diff --git a/Combinatorial_map/doc/Combinatorial_map/Combinatorial_map.txt b/Combinatorial_map/doc/Combinatorial_map/Combinatorial_map.txt
index da2ccad563a..61f2e604e1c 100644
--- a/Combinatorial_map/doc/Combinatorial_map/Combinatorial_map.txt
+++ b/Combinatorial_map/doc/Combinatorial_map/Combinatorial_map.txt
@@ -377,9 +377,8 @@ the intersection of their two sets of darts is non empty (whatever the
dimension of the two cells). Two i-cells c1 and
c2, 1\f$ \leq\f$i\f$ \leq\f$d, are
adjacent if there is d1\f$ \in\f$c1 and
-d2\f$ \in\f$c2 such that d1=\f$
-\beta_i\f$(d2) (or d2=\f$ \beta_i\f$(d1) for
-i=1).
+d2\f$ \in\f$c2 such that d1 and d2
+belong to the same (i-1)-cell.
In the example of \cgalFigureRef{figexemplecarte3d}, vertex v and
edge e are incident since the intersection of the two
@@ -390,7 +389,7 @@ intersection of the two corresponding sets of darts is {1,6}\f$
incident since the intersection of the two corresponding sets of darts
is {10}\f$ \neq\f$\f$ \emptyset\f$. Finally, facets f1 and
f2 are adjacent because 10\f$ \in\f$f1, 1\f$
-\in\f$f2 and 10=\f$ \beta_2\f$(1).
+\in\f$f2 and 1 and 10 belong to the same edge.
We can consider i-cells in a dimension d' with
i\f$ \leq\f$d'\f$ \leq\f$ d. The idea is to