Enhance the basic MC example + related user manual improvements

This commit is contained in:
Mael Rouxel-Labbé 2025-03-24 14:19:21 +01:00
parent 27a72a669b
commit 7461a2b8f9
3 changed files with 55 additions and 13 deletions

View File

@ -261,9 +261,19 @@ run both methods on different types of input data.
The following example illustrates a basic run of the Marching Cubes algorithm, and in particular
the free function to create a domain from a %Cartesian grid, and the named parameter
that enables the user to switch from Marching Cubes to Topologically Correct Marching Cubes.
The resulting triangle soup is converted to a triangle mesh, and is remeshed using
the isotropic remeshing algorithm.
\cgalExample{Isosurfacing_3/marching_cubes.cpp}
\cgalFigureAnchor{IsosurfacingMC}
<center>
<img src="MC.png" style="max-width:70%;"/>
</center>
\cgalFigureCaptionBegin{IsosurfacingMC}
Results of the Marching Cubes algorithm, and the final result after remeshing.
\cgalFigureCaptionEnd
\subsection SubSecDCExample Dual Contouring
The following example illustrates a basic run of the %Dual Contouring algorithm, and in particular

Binary file not shown.

After

Width:  |  Height:  |  Size: 374 KiB

View File

@ -1,12 +1,18 @@
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Surface_mesh.h>
#include <CGAL/Isosurfacing_3/Cartesian_grid_3.h>
#include <CGAL/Isosurfacing_3/Value_function_3.h>
#include <CGAL/Isosurfacing_3/marching_cubes_3.h>
#include <CGAL/Isosurfacing_3/Marching_cubes_domain_3.h>
#include <CGAL/IO/polygon_soup_io.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/IO/polygon_mesh_io.h>
#include <CGAL/Polygon_mesh_processing/polygon_soup_to_polygon_mesh.h>
#include <CGAL/Polygon_mesh_processing/remesh.h>
#include <cmath>
#include <iostream>
#include <vector>
using Kernel = CGAL::Simple_cartesian<double>;
@ -21,25 +27,32 @@ using Domain = CGAL::Isosurfacing::Marching_cubes_domain_3<Grid, Values>;
using Point_range = std::vector<Point>;
using Polygon_range = std::vector<std::vector<std::size_t> >;
using Mesh = CGAL::Surface_mesh<Point>;
auto value_fn = [](const Point& p) -> FT
{
const FT& x = p.x(), y = p.y(), z = p.z();
// "Klein Bottle" - https://www-sop.inria.fr/galaad/surface/
return -1-4*y*z*z*x*x-2*y+6*z*z*x*x*y*y-16*x*z+16*x*z*y*y+3*x*x+7*y*y+11*z*z-11*z*z*z*z+z*z*z*z*z*z-3*x*x*x*x-7*y*y*y*y+x*x*x*x*x*x+y*y*y*y*y*y-14*z*z*x*x-18*z*z*y*y+3*z*z*z*z*x*x+3*z*z*z*z*y*y-10*x*x*y*y-4*y*y*y*z*z+3*z*z*x*x*x*x+3*z*z*y*y*y*y+16*x*x*x*z+3*x*x*x*x*y*y+3*x*x*y*y*y*y+4*x*x*y-12*z*z*y-2*x*x*x*x*y-4*x*x*y*y*y-2*z*z*z*z*y+16*x*z*z*z+12*y*y*y-2*y*y*y*y*y-32*x*z*y;
};
int main(int argc, char** argv)
{
const FT isovalue = (argc > 1) ? std::stod(argv[1]) : 0.8;
const FT isovalue = (argc > 1) ? std::stod(argv[1]) : 0.1;
const FT box_c = (argc > 2) ? std::abs(std::stod(argv[2])) : 5.;
const std::size_t grid_n = (argc > 3) ? std::stoi(argv[3]) : 50;
// create bounding box and grid
const CGAL::Bbox_3 bbox { -1., -1., -1., 1., 1., 1. };
Grid grid { bbox, CGAL::make_array<std::size_t>(30, 30, 30) };
const CGAL::Bbox_3 bbox { -box_c, -box_c, -box_c, box_c, box_c, box_c };
Grid grid { bbox, CGAL::make_array<std::size_t>(grid_n, grid_n, grid_n) };
std::cout << "Span: " << grid.span() << std::endl;
std::cout << "Cell dimensions: " << grid.spacing()[0] << " " << grid.spacing()[1] << " " << grid.spacing()[2] << std::endl;
std::cout << "Cell #: " << grid.xdim() << ", " << grid.ydim() << ", " << grid.zdim() << std::endl;
// fill up values
auto sphere_value_fn = [](const Point& p) -> FT
{
return sqrt(p.x()*p.x() + p.y()*p.y() + p.z()*p.z());
};
Values values { sphere_value_fn, grid };
Values values { value_fn, grid };
// Below is equivalent to:
// Domain domain { grid, values };
@ -53,9 +66,28 @@ int main(int argc, char** argv)
CGAL::Isosurfacing::marching_cubes<CGAL::Parallel_if_available_tag>(domain, isovalue, points, triangles,
CGAL::parameters::use_topologically_correct_marching_cubes(true));
std::cout << "Output #vertices: " << points.size() << std::endl;
std::cout << "Output #triangles: " << triangles.size() << std::endl;
CGAL::IO::write_polygon_soup("marching_cubes.off", points, triangles);
std::cout << "Soup #vertices: " << points.size() << std::endl;
std::cout << "Soup #triangles: " << triangles.size() << std::endl;
if(!CGAL::Polygon_mesh_processing::is_polygon_soup_a_polygon_mesh(triangles)) {
std::cerr << "Warning: the soup is not a 2-manifold surface, non-manifoldness?..." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Convert the soup to a triangle mesh..." << std::endl;
Mesh mesh;
CGAL::Polygon_mesh_processing::polygon_soup_to_polygon_mesh(points, triangles, mesh);
CGAL::IO::write_polygon_mesh("marching_cubes.off", mesh, CGAL::parameters::stream_precision(17));
// Let's remesh it to something nicer looking
std::cout << "Remeshing..." << std::endl;
const FT target_edge_length = box_c / 50;
CGAL::Polygon_mesh_processing::isotropic_remeshing(faces(mesh), target_edge_length, mesh,
CGAL::parameters::number_of_iterations(5)
.number_of_relaxation_steps(5));
CGAL::IO::write_polygon_mesh("marching_cubes-remeshed.off", mesh, CGAL::parameters::stream_precision(17));
std::cout << "Done" << std::endl;