updated the doc according to Monique suggestions + added documentation

for the filtered traits class + updated the other classes wrt to this
new class
This commit is contained in:
Menelaos Karavelas 2003-08-21 16:13:29 +00:00
parent b08818a1bc
commit 78668d2004
23 changed files with 318 additions and 34 deletions

View File

@ -20,7 +20,7 @@
%//
%//============================================================================
\chapter{2D Apollonius graph}
\chapter{2D Apollonius graphs}
\label{chapter-apollonius2}
\minitoc
@ -454,7 +454,6 @@ otherwise it is a finite edge.
\end{ccHtmlOnly}
\end{figure}
The last predicate that we want to discuss is called
\ccc{Is_degenerate_edge_2}. It tells us whether an edge in the
Apollonius diagram is degenerate, that is if its two endpoints
@ -462,9 +461,53 @@ coincide. In the Apollonius graph such an edge corresponds to one of
the additional edges that we use to triangulate the non-triangular
faces.
% TALK ABOUT THE METHOD TAG AND THE FILTERED AND NON-FILTERED TRAITS
The afore mentioned predicates are part of the
\ccc{ApolloniusGraphTraits_2} concept of \cgal. \cgal{} also provides
a model for this concept, the
\ccc{Apollonius_graph_traits_2<K,Method_tag>} class. The first
template parameter of this class must be a model of the \ccc{Kernel}
concept. The second template parameter is a tag that indicates what
operations are allowed in the computations that take place within the
traits class.
The two possible values of the \ccc{Method_tag} parameter are
\ccc{CGAL::Ring_tag} and \ccc{CGAL::Sqrt_field_tag}. When
\ccc{CGAL::Ring_tag} is used, only ring operations are used during the
evaluation of the predicates, whereas if \ccc{CGAL::Sqrt_field_tag} is
chosen, all four field operations, as well as square roots, as used
during the predicate evaluation.
The \ccc{Apollonius_graph_traits_2<K,Method_tag>} class provides exact
predicates if the number type in the kernel \ccc{K} is an exact number
type. This is to be associated with the type of operations allowed for
the predicate evaluation. For example \ccc{CGAL::MP_Float} as number
type, with \ccc{CGAL::Ring_tag} as tag will give exact predicates,
whereas \ccc{CGAL::MP_Float} with \ccc{CGAL::Sqrt_field_tag} will give
inexact predicates.
Since using an exact number type may be too slow, the
\ccc{Apollonius_graph_traits_2<K,Method_tag>} class is designed to
support the dynamic filtering of \cgal{} through the
\ccc{Filtered_exact<CT,ET>} mechanism. In particular if \ccc{CT} is an
inexact number type that supports the operations denoted by the tag
\ccc{Method_tag} and \ccc{ET} is an exact number type for these
operations, then kernel with number type \ccc{Filtered_exact<CT,ET>}
will yield exact predicates for the Apollonius graph traits. To give a
concrete example, \ccc{Filtered_exact<double,MP_Float>} with
\ccc{CGAL::Ring_tag} will produce exact predicates.
Another possibility for fast and exact predicate evalutation is to use
the
\ccc{Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
class. This class is the analog of a filtered kernel. It takes a
constructions kernel \ccc{CK}, a filtering kernel \ccc{FK} and an
exact kernel \ccc{EK}, as well as the corresponding tags
(\ccc{CM}, \ccc{FM} and \ccc{EM}, respectively).
It evaluates the predicates by first using the filtering kernel, and
if this fails the evaluation is performed using the exact kernel. The
constructions are done using the kernel \ccc{CK}, which means that
they are not necessarily exact. All template parameters except
\ccc{CK} have default values, which are explained in the reference
manual.

