- corrections

This commit is contained in:
Julia Flötotto 2003-12-12 20:56:33 +00:00
parent 3612027128
commit 6a2449ca8b
22 changed files with 252 additions and 116 deletions

View File

@ -0,0 +1,64 @@
% +------------------------------------------------------------------------+
% | Reference manual page: Data_access.tex
% +------------------------------------------------------------------------+
% |
% | August 2003 Julia Floetotto
% | Package: Interpolation
% |
% |
% +------------------------------------------------------------------------+
\begin{ccRefClass}{Data_access<Map>} %% add template arg's if necessary
\ccIndexMainItemBegin{Data_access<Map>}
\ccDefinition
The struct \ccRefName\ implements a functor that allows to retrieve
data from a associative container. The functor keeps a reference to
the container. Given an instance of the container's key type, it
returns a pair of the container's value type and a boolean indicating
whether the retrieval was successful.\\
This class can be used to provide the function\_values and
function\_gradients of the interpolation functions.
\ccInclude{CGAL/interpolation_functions.h}
\ccParameters The class
\ccRefName\ has the container type \ccc{Map} as template parameter.
\ccTypes
\ccTypedef{typedef Map::mapped_type Data_type;}{}
\ccGlue
\ccTypedef{typedef Map::key_type Key_type;}{}
\ccCreation
\ccCreationVariable{data_access} %% choose variable name
\ccConstructor{Data_acces(const Map& map);}
{Introduces a \ccc{Data_access} to the container \ccc{map}.}
\ccMethod{std::pair< Data_type, bool> operator()(const Key_type& p);} {If
there is an entry for \ccc{p} in the container \ccc{map}, then the
pair of \ccc{map.find(p)} and \ccc{true} is returned. Otherwise, the
boolean value of the pair is \ccc{false}.}
\ccSeeAlso
\ccRefIdfierPage{CGAL::linear_interpolation}\\
\ccRefIdfierPage{CGAL::sibson_c1_interpolation} \\
\ccRefIdfierPage{CGAL::sibson_gradient_fitting} \\
\ccRefIdfierPage{CGAL::farin_c1_interpolation} \\
\ccRefIdfierPage{CGAL::quadratic_interpolation} \\
%\ccRefIdfierPage{CGAL::natural_neighbor_coordinates_2}\\
%\ccRefIdfierPage{CGAL::regular_neighbor_coordinates_2} \\
%\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_2_3}\\
%\ccImplementation
\ccIndexSubitemEnd{Interpolation}{Data_access}
\end{ccRefClass}
%\renewcommand{\ccRefPageBegin}{}
%\renewcommand{\ccRefPageEnd}{}
% +------------------------------------------------------------------------+
%%RefPage: end of main body, begin of footer
% EOF
% +------------------------------------------------------------------------+

View File

@ -1,5 +1,5 @@
% +------------------------------------------------------------------------+
% | Reference manual page: Interpolation_traits.tex
% | Reference manual page: InterpolationTraits.tex
% +------------------------------------------------------------------------+
% | 06.04.2000 Author
% | Package: Package
@ -24,7 +24,7 @@ defines the primitives used in the algorithms. The concept
\ccc{FieldNumberType}.} \ccNestedType{Point_d}{The point type on
which the function is defined and interpolated.}
\ccNestedType{Vector_d}{The corresponding vector type.}
\ccNestedType{Construct_vector} {A constructor object for
\ccNestedType{Construct_vector_d} {A constructor object for
\ccc{Vector_d}.
Provides~: \\
\ccc{Vector_d operator() (Point_d a, Point_d b)} which produces the
@ -32,40 +32,28 @@ defines the primitives used in the algorithms. The concept
a} and \\
\ccc{Vector_d operator() (Null_vector NULL_VECTOR)} which introduces
the null vector.}
\ccNestedType{Construct_scaled_vector}{Constructor object for
\ccNestedType{Construct_scaled_vector_d}{Constructor object for
\ccc{Vector_d}.
Provides~: \\
\ccc{Vector_d operator() (Vector_d v,FT scale)} which produces the
vector \ccc{v} scaled by a factor \ccc{scale}.}
\ccNestedType{Compute_squared_distance} {Constructor
\ccNestedType{Compute_squared_distance_d} {Constructor
object for \ccc{FT}. Provides the operator:\\
\ccc{FT operator() (Point_d a, Point_d b)} returning the squared
distance between \ccc{a} and \ccc{b}.}
%\ccCreation
\ccCreationVariable{traits} %% choose variable name
%A default constructor and a copy constructor
% and an assignement operator are required.
%Note that further constructors
%can be provided.
%%\ccThree{InterpolationTraits}{traits=gtrxx }{}
\ccConstructor{InterpolationTraits();}{default constructor.}
%\ccGlue
%\ccConstructor{InterpolationTraits(InterpolationTraits gtr);}
%{Copy constructor}
%\ccMethod{InterpolationTraits operator=(InterpolationTraits gtr);}
%{Assignment operator.}
%\ccOperations
\ccHeading{Construction objects} The following functions that
create instances of the above constructor object types must exist.
\ccMethod{Construct_vector construct_vector_object();}{}
\ccMethod{Construct_vector_d construct_vector_d_object();}{}
\ccGlue
\ccMethod{Construct_scaled_vector construct_scaled_vector_object();}{}
\ccMethod{Construct_scaled_vector_d construct_scaled_vector_d_object();}{}
\ccGlue
\ccMethod{Compute_squared_distance compute_squared_distance_object();}{}
\ccMethod{Compute_squared_distance_d compute_squared_distance_d_object();}{}
\ccHasModels
\ccc{CGAL::Interpolation_traits_2<K>} \\
@ -78,7 +66,7 @@ create instances of the above constructor object types must exist.
\ccRefIdfierPage{CGAL::quadratic_interpolation} \\
\ccRefIdfierPage{CGAL::natural_neighbor_coordinates_2}\\
\ccRefIdfierPage{CGAL::regular_neighbor_coordinates_2} \\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_2_3}\\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_3}\\
\end{ccRefConcept}
% +------------------------------------------------------------------------+

View File

@ -32,22 +32,22 @@
\ccIndexSubitem[c]{InterpolationTraits}{model} \\
\ccIndexSubitem[c]{GradientFittingTraits}{model} \\
\ccTypes
\ccSetThreeColumns{typedef R::Less_signed_distance_to_line_2 }{Less_signed_distance_to_line_2}{}
\ccSetThreeColumns{typedef K::Less_signed_distance_to_line_2 }{Less_signed_distance_to_line_2}{}
\ccThreeToTwo
\ccTypedef{typedef R::FT FT;}{}
\ccTypedef{typedef K::FT FT;}{}
\ccGlue
\ccTypedef{typedef R::Point_2 Point_d;}{}
\ccTypedef{typedef K::Point_2 Point_d;}{}
\ccGlue
\ccTypedef{typedef R::Vector_2 Vector_d;}{}
\ccTypedef{typedef K::Vector_2 Vector_d;}{}
\ccGlue
\ccTypedef{typedef R::Aff_transformation_2 Aff_transformation_d;}{}
\ccTypedef{typedef K::Aff_transformation_2 Aff_transformation_d;}{}
\ccGlue
\ccTypedef{typedef R::Construct_vector_2 Construct_vector_d;}{}
\ccTypedef{typedef K::Construct_vector_2 Construct_vector_d;}{}
\ccGlue
\ccTypedef{typedef R::Construct_scaled_vector_2
\ccTypedef{typedef K::Construct_scaled_vector_2
Construct_scaled_vector_d;}{}
\ccGlue
\ccTypedef{typedef R::Compute_squared_distance_2
\ccTypedef{typedef K::Compute_squared_distance_2
Compute_squared_distance_d;}{}
\ccGlue
\ccTypedef{typedef Construct_null_matrix_2<Aff_transformation_d>
@ -58,7 +58,7 @@
\ccGlue
\ccTypedef{typedef Construct_sum_matrix_2<Aff_transformation_d> Construct_sum_matrix_d;}{}
\ccGlue
\ccTypedef{typedef Construct_outer_product_2<Rep> Construct_outer_product_d;}{}
\ccTypedef{typedef Construct_outer_product_2<K> Construct_outer_product_d;}{}
\ccOperations
\ccAutoIndexingOff

View File

@ -11,7 +11,7 @@
% +------------------------------------------------------------------------+
\begin{ccRefClass}{Interpolation_traits_2<R>}
\begin{ccRefClass}{Interpolation_traits_2<K>}
@ -24,7 +24,7 @@
\ccc{InterpolationTraits} and can be used to instantiate the
geometric traits class of interpolation methods applied on a
bivariate function over a two-dimensional domain. The traits class
is templated by a kernel class \ccc{R}.
is templated by a kernel class \ccc{K}.
\ccInclude{CGAL/Interpolation_traits_2.h}
@ -33,20 +33,19 @@
\ccIndexSubitem[c]{InterpolationTraits}{model} \\
\ccTypes
\ccSetThreeColumns{typedef R::Less_signed_distance_to_line_2 }{Less_signed_distance_to_line_2}{}
\ccThreeToTwo
\ccTypedef{typedef R::FT FT;}{}
\ccTypedef{typedef K::FT FT;}{}
\ccGlue
\ccTypedef{typedef R::Point_2 Point_d;}{}
\ccTypedef{typedef K::Point_2 Point_d;}{}
\ccGlue
\ccTypedef{typedef R::Vector_2 Vector_d;}{}
\ccTypedef{typedef K::Vector_2 Vector_d;}{}
\ccGlue
\ccTypedef{typedef R::Construct_vector_2 Construct_vector_d;}{}
\ccTypedef{typedef K::Construct_vector_2 Construct_vector_d;}{}
\ccGlue
\ccTypedef{typedef R::Construct_scaled_vector_2
\ccTypedef{typedef K::Construct_scaled_vector_2
Construct_scaled_vector_d;}{}
\ccGlue
\ccTypedef{typedef R::Compute_squared_distance_2
\ccTypedef{typedef K::Compute_squared_distance_2
Compute_squared_distance_d;}{}
\ccOperations

View File

@ -55,7 +55,7 @@ to provide the square root operation.
\ccRefIdfierPage{CGAL::Interpolation_traits_2} \\
\ccRefIdfierPage{CGAL::natural_neighbor_coordinates_2}\\
\ccRefIdfierPage{CGAL::regular_neighbor_coordinates_2} \\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_2_3}\\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_3}\\
%\ccImplementation
\ccIndexSubitemEnd{Interpolation}{farin_c1_interpolation}

View File

@ -73,7 +73,11 @@ For a more thorough introduction see the user manual.
\ccHeading{Natural neighbor coordinate computation}
\ccRefIdfierPage{CGAL::natural_neighbor_coordinates_2} \\
\ccRefIdfierPage{CGAL::regular_neighbor_coordinates_2} \\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_2_3} \\
\ccHeading{Surface neighbor coordinate computation}
\ccRefIdfierPage{CGAL::Voronoi_intersection_2_traits_3<K>}\\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_3} \\
\clearpage
\lcHtml{\ccHeading{Alphabetical Listing of Reference Pages}}

View File

@ -65,7 +65,7 @@ values provided via a functor.
\ccRefIdfierPage{CGAL::quadratic_interpolation} \\
\ccRefIdfierPage{CGAL::natural_neighbor_coordinates_2}\\
\ccRefIdfierPage{CGAL::regular_neighbor_coordinates_2} \\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_2_3}\\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_3}\\
%\ccImplementation
\ccIndexSubitemEnd{Interpolation}{linear_interpolation}

View File

@ -7,6 +7,12 @@
\input{Interpolation_ref/InterpolationTraits}
\input{Interpolation_ref/Interpolation_traits_2}
\input{Interpolation_ref/natural_neighbor_coordinates_2}
\input{Interpolation_ref/regular_neighbor_coordinates_2}
\input{Interpolation_ref/Regular_neighbor_coordinates_traits_2}
\input{Interpolation_ref/sibson_gradient_fitting}
\input{Interpolation_ref/GradientFittingTraits}
\input{Interpolation_ref/Interpolation_gradient_fitting_traits_2}
\input{Interpolation_ref/Interpolation_gradient_fitting_traits_2}
%
%Surface coordinate stuff:
\input{Interpolation_ref/surface_neighbor_coordinates_3}
\input{Interpolation_ref/Voronoi_intersection_2_traits_3}

