrangement is represented as a doubly-connected edge-list (<span
* class="textsc">Dcel</span>). As is the case for the
* represents the planar subdivision induced by a set of input curves
* \f$\cal C\f$. The arrangement is represented as a doubly-connected edge-list
* (<span class="textsc">Dcel</span>). As is the case for the
* `Arrangement_2<Traits,Dcel>`, each <span class="textsc">Dcel</span> vertex is
* associated with a point and each edge is associated with an \f$x\f$-monotone
* curve whose interior is disjoint from all other edges and vertices. Each such
@ -26,33 +26,32 @@ namespace CGAL {
*
* <UL>
* <LI>The `GeometryTraits` template-parameter should be substituted by a
* model of the `ArrangementTraits_2` concept. The traits class defines the
* model of the `AosTraits_2` concept. The traits class defines the
* `Curve_2` type, which represents an input curve. It also defines the types
* of \f$x\f$-monotone curves and two-dimensional points, namely
* `ArrangementTraits_2::X_monotone_curve_2` and
* `ArrangementTraits_2::Point_2`, respectively, and supports basic
* `AosTraits_2::X_monotone_curve_2` and
* `AosTraits_2::Point_2`, respectively, and supports basic
* geometric predicates on them.
* <LI>The `TopologyTraits` template-parameter should be substituted by a
* class that is a model of the `ArrangementTopologyTraits` concept.
* class that is a model of the `AosTopologyTraits` concept.
* </UL>
*
* \sa `Arrangement_with_history_2<GeometryTraits,Dcel>`
* \sa `Arrangement_on_surface_2<GeometryTraits,TopologyTraits>`
* \sa `ArrangementTraits_2`
* \sa `ArrangementTopologyTraits`
* \sa `AosTraits_2`
* \sa `AosTopologyTraits`
*/
template <typename GeometryTraits, typename TopologyTraits>
class Arrangement_on_surface_with_history_2 :
public Arrangement_on_surface_2<GeometryTraits, TopologyTraits>
{
public Arrangement_on_surface_2<GeometryTraits, TopologyTraits> {
public:
/// \name Types
/// @{
//! the geometry traits class in use.
/// the geometry traits class in use.
typedef GeometryTraits Geometry_traits_2;
//! the topology traits class in use.
/// the topology traits class in use.
typedef TopologyTraits Topology_traits;
/*! a private type used as an abbreviation of the
@ -61,16 +60,16 @@ public:
typedef Arrangement_on_surface_with_history_2<Geometry_traits_2,
TopologyTraits> Self;
//! the <span class="textsc">Dcel</span> representation of the arrangement.
/// the <span class="textsc">Dcel</span> representation of the arrangement.
typedef typename Topology_traits::Dcel Dcel;
//! the point type, as defined by the traits class.
/// the point type, as defined by the traits class.
typedef typename Geometry_traits_2::Point_2 Point_2;
//! the \f$ x\f$-monotone curve type, as defined by the traits class.
/// the \f$x\f$-monotone curve type, as defined by the traits class.
typedef typename Geometry_traits_2::X_monotone_curve_2 X_monotone_curve_2;
//! the curve type, as defined by the traits class.
/// the curve type, as defined by the traits class.
typedef typename Geometry_traits_2::Curve_2 Curve_2;
/// @}
@ -82,7 +81,7 @@ public:
*/
/// @{
//! a handle for an input curve.
/// a handle for an input curve.
typedef unspecified_type Curve_handle;
/*! a bidirectional iterator over the curves that induce the arrangement.
@ -123,13 +122,13 @@ public:
/// \name Assignment Methods
/// @{
//! assignment operator.
/// assignment operator.
Self& operator=(other);
//! assigns the contents of another arrangement.
/// assigns the contents of another arrangement.
void assign(const Self& other);
//! clears the arrangement.
/// clears the arrangement.
void clear ();
/// @}
@ -140,31 +139,31 @@ public:
/// @{
//! returns the number of input curves that induce the arrangement.
/// returns the number of input curves that induce the arrangement.
Size number_of_curves() const;
//! returns the begin-iterator of the curves inducing the arrangement.
/// returns the begin-iterator of the curves inducing the arrangement.
Curve_iterator curves_begin();
//! returns the past-the-end iterator of the curves inducing the arrangement.
Curve_iterator curves_end();
//! returns the number of arrangement edges induced by the curve `ch`.
/// returns the number of arrangement edges induced by the curve `ch`.
Size number_of_induced_edges(Curve_handle ch) const;
//! returns the begin-iterator of the edges induced by the curve `ch`.
/// returns the begin-iterator of the edges induced by the curve `ch`.
Induced_edge_iterator induced_edges_begin(Curve_handle ch) const;
//! returns the past-the-end iterator of the edges induced by the curve `ch`.
/// returns the past-the-end iterator of the edges induced by the curve `ch`.
Induced_edge_iterator induced_edges_end(Curve_handle ch) const;
//! returns the number of input curves that originate the edge `e`.
/// returns the number of input curves that originate the edge `e`.
Size number_of_originating_curves(Halfedge_handle e) const;
//! returns the begin-iterator of the curves originating the edge `e`.
/// returns the begin-iterator of the curves originating the edge `e`.
Originating_curve_iterator originating_curves_begin(Halfedge_handle e) const;
//! returns the past-the-end iterator of the curves originating the edge `e`.
/// returns the past-the-end iterator of the curves originating the edge `e`.
Originating_curve_iterator originating_curves_end(Halfedge_handle e) const;
/// @}
@ -210,7 +209,6 @@ public:
bool remove_target = true);
/// @}
}; /* end Arrangement_on_surface_with_history_2 */
/*! \ingroup PkgArrangementOnSurface2Insert
@ -261,7 +259,6 @@ Size remove_curve
(Arrangement_on_surface_with_history_2<GeometryTraits, TopologyTraits>& arr,
typename Arrangement_on_surface_with_history_2<GeometryTraits, TopologyTraits>::Curve_handle ch);
/*! \addtogroup PkgArrangementOnSurface2Overlay
*
* Computes the overlay of two arrangements with history `arr1` and `arr2`, and
@ -281,7 +278,6 @@ void overlay
Arrangement_on_surface_with_history_2<GeometryTraits, ResTopologyTraits>& res,
OverlayTraits& ovl_tr);
/*! \addtogroup PkgArrangementOnSurface2Overlay
*
* Computes the (simple) overlay of two arrangements with history `arr1` and

