From 763ce13a82bca6313bf49c4e9d87d736183ef541 Mon Sep 17 00:00:00 2001 From: Nico Kruithof Date: Sat, 4 May 2013 20:58:16 +0200 Subject: [PATCH] Working on the documentation, remarks by Monique --- .../CGAL/Periodic_2_triangulation_2.h | 16 ---------------- .../PackageDescription.txt | 6 +++--- .../Periodic_2_triangulation_2.txt | 18 +++++++++--------- 3 files changed, 12 insertions(+), 28 deletions(-) diff --git a/Periodic_2_triangulation_2/doc/Periodic_2_triangulation_2/CGAL/Periodic_2_triangulation_2.h b/Periodic_2_triangulation_2/doc/Periodic_2_triangulation_2/CGAL/Periodic_2_triangulation_2.h index 43fa394e0a6..72534072ea4 100644 --- a/Periodic_2_triangulation_2/doc/Periodic_2_triangulation_2/CGAL/Periodic_2_triangulation_2.h +++ b/Periodic_2_triangulation_2/doc/Periodic_2_triangulation_2/CGAL/Periodic_2_triangulation_2.h @@ -892,16 +892,6 @@ public: /// triangulation when they are applied on a valid triangulation. /// @{ - /*! - Exchanges the edge - incident to `f` and `f->neighbor(i)` with the other diagonal - of the quadrilateral formed by `f` and - `f->neighbor(i)`. Flips all periodic copies of the edge when - the triangulation is on the 9-sheeted cover. - \pre The union of the faces `f` and `f->neighbor(i)` form a convex quadrilateral. - */ - void flip(Face_handle f, int i); - /*! Inserts point `p` in the triangulation and returns the corresponding vertex. @@ -984,12 +974,6 @@ public: */ Vertex_handle insert_in_face(const Point& p, Face_handle f); - /*! - Inserts vertex v in edge `i` of `f`. If the triangulation contains periodic copies, a point is inserted in all periodic copies. - \pre The point in vertex `v` lies on the edge opposite to the vertex `i` of face `f`. - */ - Vertex_handle insert_in_edge(const Point& p, const Offset &o, Face_handle f, int i); - /*! Removes a vertex of degree three. Two of the incident faces are destroyed, the third one is modified. \pre Vertex `v` is a vertex with degree three. diff --git a/Periodic_2_triangulation_2/doc/Periodic_2_triangulation_2/PackageDescription.txt b/Periodic_2_triangulation_2/doc/Periodic_2_triangulation_2/PackageDescription.txt index d7bc5309a04..5feae63b607 100644 --- a/Periodic_2_triangulation_2/doc/Periodic_2_triangulation_2/PackageDescription.txt +++ b/Periodic_2_triangulation_2/doc/Periodic_2_triangulation_2/PackageDescription.txt @@ -25,9 +25,9 @@ \cgalPkgSummaryEnd \cgalPkgShortInfoBegin -\cgalPkgSince{3.5} -\cgalPkgDependsOn{\ref PkgTriangulation2Summary and \ref PkgPeriodic3Triangulation3Summary} -\cgalPkgBib{cgal:k-pt2-09} +\cgalPkgSince{4.3} +\cgalPkgDependsOn{\ref PkgTDS2Summary, \ref PkgTriangulation2Summary and \ref PkgPeriodic3Triangulation3Summary} +\cgalPkgBib{cgal:k-pt2-13} \cgalPkgLicense{\ref licensesGPL "GPL"} \cgalPkgDemo{Periodic Delaunay Triangulation,Periodic_2_Delaunay_triangulation_2.zip} \cgalPkgShortInfoEnd diff --git a/Periodic_2_triangulation_2/doc/Periodic_2_triangulation_2/Periodic_2_triangulation_2.txt b/Periodic_2_triangulation_2/doc/Periodic_2_triangulation_2/Periodic_2_triangulation_2.txt index 3cc051ed28c..63615ec9767 100644 --- a/Periodic_2_triangulation_2/doc/Periodic_2_triangulation_2/Periodic_2_triangulation_2.txt +++ b/Periodic_2_triangulation_2/doc/Periodic_2_triangulation_2/Periodic_2_triangulation_2.txt @@ -273,7 +273,7 @@ all the triangulation classes, so it does not need to be specified by the user unless he wants to use a different triangulation data structure or a different vertex or cell base class. -## Flexibility of the Design ## +\subsection P2T2FlexDesign Flexibility of the Design `Periodic_2_triangulation_2` uses the `TriangulationDataStructure_2` in essentially the same way as @@ -281,11 +281,11 @@ structure or a different vertex or cell base class. \ref Section_2D_Triangulations_Software_Design is applicable in exactly the same way. Also the classes `Triangulation_vertex_base_with_info_2` and `Triangulation_face_base_with_info_2` can be reused directly, see -also Example \ref P2Triangulation2secexamplescolor. +also Example \ref P2T2ExampleColor. \section P2Triangulation2secexamples Examples -## Basic Example ## +\subsection P2T2ExampleBasic Basic example This example shows the incremental construction of a periodic 2D Delaunay triangulation, the location of a point and how to perform @@ -295,12 +295,12 @@ the triangulation data structure. \cgalExample{Periodic_2_triangulation_2/p2t2_simple_example.cpp} -## Changing the Vertex Base ## +\subsection P2T2ExampleVertexBase Changing the vertex base The following two examples show how the user can plug his own vertex base in a triangulation. Changing the face base is similar. -\subsection P2Triangulation2secexamplescolor Adding a Color +\subsubsection P2T2ExampleColor Adding a color If the user does not need to add a type in a vertex that depends on the `TriangulationDataStructure_2` (e.g. a `Vertex_handle` or @@ -311,7 +311,7 @@ add a `CGAL::Color` this way. \cgalExample{Periodic_2_triangulation_2/p2t2_colored_vertices.cpp} -## Adding Handles ## +\subsubsection P2T2ExampleAddingHandles Adding handles If the user needs to add a type in a vertex that depends on the `TriangulationDataStructure_2` (e.g. a `Vertex_handle` or @@ -320,7 +320,7 @@ following example shows. \cgalExample{Periodic_2_triangulation_2/p2t2_adding_handles.cpp} -## 9-sheeted Covering ## +\subsection P2T2ExampleCovering 9-sheeted covering The user can check at any time whether a triangulation would be a simplicial complex in \f$ \mathbb T_c^2\f$ and force a conversion if @@ -335,7 +335,7 @@ covering anymore, so the triangulation is not extensible. \cgalExample{Periodic_2_triangulation_2/p2t2_covering.cpp} -## Large Point Set ## +\subsection P2T2ExampleLargePointSet Large point set For large point sets there are two optimizations available. Firstly, there is spatial sorting that sorts the input points according to a @@ -355,7 +355,7 @@ mode because of the relatively large number of points. \cgalExample{Periodic_2_triangulation_2/p2t2_large_point_set.cpp} -## Geometric Access ## +\subsection P2T2ExampleGeometricAccess Geometric access There might be applications that need the geometric primitives of a triangulation as an input but do not require a simplicial complex. For