View File

@ -31,7 +31,7 @@ of the triangulation.
computes the natural neighbor coordinates for \ccc{p} with respect
to the points in the two-dimensional Delaunay triangulation \ccc{dt}.
The template class \ccc{Dt} should be of type
\ccc{Delaunay_triangulation_2}. The value type of the
\ccc{Delaunay_triangulation_2<Traits, Tds>}. The value type of the
\ccc{OutputIterator} is a pair of \ccc{Dt::Point_2} and the
coordinate value of type \ccc{Dt::Geom_traits::FT}. The sequence of
point-coordinate pairs that is computed by the function is placed
@ -63,7 +63,7 @@ of the triangulation.
over the boundary edges of the conflict zone of \ccc{p} in the
triangulation. It is the result of the function
\ccc{T.get_boundary_of_conflicts(p,std::back_inserter(hole),
start);}, see \ccc{Delaunay_triangulation_2}.}
start)}, see \ccc{Delaunay_triangulation_2<Traits, Tds>}.}
\ccFunction{template <class Dt, class OutputIterator> std::pair<
OutputIterator, typename Dt::Geom_traits::FT >
@ -74,10 +74,17 @@ of the triangulation.
\ccc{Dt} excluding \ccc{vh->point()}. The same as above for the
remaining parameters.}
\ccFunction{template <class Dt, class OutputIterator>
std::pair< OutputIterator, typename Dt::Geom_traits::FT >
regular_neighbor_coordinates_2(const Dt& rt,
typename Dt::Vertex_handle vh, OutputIterator out);}{The template
parameter \ccc{Traits} of the function above is instantiated to
\ccc{Dt::Geom_traits}.}
\ccHeading{Requirements}
\begin{enumerate}
\item \ccc{Dt} are equivalent to the class
\ccc{Delaunay_triangulation_2}.
\ccc{Delaunay_triangulation_2<Traits, Tds>}.
\item \ccc{OutputIterator::value_type} is equivalent to
\ccc{std::pair<Dt::Point_2, Dt::Geom_traits::FT>}, i.e.\ a pair
asscociating a point and its natural neighbor coordinate.
@ -94,10 +101,10 @@ of the triangulation.
\end{enumerate}
\ccSeeAlso
\ccRefIdfierPage{CGAL::linear_interpolation.h} \\
\ccRefIdfierPage{CGAL::Sibson_c1_interpolation.h}\\
\ccRefIdfierPage{CGAL::surface_coordinates_3.h} \\
\ccRefIdfierPage{CGAL::regular_neighbor_coordinates_2.h}
\ccRefIdfierPage{CGAL::linear_interpolation} \\
\ccRefIdfierPage{CGAL::sibson_c1_interpolation}\\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_3} \\
\ccRefIdfierPage{CGAL::regular_neighbor_coordinates_2}
\ccImplementation This function computes the areas stolen from the
Voronoi cells of points in \ccc{dt} by the insertion of \ccc{p}. The

View File

@ -70,11 +70,11 @@ function gradient given a point.
the type of the gradient of the function value and a boolean. The
function gradient type must provide a multiplication operation with
\ccc{Traits::Vector_d}.
\item A model of the functor types \ccc{Functor} and \ccc{GradFunctor}
resp.\ is provided by the struct \ccc{Data_access}. It must be
instantiated accordingly with an associative container (e.g.\ \stl\
\ccc{std::map}) having the point type as \ccc{key_type} and the
function value type and function gradient type resp.\ as
\item A model of the functor types \ccc{Functor} (resp.\
\ccc{GradFunctor}) is provided by the struct \ccc{Data_access}. It
must be instantiated accordingly with an associative container
(e.g.\ \stl\ \ccc{std::map}) having the point type as \ccc{key_type}
and the function value type (resp.\ function gradient type) as
\ccc{mapped_type}.
\item The number type \ccc{FT} provided by \ccc{Traits} must support
the square root operation \ccc{sqrt()}.
@ -82,7 +82,7 @@ function gradient given a point.
\ccFunction{template < class ForwardIterator, class Functor, class
GradFunctor, class Traits> typename Functor::result_type
Sibson_c1_interpolation_square(ForwardIterator first,
sibson_c1_interpolation_square(ForwardIterator first,
ForwardIterator beyond, const typename
std::iterator_traits<ForwardIterator>::value_type::second_type&
norm, Functor function_value, GradFunctor function_gradient,const
@ -101,7 +101,7 @@ function gradient given a point.
\ccRefIdfierPage{CGAL::Interpolation_gradient_fitting_traits_2<K>} \\
\ccRefIdfierPage{CGAL::natural_neighbor_coordinates_2}\\
\ccRefIdfierPage{CGAL::regular_neighbor_coordinates_2} \\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_2_3}\\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_3}\\
%\ccImplementation
\ccIndexSubitemEnd{Interpolation}{sibson_c1_interpolation}

View File

@ -80,10 +80,10 @@ coordinates.
\ccRefIdfierPage{CGAL::sibson_c1_interpolation} \\
\ccRefIdfierPage{CGAL::farin_c1_interpolation} \\
\ccRefIdfierPage{CGAL::quadratic_interpolation} \\
\ccRefIdfierPage{CGAL::Interpolation_gradient_fitting_traits_2} \\
\ccRefIdfierPage{CGAL::Interpolation_gradient_fitting_traits_2<K>} \\
\ccRefIdfierPage{CGAL::natural_neighbor_coordinates_2}\\
\ccRefIdfierPage{CGAL::regular_neighbor_coordinates_2} \\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_2_3}\\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_3}\\
\ccImplementation This function implements Sibson's gradient
estimation method based on natural neighbor coordinates

View File

@ -0,0 +1,64 @@
% +------------------------------------------------------------------------+
% | Reference manual page: Data_access.tex
% +------------------------------------------------------------------------+
% |
% | August 2003 Julia Floetotto
% | Package: Interpolation
% |
% |
% +------------------------------------------------------------------------+
\begin{ccRefClass}{Data_access<Map>} %% add template arg's if necessary
\ccIndexMainItemBegin{Data_access<Map>}
\ccDefinition
The struct \ccRefName\ implements a functor that allows to retrieve
data from a associative container. The functor keeps a reference to
the container. Given an instance of the container's key type, it
returns a pair of the container's value type and a boolean indicating
whether the retrieval was successful.\\
This class can be used to provide the function\_values and
function\_gradients of the interpolation functions.
\ccInclude{CGAL/interpolation_functions.h}
\ccParameters The class
\ccRefName\ has the container type \ccc{Map} as template parameter.
\ccTypes
\ccTypedef{typedef Map::mapped_type Data_type;}{}
\ccGlue
\ccTypedef{typedef Map::key_type Key_type;}{}
\ccCreation
\ccCreationVariable{data_access} %% choose variable name
\ccConstructor{Data_acces(const Map& map);}
{Introduces a \ccc{Data_access} to the container \ccc{map}.}
\ccMethod{std::pair< Data_type, bool> operator()(const Key_type& p);} {If
there is an entry for \ccc{p} in the container \ccc{map}, then the
pair of \ccc{map.find(p)} and \ccc{true} is returned. Otherwise, the
boolean value of the pair is \ccc{false}.}
\ccSeeAlso
\ccRefIdfierPage{CGAL::linear_interpolation}\\
\ccRefIdfierPage{CGAL::sibson_c1_interpolation} \\
\ccRefIdfierPage{CGAL::sibson_gradient_fitting} \\
\ccRefIdfierPage{CGAL::farin_c1_interpolation} \\
\ccRefIdfierPage{CGAL::quadratic_interpolation} \\
%\ccRefIdfierPage{CGAL::natural_neighbor_coordinates_2}\\
%\ccRefIdfierPage{CGAL::regular_neighbor_coordinates_2} \\
%\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_2_3}\\
%\ccImplementation
\ccIndexSubitemEnd{Interpolation}{Data_access}
\end{ccRefClass}
%\renewcommand{\ccRefPageBegin}{}
%\renewcommand{\ccRefPageEnd}{}
% +------------------------------------------------------------------------+
%%RefPage: end of main body, begin of footer
% EOF
% +------------------------------------------------------------------------+

View File

@ -1,5 +1,5 @@
% +------------------------------------------------------------------------+
% | Reference manual page: Interpolation_traits.tex
% | Reference manual page: InterpolationTraits.tex
% +------------------------------------------------------------------------+
% | 06.04.2000 Author
% | Package: Package
@ -24,7 +24,7 @@ defines the primitives used in the algorithms. The concept
\ccc{FieldNumberType}.} \ccNestedType{Point_d}{The point type on
which the function is defined and interpolated.}
\ccNestedType{Vector_d}{The corresponding vector type.}
\ccNestedType{Construct_vector} {A constructor object for
\ccNestedType{Construct_vector_d} {A constructor object for
\ccc{Vector_d}.
Provides~: \\
\ccc{Vector_d operator() (Point_d a, Point_d b)} which produces the
@ -32,40 +32,28 @@ defines the primitives used in the algorithms. The concept
a} and \\
\ccc{Vector_d operator() (Null_vector NULL_VECTOR)} which introduces
the null vector.}
\ccNestedType{Construct_scaled_vector}{Constructor object for
\ccNestedType{Construct_scaled_vector_d}{Constructor object for
\ccc{Vector_d}.
Provides~: \\
\ccc{Vector_d operator() (Vector_d v,FT scale)} which produces the
vector \ccc{v} scaled by a factor \ccc{scale}.}
\ccNestedType{Compute_squared_distance} {Constructor
\ccNestedType{Compute_squared_distance_d} {Constructor
object for \ccc{FT}. Provides the operator:\\
\ccc{FT operator() (Point_d a, Point_d b)} returning the squared
distance between \ccc{a} and \ccc{b}.}
%\ccCreation
\ccCreationVariable{traits} %% choose variable name
%A default constructor and a copy constructor
% and an assignement operator are required.
%Note that further constructors
%can be provided.
%%\ccThree{InterpolationTraits}{traits=gtrxx }{}
\ccConstructor{InterpolationTraits();}{default constructor.}
%\ccGlue
%\ccConstructor{InterpolationTraits(InterpolationTraits gtr);}
%{Copy constructor}
%\ccMethod{InterpolationTraits operator=(InterpolationTraits gtr);}
%{Assignment operator.}
%\ccOperations
\ccHeading{Construction objects} The following functions that
create instances of the above constructor object types must exist.
\ccMethod{Construct_vector construct_vector_object();}{}
\ccMethod{Construct_vector_d construct_vector_d_object();}{}
\ccGlue
\ccMethod{Construct_scaled_vector construct_scaled_vector_object();}{}
\ccMethod{Construct_scaled_vector_d construct_scaled_vector_d_object();}{}
\ccGlue
\ccMethod{Compute_squared_distance compute_squared_distance_object();}{}
\ccMethod{Compute_squared_distance_d compute_squared_distance_d_object();}{}
\ccHasModels
\ccc{CGAL::Interpolation_traits_2<K>} \\
@ -78,7 +66,7 @@ create instances of the above constructor object types must exist.
\ccRefIdfierPage{CGAL::quadratic_interpolation} \\
\ccRefIdfierPage{CGAL::natural_neighbor_coordinates_2}\\
\ccRefIdfierPage{CGAL::regular_neighbor_coordinates_2} \\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_2_3}\\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_3}\\
\end{ccRefConcept}
% +------------------------------------------------------------------------+