View File

@ -24,39 +24,39 @@ namespace CGAL {
* The `Arrangement_with_history_2` template has two parameters:
* <UL>
* <LI>The `Traits` template-parameter should be substituted by a model of
* the `ArrangementTraits_2` concept. The traits class defines the `Curve_2`
* the `AosTraits_2` concept. The traits class defines the `Curve_2`
* type, which represents an input curve. It also defines the types of \f$
* x\f$-monotone curves and two-dimensional points, namely
* `ArrangementTraits_2::X_monotone_curve_2` and `ArrangementTraits_2::Point_2`,
* `AosTraits_2::X_monotone_curve_2` and `AosTraits_2::Point_2`,
* respectively, and supports basic geometric predicates on them.
* <LI>The `Dcel` template-parameter should be substituted by a class that is
* a model of the `ArrangementDcelWithRebind` concept. The value of this
* a model of the `AosDcelWithRebind` concept. The value of this
* parameter is by default `Arr_default_dcel<Traits>`.
* </UL>
*
* \sa `ArrangementDcel`
* \sa `AosDcel`
* \sa `Arr_default_dcel<Traits>`
* \sa `ArrangementTraits_2`
* \sa `AosTraits_2`
* \sa `Arrangement_2<Traits,Dcel>`
* \sa `insertion functions`
* \sa `removal functions`
* \sa `overlaying arrangements`
*/
template <typename Traits, typename Dcel>
class Arrangement_with_history_2 : public Arrangement_on_surface_with_history_2<Traits, typename Default_planar_topology<Traits, Dcel>::Traits> {
class Arrangement_with_history_2 :
public Arrangement_on_surface_with_history_2<Traits, typename Default_planar_topology<Traits, Dcel>::Traits> {
public:
/// \name Types
/// @{
//! the geometry traits class.
/// the geometry traits class.
typedef Traits Geometry_traits;
//! The topology traits.
/// The topology traits.
typedef typename Default_planar_topology<Geometry_traits, Dcel>::Traits
Topology_traits;
//! The base arrangement on surface type.
/// The base arrangement on surface type.
typedef Arrangement_on_surface_with_history_2<Geometry_traits, Topology_traits>
Base;
@ -161,7 +161,6 @@ template <typename Traits, typename Dcel>
Size remove_curve(Arrangement_with_history_2<Traits,Dcel>& arr,
typename Arrangement_with_history_2<Traits,Dcel>::Curve_handle ch);
/*! \addtogroup PkgArrangementOnSurface2Overlay
* Computes the overlay of two arrangements with history `arr1` and `arr2`, and
* sets the output arrangement with history `res` to represent the overlaid
@ -177,7 +176,6 @@ void overlay(const Arrangement_with_history_2<Traits,Dcel1>& arr1,
Arrangement_with_history_2<Traits,ResDcel>& res,
OverlayTraits& ovl_tr);
/*! \addtogroup PkgArrangementOnSurface2Overlay
*
* Computes the (simple) overlay of two arrangements with history `arr1` and
@ -189,8 +187,7 @@ void overlay(const Arrangement_with_history_2<Traits,Dcel1>& arr1,
* \pre `res` does not refer to either `arr1` or `arr2` (that is, "self overlay"
* is not supported).
*/
template<typename Traits, typename Dcel1, typename Dcel2,
typename ResDcel>
template <typename Traits, typename Dcel1, typename Dcel2, typename ResDcel>
void overlay(const Arrangement_with_history_2<Traits,Dcel1>& arr1,
const Arrangement_with_history_2<Traits,Dcel2>& arr2,
Arrangement_with_history_2<Traits,ResDcel>& res);

View File

@ -12,16 +12,16 @@ public:
/// \name Types
/// @{
//! The integer number type.
/// The integer number type.
typedef CORE::BigInt Integer;
//! The rational number type.
/// The rational number type.
typedef CORE::BigRat Rational;
//! The polynomial type.
/// The polynomial type.
typedef CORE::Polynomial<Integer> Polynomial;
//! The algebraic number type.
/// The algebraic number type.
typedef CORE::Expr Algebraic;
/// @}