View File

@ -298,13 +298,14 @@ construct_Apollonius_site_2_object();}{}
\ccHasModels
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}\\
\ccc{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
\ccSeeAlso
\ccc{CGAL::Apollonius_graph_2<Gt,Agds>}\\
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}\\
\ccc{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
\end{ccRefConcept}
% +------------------------------------------------------------------------+

View File

@ -56,8 +56,8 @@ site.}
\ccSeeAlso
\ccc{ApolloniusGraphTraits_2}\\
\ccc{CGAL::Apollonius_site_2<K>}\\
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}.
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}\\
\ccc{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
\end{ccRefConcept}

View File

@ -559,6 +559,7 @@ be preferred to \ccVar\ccc{ = other} or to \ccVar\ccc{(other)} if
\ccc{ApolloniusGraphVertexBase_2}\\
\ccc{ApolloniusGraphFaceBase_2}\\
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}\\
\ccc{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}\\
\ccc{CGAL::Apollonius_graph_data_structure_2<Vb,Fb>}\\
\ccc{CGAL::Apollonius_graph_vertex_base_2<Gt,StoreHidden>}\\
\ccc{CGAL::Apollonius_graph_face_base_2<Gt>}

View File

@ -0,0 +1,94 @@
% +------------------------------------------------------------------------+
% | Reference manual page: Apollonius_graph_euclidean_traits_2.tex
% +------------------------------------------------------------------------+
% | 12.04.2000 Author
% | Package: Package
% |
%\RCSdef{\RCSRegulartriangulationtraitsRev}{$Revision$}
%\RCSdefDate{\RCSRegulartriangulationtraitsDate}{$Date$}
% |
%%RefPage: end of header, begin of main body
% +------------------------------------------------------------------------+
\begin{ccRefClass}
{Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
%% add template arg's if necessary
%% \ccHtmlCrossLink{} %% add further rules for cross referencing links
%% \ccHtmlIndexC[class]{} %% add further index entries
\ccDefinition
The class \ccRefName\ provides a model for the
\ccc{ApolloniusGraphTraits_2} concept.
The class \ccRefName\ uses the filtering technique \cite{bbp-iayed-01}
to achieve traits for the \ccc{Apollonius_graph_2<Gt,Agds>} class
with efficient and exact predicates given an exact
kernel \ccc{EK} and a filtering kernel \ccc{FK}. The geometric
constructions associated provided by this class are equivalent
to those provided by the traits class
\ccc{Apollonius_graph_traits_2<CK,CM>}, which means that they may
be inexact.
This class has six template parameters. The first, third and fifth
template parameters must be a models of the \ccc{Kernel} concept. The
second, fourth and sixth template parameters correspond to how
predicates are evaluated. There are two predefined possible values for
\ccc{Method_tag}, namely \ccc{CGAL::Sqrt_field_tag} and
\ccc{CGAL::Ring_tag}. The first one must be used when the number type
used in the representation supports the exact evaluation of signs of
expressions involving all four basic operations and square roots,
whereas the second one requires the exact evaluation of signs of
ring-type expressions, i.e., expressions involving only additions,
subtractions and multiplications.
%
The way the predicates are evaluated is discussed in
\cite{ke-ppawv-02,ke-rctac-03}.
The default values for the template parameters are as follows:
\ccc{CM = CGAL::Ring_tag},
\ccc{EK = CGAL::Simple_cartesian<CGAL::MP_Float>},
\ccc{EM = CM},
\ccc{FK = CGAL::Simple_cartesian<CGAL::Interval_nt<true> >},
\ccc{FM = CM}.
\ccInclude{CGAL/Apollonius_graph_filtered_traits_2.h}
\ccIsModel
\ccc{ApolloniusGraphTraits_2}
\ccCreationVariable{traits}
\ccCreation
\ccThree{Apollonius_graph_filtered_traits_2<CK,CK,CK,CK,CK,CK>+}
{traits = other;+}{}
\ccThreeToTwo
%
\ccConstructor{ Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>();}
{Default constructor.}
\ccGlue
\ccConstructor{
Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>
(Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM> other);}
{Copy constructor.}
\ccGlue
\ccMethod{Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM> operator=(Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM> other);}{Assignment operator.}
\ccSeeAlso
\ccc{Kernel}\\
\ccc{ApolloniusGraphTraits_2} \\
\ccc{CGAL::Ring_tag}\\
\ccc{CGAL::Sqrt_field_tag}\\
\ccc{CGAL::Apollonius_graph_2<Gt,Agds>}\\
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}
\end{ccRefClass}
% +------------------------------------------------------------------------+
%%RefPage: end of main body, begin of footer
% EOF
% +------------------------------------------------------------------------+