View File

@ -32,22 +32,22 @@
\ccIndexSubitem[c]{InterpolationTraits}{model} \\
\ccIndexSubitem[c]{GradientFittingTraits}{model} \\
\ccTypes
\ccSetThreeColumns{typedef R::Less_signed_distance_to_line_2 }{Less_signed_distance_to_line_2}{}
\ccSetThreeColumns{typedef K::Less_signed_distance_to_line_2 }{Less_signed_distance_to_line_2}{}
\ccThreeToTwo
\ccTypedef{typedef R::FT FT;}{}
\ccTypedef{typedef K::FT FT;}{}
\ccGlue
\ccTypedef{typedef R::Point_2 Point_d;}{}
\ccTypedef{typedef K::Point_2 Point_d;}{}
\ccGlue
\ccTypedef{typedef R::Vector_2 Vector_d;}{}
\ccTypedef{typedef K::Vector_2 Vector_d;}{}
\ccGlue
\ccTypedef{typedef R::Aff_transformation_2 Aff_transformation_d;}{}
\ccTypedef{typedef K::Aff_transformation_2 Aff_transformation_d;}{}
\ccGlue
\ccTypedef{typedef R::Construct_vector_2 Construct_vector_d;}{}
\ccTypedef{typedef K::Construct_vector_2 Construct_vector_d;}{}
\ccGlue
\ccTypedef{typedef R::Construct_scaled_vector_2
\ccTypedef{typedef K::Construct_scaled_vector_2
Construct_scaled_vector_d;}{}
\ccGlue
\ccTypedef{typedef R::Compute_squared_distance_2
\ccTypedef{typedef K::Compute_squared_distance_2
Compute_squared_distance_d;}{}
\ccGlue
\ccTypedef{typedef Construct_null_matrix_2<Aff_transformation_d>
@ -58,7 +58,7 @@
\ccGlue
\ccTypedef{typedef Construct_sum_matrix_2<Aff_transformation_d> Construct_sum_matrix_d;}{}
\ccGlue
\ccTypedef{typedef Construct_outer_product_2<Rep> Construct_outer_product_d;}{}
\ccTypedef{typedef Construct_outer_product_2<K> Construct_outer_product_d;}{}
\ccOperations
\ccAutoIndexingOff