View File

@ -2,100 +2,89 @@ namespace CGAL {
namespace IO {
/*!
\defgroup PkgArrangementOnSurface2Read CGAL::IO::read()
\ingroup PkgArrangementOnSurface2IO
Reads a given arrangement from a given input stream
using a specific input format.
\cgalHeading{Requirements}
<UL>
<LI>The instantiated `Formatter` class must model the
`ArrangementInputFormatter` concept.
<LI>The instantiated `WithHistoryFormatter` class must model the
`ArrangementWithHistoryInputFormatter` concept.
</UL>
\sa `PkgArrangementOnSurface2Write`
\sa `PkgArrangementOnSurface2op_left_shift`
\sa `PkgArrangementOnSurface2op_right_shift`
/*! \defgroup PkgArrangementOnSurface2Read CGAL::IO::read()
* \ingroup PkgArrangementOnSurface2IO
*
* Reads a given arrangement from a given input stream
* using a specific input format.
*
* \cgalHeading{Requirements}
*
* <UL>
* <LI>The instantiated `Formatter` class must model the
* `AosInputFormatter` concept.
* <LI>The instantiated `WithHistoryFormatter` class must model the
* `AosWithHistoryInputFormatter` concept.
* </UL>
*
* \sa `PkgArrangementOnSurface2Write`
* \sa `PkgArrangementOnSurface2op_left_shift`
* \sa `PkgArrangementOnSurface2op_right_shift`
*/
/// @{
/*!
Reads the arrangement object `arr` from the given input stream `is`
using a specific input format defined by \"formatter\".
/*! Reads the arrangement object `arr` from the given input stream `is`
* using a specific input format defined by \"formatter\".
*/
template <typename Traits, typename Dcel, typename Formatter>
std::istream& read(Arrangement_2<Traits,Dcel>& arr,
std::istream& is,
Formatter& formatter);
std::istream& is, Formatter& formatter);
/// @}
/*!
\defgroup PkgArrangementOnSurface2Write CGAL::IO::write()
\ingroup PkgArrangementOnSurface2IO
Writes a given arrangement into a given output stream
using a specific output format.
\cgalHeading{Requirements}
<UL>
<LI>The instantiated `Formatter` class must model the
`ArrangementOutputFormatter` concept.
<LI>The instantiated `WithHistoryFormatter` class must model the
`ArrangementWithHistoryOutputFormatter` concept.
</UL>
\sa `PkgArrangementOnSurface2Read`
\sa `PkgArrangementOnSurface2op_left_shift`
\sa `PkgArrangementOnSurface2op_right_shift`
/*! \defgroup PkgArrangementOnSurface2Write CGAL::IO::write()
* \ingroup PkgArrangementOnSurface2IO
*
* Writes a given arrangement into a given output stream
* using a specific output format.
*
* \cgalHeading{Requirements}
*
* <UL>
* <LI>The instantiated `Formatter` class must model the
* `AosOutputFormatter` concept.
* <LI>The instantiated `WithHistoryFormatter` class must model the
* `AosWithHistoryOutputFormatter` concept.
* </UL>
*
* \sa `PkgArrangementOnSurface2Read`
* \sa `PkgArrangementOnSurface2op_left_shift`
* \sa `PkgArrangementOnSurface2op_right_shift`
*/
/// @{
/*!
Writes the arrangement object `arr` into the given output stream
`os` using a specific output format defined by `formatter`.
/*! Writes the arrangement object `arr` into the given output stream
* `os` using a specific output format defined by `formatter`.
*/
template <typename Traits, typename Dcel, typename Formatter>
std::ostream& write(const Arrangement_2<Traits,Dcel>& arr,
std::ostream& os,
Formatter& formatter);
std::ostream& os, Formatter& formatter);
/// @}
} // namespace IO
/*!
\ingroup PkgArrangementOnSurface2op_left_shift
Inserts the arrangement object `arr` into the output stream
`os` using the output format defined by the
`Arr_text_formatter` class. Only the basic geometric and
topological features of the arrangement are inserted. Auxiliary data
that may be attached to the \dcel features is ignored.
/*! \ingroup PkgArrangementOnSurface2op_left_shift
* Inserts the arrangement object `arr` into the output stream
* `os` using the output format defined by the
* `Arr_text_formatter` class. Only the basic geometric and
* topological features of the arrangement are inserted. Auxiliary data
* that may be attached to the \dcel features is ignored.
*/
template <typename Traits, typename Dcel>
std::ostream& operator<<(std::ostream& os,
const Arrangement_2<Traits, Dcel>& arr);
/*!
\ingroup PkgArrangementOnSurface2op_right_shift
Extracts an arrangement from a given input stream using the input
format defined by the `Arr_text_formatter` class - that is, only the
basic geometric and topological features of the arrangement are read
and no auxiliary data is attached to the Dcel features.
/*! \ingroup PkgArrangementOnSurface2op_right_shift
* Extracts an arrangement from a given input stream using the input
* format defined by the `Arr_text_formatter` class - that is, only the
* basic geometric and topological features of the arrangement are read
* and no auxiliary data is attached to the Dcel features.
*/
template<class Traits, class Dcel>
template <typename Traits, typename Dcel>
std::istream& operator>>(std::istream& is, Arrangement_2<Traits, Dcel>& arr);
} /* end namespace CGAL::IO*/