View File

@ -193,11 +193,11 @@ other} or to \ccVar\ccc{(other)} if \ccc{other} is deleted afterwards.}
\ccc{CGAL::Apollonius_graph_2<Gt,Agds>}\\
\ccc{CGAL::Apollonius_graph_data_structure_2<Vb,Fb>}\\
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}\\
\ccc{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}\\
\ccc{CGAL::Apollonius_graph_hierarchy_vertex_base_2<Agvb>}
\end{ccRefClass}
% +------------------------------------------------------------------------+

View File

@ -29,7 +29,8 @@ must be used when the number type used in the representation supports
the exact evaluation of signs of expressions involving all four basic
operations and square roots, whereas the second one requires the exact
evaluation of signs of ring-type expressions, i.e., expressions
involving only additions, subtractions and multiplications.
involving only additions, subtractions and multiplications. The
default value for \ccc{Method_tag} is \ccc{CGAL::Ring_tag}.
%
The way the predicates are evaluated is discussed in
\cite{ke-ppawv-02,ke-rctac-03}.
@ -63,8 +64,8 @@ other);}{Assignment operator.}
\ccc{ApolloniusGraphTraits_2} \\
\ccc{CGAL::Ring_tag}\\
\ccc{CGAL::Sqrt_field_tag}\\
\ccc{CGAL::Apollonius_graph_2<Gt,Agds>}
\ccc{CGAL::Apollonius_graph_2<Gt,Agds>}\\
\ccc{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
\end{ccRefClass}

View File

@ -61,8 +61,8 @@ embedded at the center of \ccc{s}.}
\ccc{ApolloniusGraphDataStructure_2}\\
\ccc{ApolloniusGraphTraits_2}\\
\ccc{CGAL::Apollonius_graph_data_structure_2<Vb,Fb>}\\
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}\\
\ccc{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
\end{ccRefClass}
% +------------------------------------------------------------------------+

View File

@ -45,8 +45,8 @@ concept \ccc{ApolloniusSite_2}.
\ccSeeAlso
\ccc{Kernel}\\
\ccc{ApolloniusSite_2}\\
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}\\
\ccc{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
\end{ccRefClass}

View File

@ -50,6 +50,7 @@ afore-mentioned concepts.
\ccRefIdfierPage{CGAL::Apollonius_graph_vertex_base_2<Gt,StoreHidden>}\\
\ccRefIdfierPage{CGAL::Apollonius_graph_face_base_2<Gt>}\\
\ccRefIdfierPage{CGAL::Apollonius_graph_traits_2<K,Method_tag>}\\
\ccRefIdfierPage{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}\\
\ccRefIdfierPage{CGAL::Apollonius_graph_hierarchy_2<Gt,Agds>} \\
\ccRefIdfierPage{CGAL::Apollonius_graph_hierarchy_vertex_base_2<Agvb>}

View File

@ -11,6 +11,7 @@
\input{Apollonius_graph_2_ref/Apollonius_graph_face_base_2.tex}
\input{Apollonius_graph_2_ref/ApolloniusGraphTraits_2.tex}
\input{Apollonius_graph_2_ref/Apollonius_graph_traits_2.tex}
\input{Apollonius_graph_2_ref/Apollonius_graph_filtered_traits_2.tex}
\input{Apollonius_graph_2_ref/Apollonius_graph_hierarchy_2.tex}
\input{Apollonius_graph_2_ref/ApolloniusGraphHierarchyVertexBase_2.tex}
\input{Apollonius_graph_2_ref/Apollonius_graph_hierarchy_vertex_base_2.tex}

View File

@ -20,7 +20,7 @@
%//
%//============================================================================
\chapter{2D Apollonius graph}
\chapter{2D Apollonius graphs}
\label{chapter-apollonius2}
\minitoc
@ -454,7 +454,6 @@ otherwise it is a finite edge.
\end{ccHtmlOnly}
\end{figure}
The last predicate that we want to discuss is called
\ccc{Is_degenerate_edge_2}. It tells us whether an edge in the
Apollonius diagram is degenerate, that is if its two endpoints
@ -462,9 +461,53 @@ coincide. In the Apollonius graph such an edge corresponds to one of
the additional edges that we use to triangulate the non-triangular
faces.
% TALK ABOUT THE METHOD TAG AND THE FILTERED AND NON-FILTERED TRAITS
The afore mentioned predicates are part of the
\ccc{ApolloniusGraphTraits_2} concept of \cgal. \cgal{} also provides
a model for this concept, the
\ccc{Apollonius_graph_traits_2<K,Method_tag>} class. The first
template parameter of this class must be a model of the \ccc{Kernel}
concept. The second template parameter is a tag that indicates what
operations are allowed in the computations that take place within the
traits class.
The two possible values of the \ccc{Method_tag} parameter are
\ccc{CGAL::Ring_tag} and \ccc{CGAL::Sqrt_field_tag}. When
\ccc{CGAL::Ring_tag} is used, only ring operations are used during the
evaluation of the predicates, whereas if \ccc{CGAL::Sqrt_field_tag} is
chosen, all four field operations, as well as square roots, as used
during the predicate evaluation.
The \ccc{Apollonius_graph_traits_2<K,Method_tag>} class provides exact
predicates if the number type in the kernel \ccc{K} is an exact number
type. This is to be associated with the type of operations allowed for
the predicate evaluation. For example \ccc{CGAL::MP_Float} as number
type, with \ccc{CGAL::Ring_tag} as tag will give exact predicates,
whereas \ccc{CGAL::MP_Float} with \ccc{CGAL::Sqrt_field_tag} will give
inexact predicates.
Since using an exact number type may be too slow, the
\ccc{Apollonius_graph_traits_2<K,Method_tag>} class is designed to
support the dynamic filtering of \cgal{} through the
\ccc{Filtered_exact<CT,ET>} mechanism. In particular if \ccc{CT} is an
inexact number type that supports the operations denoted by the tag
\ccc{Method_tag} and \ccc{ET} is an exact number type for these
operations, then kernel with number type \ccc{Filtered_exact<CT,ET>}
will yield exact predicates for the Apollonius graph traits. To give a
concrete example, \ccc{Filtered_exact<double,MP_Float>} with
\ccc{CGAL::Ring_tag} will produce exact predicates.
Another possibility for fast and exact predicate evalutation is to use
the
\ccc{Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
class. This class is the analog of a filtered kernel. It takes a
constructions kernel \ccc{CK}, a filtering kernel \ccc{FK} and an
exact kernel \ccc{EK}, as well as the corresponding tags
(\ccc{CM}, \ccc{FM} and \ccc{EM}, respectively).
It evaluates the predicates by first using the filtering kernel, and
if this fails the evaluation is performed using the exact kernel. The
constructions are done using the kernel \ccc{CK}, which means that
they are not necessarily exact. All template parameters except
\ccc{CK} have default values, which are explained in the reference
manual.

View File

@ -298,13 +298,14 @@ construct_Apollonius_site_2_object();}{}
\ccHasModels
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}\\
\ccc{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
\ccSeeAlso
\ccc{CGAL::Apollonius_graph_2<Gt,Agds>}\\
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}\\
\ccc{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
\end{ccRefConcept}
% +------------------------------------------------------------------------+

View File

@ -56,8 +56,8 @@ site.}
\ccSeeAlso
\ccc{ApolloniusGraphTraits_2}\\
\ccc{CGAL::Apollonius_site_2<K>}\\
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}.
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}\\
\ccc{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
\end{ccRefConcept}

View File

@ -559,6 +559,7 @@ be preferred to \ccVar\ccc{ = other} or to \ccVar\ccc{(other)} if
\ccc{ApolloniusGraphVertexBase_2}\\
\ccc{ApolloniusGraphFaceBase_2}\\
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}\\
\ccc{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}\\
\ccc{CGAL::Apollonius_graph_data_structure_2<Vb,Fb>}\\
\ccc{CGAL::Apollonius_graph_vertex_base_2<Gt,StoreHidden>}\\
\ccc{CGAL::Apollonius_graph_face_base_2<Gt>}

View File

@ -53,8 +53,8 @@ the \ccc{ApolloniusGraphTraits_2} concept.
\ccc{ApolloniusGraphTraits_2}\\
\ccc{CGAL::Triangulation_face_base_2<Gt>}\\
\ccc{CGAL::Apollonius_graph_data_structure_2<Vb,Fb>}\\
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}\\
\ccc{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
\end{ccRefClass}

View File

@ -0,0 +1,94 @@
% +------------------------------------------------------------------------+
% | Reference manual page: Apollonius_graph_euclidean_traits_2.tex
% +------------------------------------------------------------------------+
% | 12.04.2000 Author
% | Package: Package
% |
%\RCSdef{\RCSRegulartriangulationtraitsRev}{$Revision$}
%\RCSdefDate{\RCSRegulartriangulationtraitsDate}{$Date$}
% |
%%RefPage: end of header, begin of main body
% +------------------------------------------------------------------------+
\begin{ccRefClass}
{Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
%% add template arg's if necessary
%% \ccHtmlCrossLink{} %% add further rules for cross referencing links
%% \ccHtmlIndexC[class]{} %% add further index entries
\ccDefinition
The class \ccRefName\ provides a model for the
\ccc{ApolloniusGraphTraits_2} concept.
The class \ccRefName\ uses the filtering technique \cite{bbp-iayed-01}
to achieve traits for the \ccc{Apollonius_graph_2<Gt,Agds>} class
with efficient and exact predicates given an exact
kernel \ccc{EK} and a filtering kernel \ccc{FK}. The geometric
constructions associated provided by this class are equivalent
to those provided by the traits class
\ccc{Apollonius_graph_traits_2<CK,CM>}, which means that they may
be inexact.
This class has six template parameters. The first, third and fifth
template parameters must be a models of the \ccc{Kernel} concept. The
second, fourth and sixth template parameters correspond to how
predicates are evaluated. There are two predefined possible values for
\ccc{Method_tag}, namely \ccc{CGAL::Sqrt_field_tag} and
\ccc{CGAL::Ring_tag}. The first one must be used when the number type
used in the representation supports the exact evaluation of signs of
expressions involving all four basic operations and square roots,
whereas the second one requires the exact evaluation of signs of
ring-type expressions, i.e., expressions involving only additions,
subtractions and multiplications.
%
The way the predicates are evaluated is discussed in
\cite{ke-ppawv-02,ke-rctac-03}.
The default values for the template parameters are as follows:
\ccc{CM = CGAL::Ring_tag},
\ccc{EK = CGAL::Simple_cartesian<CGAL::MP_Float>},
\ccc{EM = CM},
\ccc{FK = CGAL::Simple_cartesian<CGAL::Interval_nt<true> >},
\ccc{FM = CM}.
\ccInclude{CGAL/Apollonius_graph_filtered_traits_2.h}
\ccIsModel
\ccc{ApolloniusGraphTraits_2}
\ccCreationVariable{traits}
\ccCreation
\ccThree{Apollonius_graph_filtered_traits_2<CK,CK,CK,CK,CK,CK>+}
{traits = other;+}{}
\ccThreeToTwo
%
\ccConstructor{ Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>();}
{Default constructor.}
\ccGlue
\ccConstructor{
Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>
(Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM> other);}
{Copy constructor.}
\ccGlue
\ccMethod{Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM> operator=(Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM> other);}{Assignment operator.}
\ccSeeAlso
\ccc{Kernel}\\
\ccc{ApolloniusGraphTraits_2} \\
\ccc{CGAL::Ring_tag}\\
\ccc{CGAL::Sqrt_field_tag}\\
\ccc{CGAL::Apollonius_graph_2<Gt,Agds>}\\
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}
\end{ccRefClass}
% +------------------------------------------------------------------------+
%%RefPage: end of main body, begin of footer
% EOF
% +------------------------------------------------------------------------+