View File

@ -11,7 +11,7 @@
% +------------------------------------------------------------------------+
\begin{ccRefClass}{Interpolation_traits_2<R>}
\begin{ccRefClass}{Interpolation_traits_2<K>}
@ -24,7 +24,7 @@
\ccc{InterpolationTraits} and can be used to instantiate the
geometric traits class of interpolation methods applied on a
bivariate function over a two-dimensional domain. The traits class
is templated by a kernel class \ccc{R}.
is templated by a kernel class \ccc{K}.
\ccInclude{CGAL/Interpolation_traits_2.h}
@ -33,20 +33,19 @@
\ccIndexSubitem[c]{InterpolationTraits}{model} \\
\ccTypes
\ccSetThreeColumns{typedef R::Less_signed_distance_to_line_2 }{Less_signed_distance_to_line_2}{}
\ccThreeToTwo
\ccTypedef{typedef R::FT FT;}{}
\ccTypedef{typedef K::FT FT;}{}
\ccGlue
\ccTypedef{typedef R::Point_2 Point_d;}{}
\ccTypedef{typedef K::Point_2 Point_d;}{}
\ccGlue
\ccTypedef{typedef R::Vector_2 Vector_d;}{}
\ccTypedef{typedef K::Vector_2 Vector_d;}{}
\ccGlue
\ccTypedef{typedef R::Construct_vector_2 Construct_vector_d;}{}
\ccTypedef{typedef K::Construct_vector_2 Construct_vector_d;}{}
\ccGlue
\ccTypedef{typedef R::Construct_scaled_vector_2
\ccTypedef{typedef K::Construct_scaled_vector_2
Construct_scaled_vector_d;}{}
\ccGlue
\ccTypedef{typedef R::Compute_squared_distance_2
\ccTypedef{typedef K::Compute_squared_distance_2
Compute_squared_distance_d;}{}
\ccOperations

View File

@ -55,7 +55,7 @@ to provide the square root operation.
\ccRefIdfierPage{CGAL::Interpolation_traits_2} \\
\ccRefIdfierPage{CGAL::natural_neighbor_coordinates_2}\\
\ccRefIdfierPage{CGAL::regular_neighbor_coordinates_2} \\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_2_3}\\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_3}\\
%\ccImplementation
\ccIndexSubitemEnd{Interpolation}{farin_c1_interpolation}

View File

@ -73,7 +73,11 @@ For a more thorough introduction see the user manual.
\ccHeading{Natural neighbor coordinate computation}
\ccRefIdfierPage{CGAL::natural_neighbor_coordinates_2} \\
\ccRefIdfierPage{CGAL::regular_neighbor_coordinates_2} \\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_2_3} \\
\ccHeading{Surface neighbor coordinate computation}
\ccRefIdfierPage{CGAL::Voronoi_intersection_2_traits_3<K>}\\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_3} \\
\clearpage
\lcHtml{\ccHeading{Alphabetical Listing of Reference Pages}}

View File

@ -65,7 +65,7 @@ values provided via a functor.
\ccRefIdfierPage{CGAL::quadratic_interpolation} \\
\ccRefIdfierPage{CGAL::natural_neighbor_coordinates_2}\\
\ccRefIdfierPage{CGAL::regular_neighbor_coordinates_2} \\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_2_3}\\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_3}\\
%\ccImplementation
\ccIndexSubitemEnd{Interpolation}{linear_interpolation}

View File

@ -7,6 +7,12 @@
\input{Interpolation_ref/InterpolationTraits}
\input{Interpolation_ref/Interpolation_traits_2}
\input{Interpolation_ref/natural_neighbor_coordinates_2}
\input{Interpolation_ref/regular_neighbor_coordinates_2}
\input{Interpolation_ref/Regular_neighbor_coordinates_traits_2}
\input{Interpolation_ref/sibson_gradient_fitting}
\input{Interpolation_ref/GradientFittingTraits}
\input{Interpolation_ref/Interpolation_gradient_fitting_traits_2}
\input{Interpolation_ref/Interpolation_gradient_fitting_traits_2}
%
%Surface coordinate stuff:
\input{Interpolation_ref/surface_neighbor_coordinates_3}
\input{Interpolation_ref/Voronoi_intersection_2_traits_3}

