From 6bb7002151cb35a19683bed7da2af7320171e44f Mon Sep 17 00:00:00 2001 From: Sylvain Pion Date: Thu, 27 Sep 2001 07:27:11 +0000 Subject: [PATCH] - circular permutation -> cyclic permutation. --- Packages/Triangulation_3/doc_tex/TriangulationDS_3/TDS3.tex | 2 +- .../Triangulation_3/doc_tex/basic/TriangulationDS_3/TDS3.tex | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/Packages/Triangulation_3/doc_tex/TriangulationDS_3/TDS3.tex b/Packages/Triangulation_3/doc_tex/TriangulationDS_3/TDS3.tex index fb4b627bc58..0c5d7379b15 100644 --- a/Packages/Triangulation_3/doc_tex/TriangulationDS_3/TDS3.tex +++ b/Packages/Triangulation_3/doc_tex/TriangulationDS_3/TDS3.tex @@ -207,7 +207,7 @@ The set {\Large $\sigma$}$_4$ of permutations of $(0,1,2,3)$ has cardinality 24, and the set of positive permutations $A_4$ has cardinality 12. Thus, for a given orientation, there are up to 12 different orderings of the four vertices of a cell. Note -that circular permutations are negative and so do not preserve the +that cyclic permutations are negative and so do not preserve the orientation of a cell. \begin{figure}[htbp] diff --git a/Packages/Triangulation_3/doc_tex/basic/TriangulationDS_3/TDS3.tex b/Packages/Triangulation_3/doc_tex/basic/TriangulationDS_3/TDS3.tex index fb4b627bc58..0c5d7379b15 100644 --- a/Packages/Triangulation_3/doc_tex/basic/TriangulationDS_3/TDS3.tex +++ b/Packages/Triangulation_3/doc_tex/basic/TriangulationDS_3/TDS3.tex @@ -207,7 +207,7 @@ The set {\Large $\sigma$}$_4$ of permutations of $(0,1,2,3)$ has cardinality 24, and the set of positive permutations $A_4$ has cardinality 12. Thus, for a given orientation, there are up to 12 different orderings of the four vertices of a cell. Note -that circular permutations are negative and so do not preserve the +that cyclic permutations are negative and so do not preserve the orientation of a cell. \begin{figure}[htbp]