View File

@ -1,93 +1,83 @@
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2IO
`Arr_extended_dcel_text_formatter` defines the format of an arrangement in an input or output stream
(typically a file stream), thus enabling reading and writing an `Arrangement`
instance using a simple text format. The `Arrangement` class should be
instantiated with a \dcel class which in turn instantiates the
`Arr_extended_dcel` template with the `VertexData`, `HalfedgeData` and
`FaceData` types.
The formatter supports reading and writing the data objects attached to the
arrangement vertices, halfedges and faces.
The `Arr_extended_dcel_text_formatter` class assumes that the nested `Point_2` and the `Curve_2` types
defined by the `Arrangement` template-parameter, as well as the `VertexData`,
`HalfedgeData` and `FaceData` types, can all be written to an input stream using
the `<<` operator and read from an input stream using the `>>` operator.
\cgalModels{ArrangementInputFormatter,ArrangementOutputFormatter}
\sa `PkgArrangementOnSurface2Read`
\sa `PkgArrangementOnSurface2Write`
\sa `Arr_extended_dcel<Traits,VData,HData,FData,V,H,F>`
/*! \ingroup PkgArrangementOnSurface2IO
*
* `Arr_extended_dcel_text_formatter` defines the format of an arrangement in an
* input or output stream (typically a file stream), thus enabling reading and
* writing an `Arrangement` instance using a simple text format. The
* `Arrangement` class should be instantiated with a \dcel class which in turn
* instantiates the `Arr_extended_dcel` template with the `VertexData`,
* `HalfedgeData` and `FaceData` types. The formatter supports reading and
* writing the data objects attached to the arrangement vertices, halfedges and
* faces.
*
* The `Arr_extended_dcel_text_formatter` class assumes that the nested
* `Point_2` and the `Curve_2` types defined by the `Arrangement`
* template-parameter, as well as the `VertexData`, `HalfedgeData` and
* `FaceData` types, can all be written to an input stream using the `<<`
* operator and read from an input stream using the `>>` operator.
*
* \cgalModels{AosInputFormatter,AosOutputFormatter}
*
* \sa `PkgArrangementOnSurface2Read`
* \sa `PkgArrangementOnSurface2Write`
* \sa `Arr_extended_dcel<Traits,VData,HData,FData,V,H,F>`
*/
template <typename Arrangement>
class Arr_extended_dcel_text_formatter {
public:
class Arr_extended_dcel_text_formatter {};
}; /* end Arr_extended_dcel_text_formatter */
} /* end namespace CGAL */
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2IO
`Arr_face_extended_text_formatter` defines the format of an arrangement in an input or output stream
(typically a file stream), thus enabling reading and writing an `Arrangement`
instance using a simple text format. The `Arrangement` class should be
instantiated with a \dcel class which in turn instantiates the
`Arr_face_extended_dcel` template with a `FaceData` type.
The formatter supports reading and writing the data objects attached to the
arrangement faces as well.
The `Arr_face_extended_text_formatter` class assumes that the nested `Point_2` and the `Curve_2` types
defined by the `Arrangement` template-parameter and that the `FaceData` type
can all be written to an input stream using the `<<` operator and read from an input stream using the `>>` operator.
\cgalModels{ArrangementInputFormatter,ArrangementOutputFormatter}
\sa `PkgArrangementOnSurface2Read`
\sa `PkgArrangementOnSurface2Write`
\sa `Arr_face_extended_dcel<Traits,FData,V,H,F>`
/*! \ingroup PkgArrangementOnSurface2IO
*
* `Arr_face_extended_text_formatter` defines the format of an arrangement in an
* input or output stream (typically a file stream), thus enabling reading and
* writing an `Arrangement` instance using a simple text format. The
* `Arrangement` class should be instantiated with a \dcel class which in turn
* instantiates the `Arr_face_extended_dcel` template with a `FaceData` type.
* The formatter supports reading and writing the data objects attached to the
* arrangement faces as well.
*
* The `Arr_face_extended_text_formatter` class assumes that the nested
* `Point_2` and the `Curve_2` types defined by the `Arrangement`
* template-parameter and that the `FaceData` type can all be written to an
* input stream using the `<<` operator and read from an input stream using the
* `>>` operator.
*
* \cgalModels{AosInputFormatter,AosOutputFormatter}
*
* \sa `PkgArrangementOnSurface2Read`
* \sa `PkgArrangementOnSurface2Write`
* \sa `Arr_face_extended_dcel<Traits,FData,V,H,F>`
*/
template <typename Arrangement>
class Arr_face_extended_text_formatter {
public:
class Arr_face_extended_text_formatter {};
}; /* end Arr_face_extended_text_formatter */
} /* end namespace CGAL */
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2IO
`Arr_text_formatter` defines the format of an arrangement in an input or output stream
(typically a file stream), thus enabling reading and writing an `Arrangement`
instance using a simple text format. The arrangement is assumed to store no auxiliary
data with its \dcel records (and if there are such records they will not be written
or read by the formatter).
The `Arr_text_formatter` class assumes that the nested `Point_2` and the `Curve_2` types
defined by the `Arrangement` template-parameter can both be written to an input
stream using the `<<` operator and read from an input stream using the `>>`
operator.
\cgalModels{ArrangementInputFormatter,ArrangementOutputFormatter}
\sa `PkgArrangementOnSurface2Read`
\sa `PkgArrangementOnSurface2Write`
/*! \ingroup PkgArrangementOnSurface2IO
*
* `Arr_text_formatter` defines the format of an arrangement in an input or
* output stream (typically a file stream), thus enabling reading and writing an
* `Arrangement` instance using a simple text format. The arrangement is assumed
* to store no auxiliary data with its \dcel records (and if there are such
* records they will not be written or read by the formatter).
*
* The `Arr_text_formatter` class assumes that the nested `Point_2` and the
* `Curve_2` types defined by the `Arrangement` template-parameter can both be
* written to an input stream using the `<<` operator and read from an input
* stream using the `>>` operator.
*
* \cgalModels{AosInputFormatter,AosOutputFormatter}
*
* \sa `PkgArrangementOnSurface2Read`
* \sa `PkgArrangementOnSurface2Write`
*/
template <typename Arrangement>
class Arr_text_formatter {
public:
class Arr_text_formatter {};
}; /* end Arr_text_formatter */
} /* end namespace CGAL */

