mirror of https://github.com/CGAL/cgal
Adding author information to the doc.
This commit is contained in:
parent
386fe6eb09
commit
79e3ea8ee2
|
|
@ -6,7 +6,7 @@ namespace CGAL {
|
||||||
\anchor Chapter_Geometric_Object_Generators
|
\anchor Chapter_Geometric_Object_Generators
|
||||||
\anchor chapterGenerators
|
\anchor chapterGenerators
|
||||||
\cgalAutoToc
|
\cgalAutoToc
|
||||||
\authors Olivier Devillers, Susan Hert, Michael Hoffmann, Lutz Kettner, and Sven Schönherr
|
\authors Pedro M. M. de Castro, Olivier Devillers, Susan Hert, Michael Hoffmann, Lutz Kettner, Sven Schönherr, and Alexandru Tifrea
|
||||||
|
|
||||||
\section GeneratorIntroduction Introduction
|
\section GeneratorIntroduction Introduction
|
||||||
|
|
||||||
|
|
@ -253,6 +253,14 @@ normalized.
|
||||||
If needed a random radius (with relevant distribution)
|
If needed a random radius (with relevant distribution)
|
||||||
is used to put the point inside the ball.
|
is used to put the point inside the ball.
|
||||||
|
|
||||||
|
Pedro M. M. de Castro and Alexandru Tifrea coded generators for points in
|
||||||
|
triangle (2D and 3D) and in tetrahedra (3D). Basically, in order to generate
|
||||||
|
a random point in a \f$N\f$-simplex (a triangle for \f$N = 2\f$, and tetrahedron
|
||||||
|
for \f$N = 3\f$), we generate numbers \f$a_1,a_2,\ldots,a_N\f$ identically and independently
|
||||||
|
uniformly distributed in \f$(0,1)\f$, we sort them, we let \f$a_0 = 0\f$ and \f$a_{N+1} = 1\f$,
|
||||||
|
and then \f$a_{i+1}−a_i\f$, for \f$i = 1,\ldots,N\f$ becomes its
|
||||||
|
barycentric coordinates with respect to the simplex.
|
||||||
|
|
||||||
*/
|
*/
|
||||||
} /* namespace CGAL */
|
} /* namespace CGAL */
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -6,7 +6,7 @@
|
||||||
\cgalPkgDescriptionBegin{Geometric Object Generators,PkgGeneratorsSummary}
|
\cgalPkgDescriptionBegin{Geometric Object Generators,PkgGeneratorsSummary}
|
||||||
\cgalPkgPicture{dice.png}
|
\cgalPkgPicture{dice.png}
|
||||||
\cgalPkgSummaryBegin
|
\cgalPkgSummaryBegin
|
||||||
\cgalPkgAuthors{Olivier Devillers, Susan Hert, Michael Hoffmann, Lutz Kettner, and Sven Schönherr}
|
\cgalPkgAuthors{Pedro M. M. de Castro, Olivier Devillers, Susan Hert, Michael Hoffmann, Lutz Kettner, Sven Schönherr, and Alexandru Tifrea}
|
||||||
\cgalPkgDesc{This package provides a variety of generators for geometric objects. They are useful as synthetic test data sets, e.g. for testing algorithms on degenerate object sets and for performance analysis. }
|
\cgalPkgDesc{This package provides a variety of generators for geometric objects. They are useful as synthetic test data sets, e.g. for testing algorithms on degenerate object sets and for performance analysis. }
|
||||||
\cgalPkgManuals{Chapter_Geometric_Object_Generators,PkgGenerators}
|
\cgalPkgManuals{Chapter_Geometric_Object_Generators,PkgGenerators}
|
||||||
\cgalPkgSummaryEnd
|
\cgalPkgSummaryEnd
|
||||||
|
|
|
||||||
|
|
@ -2,4 +2,5 @@ Utrecht University (The Netherlands),
|
||||||
ETH Zurich (Switzerland),
|
ETH Zurich (Switzerland),
|
||||||
INRIA Sophia-Antipolis (France),
|
INRIA Sophia-Antipolis (France),
|
||||||
Max-Planck-Institute Saarbruecken (Germany),
|
Max-Planck-Institute Saarbruecken (Germany),
|
||||||
Tel-Aviv University (Israel).
|
Tel-Aviv University (Israel),
|
||||||
|
Universidade Federal de Pernambuco (Brazil).
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue