diff --git a/Combinatorial_map/doc/Combinatorial_map/Combinatorial_map.txt b/Combinatorial_map/doc/Combinatorial_map/Combinatorial_map.txt index da2ccad563a..61f2e604e1c 100644 --- a/Combinatorial_map/doc/Combinatorial_map/Combinatorial_map.txt +++ b/Combinatorial_map/doc/Combinatorial_map/Combinatorial_map.txt @@ -377,9 +377,8 @@ the intersection of their two sets of darts is non empty (whatever the dimension of the two cells). Two i-cells c1 and c2, 1\f$ \leq\f$i\f$ \leq\f$d, are adjacent if there is d1\f$ \in\f$c1 and -d2\f$ \in\f$c2 such that d1=\f$ -\beta_i\f$(d2) (or d2=\f$ \beta_i\f$(d1) for -i=1). +d2\f$ \in\f$c2 such that d1 and d2 +belong to the same (i-1)-cell. In the example of \cgalFigureRef{figexemplecarte3d}, vertex v and edge e are incident since the intersection of the two @@ -390,7 +389,7 @@ intersection of the two corresponding sets of darts is {1,6}\f$ incident since the intersection of the two corresponding sets of darts is {10}\f$ \neq\f$\f$ \emptyset\f$. Finally, facets f1 and f2 are adjacent because 10\f$ \in\f$f1, 1\f$ -\in\f$f2 and 10=\f$ \beta_2\f$(1). +\in\f$f2 and 1 and 10 belong to the same edge. We can consider i-cells in a dimension d' with i\f$ \leq\f$d'\f$ \leq\f$ d. The idea is to