View File

@ -2,51 +2,46 @@ namespace CGAL {
namespace IO {
/*!
\ingroup PkgArrangementOnSurface2Read
Reads the arrangement-with-history object `arr` from the given
input stream `is` using a specific input format defined by
\"formatter\".
/*! \ingroup PkgArrangementOnSurface2Read
*
* reads the arrangement-with-history object `arr` from the given
* input stream `is` using a specific input format defined by
* \"formatter\".
*/
template <typename Traits, typename Dcel,
typename WithHistoryFormatter>
std::istream& read(Arrangement_with_history_2<Traits,Dcel>& arr,
std::istream& is,
WithHistoryFormatter& formatter);
std::istream& is, WithHistoryFormatter& formatter);
/*!
\ingroup PkgArrangementOnSurface2Write
Writes the arrangement-with-history object `arr` into the given
output stream `os` using a specific output format defined by
`formatter`.
/*! \ingroup PkgArrangementOnSurface2Write
* writes the arrangement-with-history object `arr` into the given
* output stream `os` using a specific output format defined by
* `formatter`.
*/
template <typename Traits, typename Dcel,
typename WithHistoryFormatter>
std::ostream& write(const Arrangement_with_history_2<Traits,Dcel>& arr,
std::ostream& os,
WithHistoryFormatter& formatter);
std::ostream& os, WithHistoryFormatter& formatter);
} // namespace IO
/*!
\ingroup PkgArrangementOnSurface2op_left_shift
Inserts the arrangement-with-history object `arr` into the output
stream `os` using the output format defined by the
`Arr_with_history_text_formatter` class. Only the basic geometric
and topological features of the arrangement are inserted. Auxiliary
data that may be attached to the \dcel features is ignored.
/*! \ingroup PkgArrangementOnSurface2op_left_shift
* inserts the arrangement-with-history object `arr` into the output
* stream `os` using the output format defined by the
* `Arr_with_history_text_formatter` class. Only the basic geometric
* and topological features of the arrangement are inserted. Auxiliary
* data that may be attached to the \dcel features is ignored.
*/
template <typename Traits, typename Dcel>
std::ostream& operator<<(std::ostream& os,
const Arrangement_with_history_2<Traits,Dcel>& arr);
/*!
\ingroup PkgArrangementOnSurface2op_right_shift
Extracts an arrangement-with-history from a given input stream using
the default input format.
/*! \ingroup PkgArrangementOnSurface2op_right_shift
* extracts an arrangement-with-history from a given input stream using
* the default input format.
*/
template<class Traits, class Dcel>
std::istream& operator>>(std::istream& is, Arrangement_with_history_2<Traits,Dcel>& arr);
template <typename Traits, typename Dcel>
std::istream& operator>>(std::istream& is,
Arrangement_with_history_2<Traits,Dcel>& arr);
}

View File

@ -1,29 +1,24 @@
namespace CGAL {
/*!
\ingroup PkgArrangementOnSurface2IO
`Arr_with_history_text_formatter` defines the format of an arrangement in an input or output stream
(typically a file stream), thus enabling reading and writing an
arrangement-with-history instance using a simple text format.
The `ArrFormatter` parameter servers as a base class for
`Arr_with_history_text_formatter` and must be a model of the `ArrangementInputFormatter`
and the `ArrangementOutputFormatter` concepts. It is used to read or write
the base arrangement, while the derived class is responsible for reading and
writing the set of curves inducing the arrangement and maintaining the
relations between these curves and the edges they induce.
\cgalModels{ArrangementWithHistoryInputFormatter,ArrangementWithHistoryOutputFormatter}
\sa `PkgArrangementOnSurface2Read`
\sa `PkgArrangementOnSurface2Write`
/*! \ingroup PkgArrangementOnSurface2IO
*
* `Arr_with_history_text_formatter` defines the format of an arrangement in an
* input or output stream (typically a file stream), thus enabling reading and
* writing an arrangement-with-history instance using a simple text format.
*
* The `ArrFormatter` parameter servers as a base class for
* `Arr_with_history_text_formatter` and must be a model of the
* `AosInputFormatter` and the `AosOutputFormatter` concepts. It is used to read
* or write the base arrangement, while the derived class is responsible for
* reading and writing the set of curves inducing the arrangement and
* maintaining the relations between these curves and the edges they induce.
*
* \cgalModels{AosWithHistoryInputFormatter,AosWithHistoryOutputFormatter}
*
* \sa `PkgArrangementOnSurface2Read`
* \sa `PkgArrangementOnSurface2Write`
*/
template <typename ArrFormatter>
class Arr_with_history_text_formatter {
public:
class Arr_with_history_text_formatter {};
}; /* end Arr_with_history_text_formatter */
} /* end namespace CGAL */

