From 7060c4559bd2083926ef10f45dc2b8f069392d3d Mon Sep 17 00:00:00 2001 From: Menelaos Karavelas Date: Mon, 6 Oct 2003 13:18:08 +0000 Subject: [PATCH] added the qualifier CGAL:: in various places --- .../doc_tex/Apollonius_graph_2/Apollonius_2.tex | 17 +++++++++-------- .../basic/Apollonius_graph_2/Apollonius_2.tex | 17 +++++++++-------- 2 files changed, 18 insertions(+), 16 deletions(-) diff --git a/Packages/Apollonius_graph_2/doc_tex/Apollonius_graph_2/Apollonius_2.tex b/Packages/Apollonius_graph_2/doc_tex/Apollonius_graph_2/Apollonius_2.tex index d4728185130..2a237940874 100644 --- a/Packages/Apollonius_graph_2/doc_tex/Apollonius_graph_2/Apollonius_2.tex +++ b/Packages/Apollonius_graph_2/doc_tex/Apollonius_graph_2/Apollonius_2.tex @@ -364,8 +364,8 @@ not. We want to determine the sign of the distance of the left-most circle from the one in the middle. The almost horizontal curve is the bisector of the top-most and bottom-most circles. Left: the - predicate returns \ccc{NEGATIVE}. Right: the predicate returns - \ccc{POSITIVE}.} + predicate returns \ccc{CGAL::NEGATIVE}. Right: the predicate + returns \ccc{CGAL::POSITIVE}.} \begin{ccHtmlOnly} \end{ccHtmlOnly} @@ -506,12 +506,13 @@ inexact predicates. Since using an exact number type may be too slow, the \ccc{Apollonius_graph_traits_2} class is designed to support the dynamic filtering of \cgal{} through the -\ccc{Filtered_exact} mechanism. In particular if \ccc{CT} is an -inexact number type that supports the operations denoted by the tag -\ccc{Method_tag} and \ccc{ET} is an exact number type for these -operations, then kernel with number type \ccc{Filtered_exact} -will yield exact predicates for the Apollonius graph traits. To give a -concrete example, \ccc{Filtered_exact} with +\ccc{CGAL::Filtered_exact} mechanism. In particular if \ccc{CT} +is an inexact number type that supports the operations denoted by the +tag \ccc{Method_tag} and \ccc{ET} is an exact number type for these +operations, then kernel with number type +\ccc{CGAL::Filtered_exact} will yield exact predicates for the +Apollonius graph traits. To give a concrete example, +\ccc{CGAL::Filtered_exact} with \ccc{CGAL::Ring_tag} will produce exact predicates. Another possibility for fast and exact predicate evalutation is to use diff --git a/Packages/Apollonius_graph_2/doc_tex/basic/Apollonius_graph_2/Apollonius_2.tex b/Packages/Apollonius_graph_2/doc_tex/basic/Apollonius_graph_2/Apollonius_2.tex index d4728185130..2a237940874 100644 --- a/Packages/Apollonius_graph_2/doc_tex/basic/Apollonius_graph_2/Apollonius_2.tex +++ b/Packages/Apollonius_graph_2/doc_tex/basic/Apollonius_graph_2/Apollonius_2.tex @@ -364,8 +364,8 @@ not. We want to determine the sign of the distance of the left-most circle from the one in the middle. The almost horizontal curve is the bisector of the top-most and bottom-most circles. Left: the - predicate returns \ccc{NEGATIVE}. Right: the predicate returns - \ccc{POSITIVE}.} + predicate returns \ccc{CGAL::NEGATIVE}. Right: the predicate + returns \ccc{CGAL::POSITIVE}.} \begin{ccHtmlOnly} \end{ccHtmlOnly} @@ -506,12 +506,13 @@ inexact predicates. Since using an exact number type may be too slow, the \ccc{Apollonius_graph_traits_2} class is designed to support the dynamic filtering of \cgal{} through the -\ccc{Filtered_exact} mechanism. In particular if \ccc{CT} is an -inexact number type that supports the operations denoted by the tag -\ccc{Method_tag} and \ccc{ET} is an exact number type for these -operations, then kernel with number type \ccc{Filtered_exact} -will yield exact predicates for the Apollonius graph traits. To give a -concrete example, \ccc{Filtered_exact} with +\ccc{CGAL::Filtered_exact} mechanism. In particular if \ccc{CT} +is an inexact number type that supports the operations denoted by the +tag \ccc{Method_tag} and \ccc{ET} is an exact number type for these +operations, then kernel with number type +\ccc{CGAL::Filtered_exact} will yield exact predicates for the +Apollonius graph traits. To give a concrete example, +\ccc{CGAL::Filtered_exact} with \ccc{CGAL::Ring_tag} will produce exact predicates. Another possibility for fast and exact predicate evalutation is to use