View File

@ -31,7 +31,7 @@ of the triangulation.
computes the natural neighbor coordinates for \ccc{p} with respect
to the points in the two-dimensional Delaunay triangulation \ccc{dt}.
The template class \ccc{Dt} should be of type
\ccc{Delaunay_triangulation_2}. The value type of the
\ccc{Delaunay_triangulation_2<Traits, Tds>}. The value type of the
\ccc{OutputIterator} is a pair of \ccc{Dt::Point_2} and the
coordinate value of type \ccc{Dt::Geom_traits::FT}. The sequence of
point-coordinate pairs that is computed by the function is placed
@ -63,7 +63,7 @@ of the triangulation.
over the boundary edges of the conflict zone of \ccc{p} in the
triangulation. It is the result of the function
\ccc{T.get_boundary_of_conflicts(p,std::back_inserter(hole),
start);}, see \ccc{Delaunay_triangulation_2}.}
start)}, see \ccc{Delaunay_triangulation_2<Traits, Tds>}.}
\ccFunction{template <class Dt, class OutputIterator> std::pair<
OutputIterator, typename Dt::Geom_traits::FT >
@ -74,10 +74,17 @@ of the triangulation.
\ccc{Dt} excluding \ccc{vh->point()}. The same as above for the
remaining parameters.}
\ccFunction{template <class Dt, class OutputIterator>
std::pair< OutputIterator, typename Dt::Geom_traits::FT >
regular_neighbor_coordinates_2(const Dt& rt,
typename Dt::Vertex_handle vh, OutputIterator out);}{The template
parameter \ccc{Traits} of the function above is instantiated to
\ccc{Dt::Geom_traits}.}
\ccHeading{Requirements}
\begin{enumerate}
\item \ccc{Dt} are equivalent to the class
\ccc{Delaunay_triangulation_2}.
\ccc{Delaunay_triangulation_2<Traits, Tds>}.
\item \ccc{OutputIterator::value_type} is equivalent to
\ccc{std::pair<Dt::Point_2, Dt::Geom_traits::FT>}, i.e.\ a pair
asscociating a point and its natural neighbor coordinate.
@ -94,10 +101,10 @@ of the triangulation.
\end{enumerate}
\ccSeeAlso
\ccRefIdfierPage{CGAL::linear_interpolation.h} \\
\ccRefIdfierPage{CGAL::Sibson_c1_interpolation.h}\\
\ccRefIdfierPage{CGAL::surface_coordinates_3.h} \\
\ccRefIdfierPage{CGAL::regular_neighbor_coordinates_2.h}
\ccRefIdfierPage{CGAL::linear_interpolation} \\
\ccRefIdfierPage{CGAL::sibson_c1_interpolation}\\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_3} \\
\ccRefIdfierPage{CGAL::regular_neighbor_coordinates_2}
\ccImplementation This function computes the areas stolen from the
Voronoi cells of points in \ccc{dt} by the insertion of \ccc{p}. The

View File

@ -70,11 +70,11 @@ function gradient given a point.
the type of the gradient of the function value and a boolean. The
function gradient type must provide a multiplication operation with
\ccc{Traits::Vector_d}.
\item A model of the functor types \ccc{Functor} and \ccc{GradFunctor}
resp.\ is provided by the struct \ccc{Data_access}. It must be
instantiated accordingly with an associative container (e.g.\ \stl\
\ccc{std::map}) having the point type as \ccc{key_type} and the
function value type and function gradient type resp.\ as
\item A model of the functor types \ccc{Functor} (resp.\
\ccc{GradFunctor}) is provided by the struct \ccc{Data_access}. It
must be instantiated accordingly with an associative container
(e.g.\ \stl\ \ccc{std::map}) having the point type as \ccc{key_type}
and the function value type (resp.\ function gradient type) as
\ccc{mapped_type}.
\item The number type \ccc{FT} provided by \ccc{Traits} must support
the square root operation \ccc{sqrt()}.
@ -82,7 +82,7 @@ function gradient given a point.
\ccFunction{template < class ForwardIterator, class Functor, class
GradFunctor, class Traits> typename Functor::result_type
Sibson_c1_interpolation_square(ForwardIterator first,
sibson_c1_interpolation_square(ForwardIterator first,
ForwardIterator beyond, const typename
std::iterator_traits<ForwardIterator>::value_type::second_type&
norm, Functor function_value, GradFunctor function_gradient,const
@ -101,7 +101,7 @@ function gradient given a point.
\ccRefIdfierPage{CGAL::Interpolation_gradient_fitting_traits_2<K>} \\
\ccRefIdfierPage{CGAL::natural_neighbor_coordinates_2}\\
\ccRefIdfierPage{CGAL::regular_neighbor_coordinates_2} \\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_2_3}\\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_3}\\
%\ccImplementation
\ccIndexSubitemEnd{Interpolation}{sibson_c1_interpolation}

View File

@ -80,10 +80,10 @@ coordinates.
\ccRefIdfierPage{CGAL::sibson_c1_interpolation} \\
\ccRefIdfierPage{CGAL::farin_c1_interpolation} \\
\ccRefIdfierPage{CGAL::quadratic_interpolation} \\
\ccRefIdfierPage{CGAL::Interpolation_gradient_fitting_traits_2} \\
\ccRefIdfierPage{CGAL::Interpolation_gradient_fitting_traits_2<K>} \\
\ccRefIdfierPage{CGAL::natural_neighbor_coordinates_2}\\
\ccRefIdfierPage{CGAL::regular_neighbor_coordinates_2} \\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_2_3}\\
\ccRefIdfierPage{CGAL::surface_neighbor_coordinates_3}\\
\ccImplementation This function implements Sibson's gradient
estimation method based on natural neighbor coordinates