View File

@ -25,51 +25,63 @@ namespace CGAL {
/*! \ingroup PkgArrangementOnSurface2Draw
opens a new window and draws `arr`, an instance of the `CGAL::Arrangement_2` class template. Parameters of the drawing are taken from the optional graphics scene options parameter.
A call to this function blocks the execution of the program until the drawing window is closed. This function requires `CGAL_Qt6`, and is only available if the macro `CGAL_USE_BASIC_VIEWER` is defined.
Linking with the cmake target `CGAL::CGAL_Basic_viewer` will link with `CGAL_Qt6` and add the definition `CGAL_USE_BASIC_VIEWER`.
\tparam GeometryTraits_2 a geometry traits type, a model of a 2D arrangement traits concept. At this point it must be an instance of either `CGAL::Arr_segment_traits_2` or `CGAL::Arr_conic_traits_2`.
\tparam Dcel the \dcel type, a model of the `ArrangementDcel` concept.
\tparam GSOptions a model of `GraphicsSceneOptions` concept.
\param arr the 2D arrangement to draw.
\param gso the graphics scene options parameter.
\sa `ArrangementDcel`
\sa `ArrangementTraits_2`
* The function opens a new window and draws `arr`, an instance of the
* `CGAL::Arrangement_2` class template. Parameters of the drawing are taken
* from the optional graphics scene options parameter.
*
* A call to this function blocks the execution of the program until the drawing
* window is closed. This function requires `CGAL_Qt6`, and is only available if
* the macro `CGAL_USE_BASIC_VIEWER` is defined. Linking with the cmake target
* `CGAL::CGAL_Basic_viewer` will link with `CGAL_Qt6` and add the definition
* `CGAL_USE_BASIC_VIEWER`.
*
* \tparam GeometryTraits_2 a geometry traits type, a model of a 2D arrangement
* traits concept. At this point it must be an instance of either
* `CGAL::Arr_segment_traits_2` or `CGAL::Arr_conic_traits_2`.
* \tparam Dcel the \dcel type, a model of the `AosDcel` concept.
* \tparam GSOptions a model of `GraphicsSceneOptions` concept.
*
* \param arr the 2D arrangement to draw.
* \param gso the graphics scene options parameter.
*
* \sa `AosDcel`
* \sa `AosTraits_2`
*/
template <typename GeometryTraits_2, typename Dcel, typename GSOptions>
void draw(const Arrangement_2<GeometryTraits_2, Dcel>& arr, const GSOptions& gso);
void draw(const Arrangement_2<GeometryTraits_2, Dcel>& arr,
const GSOptions& gso);
/*! \ingroup PkgArrangementOnSurface2Draw
A shortcut to `CGAL::draw(arr, Graphics_scene_options{})`.
*
* A shortcut to `CGAL::draw(arr, Graphics_scene_options{})`.
*/
template <typename GeometryTraits_2, typename Dcel>
void draw(const Arrangement_2<GeometryTraits_2, Dcel>& arr);
/*! \ingroup PkgArrangementOnSurface2Draw
adds the vertices, edges and faces of `arr` into the given graphic scene `gs`. Parameters of the cells are taken from the optional graphics scene options parameter `gso`. Note that `gs` is not cleared before being filled (to enable to draw several data structures in the same basic viewer).
\tparam GeometryTraits_2 a geometry traits type, a model of a 2D arrangement traits concept. At this point it must be an instance of either `CGAL::Arr_segment_traits_2` or `CGAL::Arr_conic_traits_2`.
\tparam Dcel the \dcel type, a model of the `ArrangementDcel` concept.
\tparam GSOptions a model of `GraphicsSceneOptions` concept.
\param arr the 2D arrangement to draw.
\param gs the graphic scene to fill.
\param gso the graphics scene options parameter.
*
* adds the vertices, edges and faces of `arr` into the given graphic scene
* `gs`. Parameters of the cells are taken from the optional graphics scene
* options parameter `gso`. Note that `gs` is not cleared before being filled
* (to enable to draw several data structures in the same basic viewer).
*
* \tparam GeometryTraits_2 a geometry traits type, a model of a 2D arrangement
* traits concept. At this point it must be an instance of either
* `CGAL::Arr_segment_traits_2` or `CGAL::Arr_conic_traits_2`.
* \tparam Dcel the \dcel type, a model of the `AosDcel` concept.
* \tparam GSOptions a model of `GraphicsSceneOptions` concept.
*
* \param arr the 2D arrangement to draw.
* \param gs the graphic scene to fill.
* \param gso the graphics scene options parameter.
*/
template <typename GeometryTraits_2, typename Dcel, typename GSOptions>
void add_to_graphics_scene(const Arrangement_2<GeometryTraits_2, Dcel>& arr,
CGAL::Graphics_scene& gs, const GSOptions& gso);
/*! \ingroup PkgArrangementOnSurface2Draw
A shortcut to `CGAL::add_to_graphics_scene(arr, gs, Graphics_scene_options{})`.
* A shortcut to `CGAL::add_to_graphics_scene(arr, gs,
* Graphics_scene_options{})`.
*/
template <typename GeometryTraits_2, typename Dcel>
void add_to_graphics_scene(const Arrangement_2<GeometryTraits_2, Dcel>& arr,

View File

@ -0,0 +1,50 @@
/*! \ingroup PkgArrangementOnSurface2ConceptsTraits
* \cgalConcept
*
* The concept `AosApproximatePointTraits_2` refines the basic traits concept
* `AosBasicTraits_2`. A model of this concept is able to approximate a point.
*
* \cgalRefines{AosBasicTraits_2}
*
* \cgalHasModelsBegin
* \cgalHasModels{CGAL::Arr_circle_segment_traits_2<Kernel>}
* \cgalHasModels{CGAL::Arr_conic_traits_2<RatKernel,AlgKernel,NtTraits>}
* \cgalHasModels{CGAL::Arr_geodesic_arc_on_sphere_traits_2}
* \cgalHasModels{CGAL::Arr_linear_traits_2<Kernel>}
* \cgalHasModels{CGAL::Arr_non_caching_segment_traits_2<Kernel>}
* \cgalHasModels{CGAL::Arr_segment_traits_2<Kernel>}
* \cgalHasModels{CGAL::Arr_polycurve_traits_2<GeometryTraits_2>}
* \cgalHasModels{CGAL::Arr_polyline_traits_2<SegmentTraits_2>}
* \cgalHasModels{CGAL::Arr_rational_function_traits_2<AlgebraicKernel_d_1>}
* \cgalHasModelsEnd
*
* \sa `AosConstructXMonotoneCurveTraits_2`
* \sa `AosXMonotoneTraits_2`
* \sa `AosTraits_2`
*/
class AosApproximatePointTraits_2 {
public:
/// \name Types
/// @{
//! the number type used to approximate point coordinates, e.g., double.
typedef unspecified_type Approximate_number_type;
/// @}
/// \name Functor Types
/// @{
/// models the concept `AosTraits::Approximate_2`.
typedef unspecified_type Approximate_2;
/// @}
/// \name Accessing Functor Objects
/// @{
///
Approximate_2 approximate_2_object() const;
/// @}
}