View File

@ -193,11 +193,11 @@ other} or to \ccVar\ccc{(other)} if \ccc{other} is deleted afterwards.}
\ccc{CGAL::Apollonius_graph_2<Gt,Agds>}\\
\ccc{CGAL::Apollonius_graph_data_structure_2<Vb,Fb>}\\
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}\\
\ccc{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}\\
\ccc{CGAL::Apollonius_graph_hierarchy_vertex_base_2<Agvb>}
\end{ccRefClass}
% +------------------------------------------------------------------------+

View File

@ -29,7 +29,8 @@ must be used when the number type used in the representation supports
the exact evaluation of signs of expressions involving all four basic
operations and square roots, whereas the second one requires the exact
evaluation of signs of ring-type expressions, i.e., expressions
involving only additions, subtractions and multiplications.
involving only additions, subtractions and multiplications. The
default value for \ccc{Method_tag} is \ccc{CGAL::Ring_tag}.
%
The way the predicates are evaluated is discussed in
\cite{ke-ppawv-02,ke-rctac-03}.
@ -63,8 +64,8 @@ other);}{Assignment operator.}
\ccc{ApolloniusGraphTraits_2} \\
\ccc{CGAL::Ring_tag}\\
\ccc{CGAL::Sqrt_field_tag}\\
\ccc{CGAL::Apollonius_graph_2<Gt,Agds>}
\ccc{CGAL::Apollonius_graph_2<Gt,Agds>}\\
\ccc{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
\end{ccRefClass}

View File

@ -61,8 +61,8 @@ embedded at the center of \ccc{s}.}
\ccc{ApolloniusGraphDataStructure_2}\\
\ccc{ApolloniusGraphTraits_2}\\
\ccc{CGAL::Apollonius_graph_data_structure_2<Vb,Fb>}\\
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}\\
\ccc{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
\end{ccRefClass}
% +------------------------------------------------------------------------+

View File

@ -45,8 +45,8 @@ concept \ccc{ApolloniusSite_2}.
\ccSeeAlso
\ccc{Kernel}\\
\ccc{ApolloniusSite_2}\\
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}
\ccc{CGAL::Apollonius_graph_traits_2<K,Method_tag>}\\
\ccc{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}
\end{ccRefClass}

View File

@ -50,6 +50,7 @@ afore-mentioned concepts.
\ccRefIdfierPage{CGAL::Apollonius_graph_vertex_base_2<Gt,StoreHidden>}\\
\ccRefIdfierPage{CGAL::Apollonius_graph_face_base_2<Gt>}\\
\ccRefIdfierPage{CGAL::Apollonius_graph_traits_2<K,Method_tag>}\\
\ccRefIdfierPage{CGAL::Apollonius_graph_filtered_traits_2<CK,CM,EK,EM,FK,FM>}\\
\ccRefIdfierPage{CGAL::Apollonius_graph_hierarchy_2<Gt,Agds>} \\
\ccRefIdfierPage{CGAL::Apollonius_graph_hierarchy_vertex_base_2<Agvb>}

View File

@ -11,6 +11,7 @@
\input{Apollonius_graph_2_ref/Apollonius_graph_face_base_2.tex}
\input{Apollonius_graph_2_ref/ApolloniusGraphTraits_2.tex}
\input{Apollonius_graph_2_ref/Apollonius_graph_traits_2.tex}
\input{Apollonius_graph_2_ref/Apollonius_graph_filtered_traits_2.tex}
\input{Apollonius_graph_2_ref/Apollonius_graph_hierarchy_2.tex}
\input{Apollonius_graph_2_ref/ApolloniusGraphHierarchyVertexBase_2.tex}
\input{Apollonius_graph_2_ref/Apollonius_graph_hierarchy_vertex_base_2.tex}