View File

@ -0,0 +1,47 @@
/*! \ingroup PkgArrangementOnSurface2ConceptsTraits
* \cgalConcept
*
* The concept `AosApproximateTraits_2` refines the concept
* `AosApproximatePointTraits_2`. A model of this concept is able to
* approximate a point and a curve (in addition to the ability to approximate the
* coordinates of a point).
*
* \cgalRefines{AosApproximatePointTraits_2}
*
* \cgalHasModelsBegin
* \cgalHasModels{CGAL::Arr_circle_segment_traits_2<Kernel>}
* \cgalHasModels{CGAL::Arr_conic_traits_2<RatKernel,AlgKernel,NtTraits>}
* \cgalHasModels{CGAL::Arr_geodesic_arc_on_sphere_traits_2}
* \cgalHasModels{CGAL::Arr_polyline_traits_2<SegmentTraits_2>}
* \cgalHasModels{CGAL::Arr_segment_traits_2<Kernel>}
* \cgalHasModelsEnd
*
* \sa `AosApproximatePointTraits_2`
* \sa `draw()`
*/
class AosApproximateTraits_2 {
public:
/// \name Types
/// @{
//! the approximate point.
typedef unspecified_type Approximate_point_2;
/// @}
/// \name Functor Types
/// @{
/// models the concept `AosTraits::Approximate_2`.
typedef unspecified_type Approximate_2;
/// @}
/// \name Accessing Functor Objects
/// @{
///
Approximate_2 approximate_2_object() const;
/// @}
}

View File

@ -1,7 +1,7 @@
/*! \ingroup PkgArrangementOnSurface2ConceptsTopologyTraits
* \cgalConcept
*
* The concept `ArrangementBasicTopologyTraits` defines the minimal
* The concept `AosBasicTopologyTraits` defines the minimal
* functionality needed for a model of a topology traits, which can substitutes
* the `TopolTraits` template parameters when the class template
* `Arrangement_on_surface_2<GeomTraits, TopolTraits>` is instantiated. In
@ -13,19 +13,18 @@
* \cgalHasModels{CGAL::Arr_spherical_topology_traits_2<GeometryTraits_2, Dcel>}
* \cgalHasModelsEnd
*/
class ArrangementBasicTopologyTraits {
class AosBasicTopologyTraits {
public:
/// \name Types
/// @{
//! models the concept `ArrTraits::Point_2`.
/// models the concept `AosTraits::Point_2`.
typedef unspecified_type Point_2;
//! models the concept `ArrTraits::XMonotoneCurve_2`.
/// models the concept `AosTraits::XMonotoneCurve_2`.
typedef unspecified_type X_monotone_curve_2;
//! models the concept `ArrangementDcel`.
/// models the concept `AosDcel`.
typedef unspecified_type Dcel;
/// @}
@ -38,10 +37,10 @@ public:
/// \name Access Functions
/// @{
/*! obtains the DCEL (const version). */
/*! obtains the \dcel (const version). */
const Dcel& dcel() const;
/*! obtains the DCEL (non-const version). */
/*! obtains the \dcel (non-const version). */
Dcel& dcel();
/// @}
@ -49,5 +48,4 @@ public:
/// \name Modifiers
/// @{
/// @}
};

View File

@ -1,7 +1,7 @@
/*! \ingroup PkgArrangementOnSurface2ConceptsTraits
* \cgalConcept
*
* The concept `ArrangementBasicTraits_2` defines the minimal set of geometric
* The concept `AosBasicTraits_2` defines the minimal set of geometric
* predicates needed for the construction and maintenance of objects of the
* class `Arrangement_2`, as well as performing simple queries (such as
* point-location queries) on such arrangements.
@ -16,7 +16,7 @@
* The `X_monotone_curve_2` curves of an arrangement are confined to an
* iso-rectangular area called the parameter space. The iso-rectangule can be
* unbounded, open, or closed. The set of predicates provided by a model the
* concept `ArrangementBasicTraits_2` is sufficient for constructing
* concept `AosBasicTraits_2` is sufficient for constructing
* arrangements of \f$x\f$-monotone curves that do not reach or approach the
* boundary of the parameter space. The nature of the input curves, whether they
* are expected to reach or approach the left, right, bottom, or top side of the
@ -45,19 +45,15 @@
* \cgalHasModels{CGAL::Arr_consolidated_curve_data_traits_2<Traits,Data>}
* \cgalHasModelsEnd
*/
class ArrangementBasicTraits_2 {
class AosBasicTraits_2 {
public:
/// \name Types
/// @{
/*! models the concept `ArrTraits::Point_2`.
*/
/// models the concept `AosTraits::Point_2`.
typedef unspecified_type Point_2;
/*! models the concept `ArrTraits::XMonotoneCurve_2`.
*/
/// models the concept `AosTraits::XMonotoneCurve_2`.
typedef unspecified_type X_monotone_curve_2;
/// @}
@ -65,24 +61,19 @@ public:
/// \name Categories
/// @{
/*! indicates whether the nested functor `Compare_at_x_left_2` is provided.
*/
/// indicates whether the nested functor `Compare_at_x_left_2` is provided.
typedef unspecified_type Has_left_category;
/*! Must be convertible to `CGAL::Arr_oblivious_side_tag`.
*/
/// Must be convertible to `CGAL::Arr_oblivious_side_tag`.
typedef unspecified_type Left_side_category;
/*! Must be convertible to `CGAL::Arr_oblivious_side_tag`.
*/
/// Must be convertible to `CGAL::Arr_oblivious_side_tag`.
typedef unspecified_type Bottom_side_category;
/*! Must be convertible to `CGAL::Arr_oblivious_side_tag`.
*/
/// Must be convertible to `CGAL::Arr_oblivious_side_tag`.
typedef unspecified_type Top_side_category;
/*!Must be convertible to `CGAL::Arr_oblivious_side_tag`.
*/
/// Must be convertible to `CGAL::Arr_oblivious_side_tag`.
typedef unspecified_type Right_side_category;
/// @}
@ -90,40 +81,35 @@ public:
/// \name Functor Types
/// @{
/*! models the concept `ArrTraits::CompareX_2`.
*/
/// models the concept `AosTraits::CompareX_2`.
typedef unspecified_type Compare_x_2;
/*! models the concept `ArrTraits::CompareXy_2`.
*/
/// models the concept `AosTraits::CompareXy_2`.
typedef unspecified_type Compare_xy_2;
/*! models the concept `ArrTraits::ConstructMinVertex_2`.
*/typedef unspecified_type Construct_min_vertex_2;
/// models the concept `AosTraits::ConstructMinVertex_2`.
typedef unspecified_type Construct_min_vertex_2;
/*! models the concept `ArrTraits::ConstructMaxVertex_2`.
*/
/// models the concept `AosTraits::ConstructMaxVertex_2`.
typedef unspecified_type Construct_max_vertex_2;
/*! models the concept `ArrTraits::IsVertical_2`.
/*! models the concept `AosTraits::IsVertical_2`.
*/
typedef unspecified_type Is_vertical_2;
/*! models the concept `ArrTraits::CompareYAtX_2`.
/*! models the concept `AosTraits::CompareYAtX_2`.
*/
typedef unspecified_type Compare_y_at_x_2;
/*! models the concept `ArrTraits::CompareYAtXLeft_2`. Required only if the
/*! models the concept `AosTraits::CompareYAtXLeft_2`. Required only if the
* `Has_left_category` category is convertible to `Tag_true`.
*/
typedef unspecified_type Compare_y_at_x_left_2;
/*! models the concept `ArrTraits::CompareYAtXRight_2`.
*/
/// models the concept `AosTraits::CompareYAtXRight_2`.
typedef unspecified_type Compare_y_at_x_right_2;
/*! models the concept `ArrTraits::Equal_2`.
*/
/// models the concept `AosTraits::Equal_2`.
typedef unspecified_type Equal_2;
/// @}
@ -131,33 +117,32 @@ public:
/// \name Accessing Functor Objects
/// @{
//!
///
Compare_x_2 compare_x_2_object() const;
//!
///
Compare_xy_2 compare_xy_2_object() const;
//!
///
Construct_min_vertex_2 construct_min_vertex_2_object() const;
//!
///
Construct_max_vertex_2 construct_max_vertex_2_object() const;
//!
///
Is_vertical_2 is_vertical_2_object() const;
//!
///
Compare_y_at_x_2 compare_y_at_x_2_object() const;
//!
///
Compare_y_at_x_left_2 compare_y_at_x_left_2_object() const;
//!
///
Compare_y_at_x_right_2 compare_y_at_x_right_2_object() const;
//!
///
Equal_2 equal_2_object() const;
/// @}
}; /* end ArrangementBasicTraits_2 */
}; /* end AosBasicTraits_2 */

View File

@ -1,8 +1,7 @@
/*!
* \ingroup PkgArrangementOnSurface2ConceptsTraits
/*! \ingroup PkgArrangementOnSurface2ConceptsTraits
* \cgalConcept
*
* `ArrangementBottomSideTraits_2` is an abstract concept. It generalizes all
* `AosBottomSideTraits_2` is an abstract concept. It generalizes all
* concepts that handle curves that either reach or approach the bottom boundary
* side of the parameter space. (An "abstract" concept is a concept that is
* useless on its own.) Only a combination of this concept and additional
@ -10,14 +9,13 @@
* boundary sides (that is, left, right, and top) are purposeful, and can have
* models.
*
* \cgalRefines{ArrangementHorizontalSideTraits_2}
* \cgalRefines{AosHorizontalSideTraits_2}
*
* \sa `ArrangementLeftSideTraits_2`,
* `ArrangementRightSideTraits_2`, and
* `ArrangementTopSideTraits_2`
* \sa `AosLeftSideTraits_2`
* \sa `AosRightSideTraits_2`
* \sa `AosTopSideTraits_2`
*/
class ArrangementBottomSideTraits_2 {
class AosBottomSideTraits_2 {
public:
/// \name Categories
/// @{
@ -29,6 +27,7 @@ public:
/// \name Functor Types
/// @{
/// @}
/// \name Accessing Functor Objects
/// @{

Some files were not shown because too many files have changed in this diff Show More