Adding author information to the doc.

This commit is contained in:
Pedro Machado Manhaes de Castro 2013-10-14 12:36:14 -03:00
parent 386fe6eb09
commit 79e3ea8ee2
3 changed files with 12 additions and 3 deletions

View File

@ -6,7 +6,7 @@ namespace CGAL {
\anchor Chapter_Geometric_Object_Generators
\anchor chapterGenerators
\cgalAutoToc
\authors Olivier Devillers, Susan Hert, Michael Hoffmann, Lutz Kettner, and Sven Schönherr
\authors Pedro M. M. de Castro, Olivier Devillers, Susan Hert, Michael Hoffmann, Lutz Kettner, Sven Schönherr, and Alexandru Tifrea
\section GeneratorIntroduction Introduction
@ -253,6 +253,14 @@ normalized.
If needed a random radius (with relevant distribution)
is used to put the point inside the ball.
Pedro M. M. de Castro and Alexandru Tifrea coded generators for points in
triangle (2D and 3D) and in tetrahedra (3D). Basically, in order to generate
a random point in a \f$N\f$-simplex (a triangle for \f$N = 2\f$, and tetrahedron
for \f$N = 3\f$), we generate numbers \f$a_1,a_2,\ldots,a_N\f$ identically and independently
uniformly distributed in \f$(0,1)\f$, we sort them, we let \f$a_0 = 0\f$ and \f$a_{N+1} = 1\f$,
and then \f$a_{i+1}a_i\f$, for \f$i = 1,\ldots,N\f$ becomes its
barycentric coordinates with respect to the simplex.
*/
} /* namespace CGAL */

View File

@ -6,7 +6,7 @@
\cgalPkgDescriptionBegin{Geometric Object Generators,PkgGeneratorsSummary}
\cgalPkgPicture{dice.png}
\cgalPkgSummaryBegin
\cgalPkgAuthors{Olivier Devillers, Susan Hert, Michael Hoffmann, Lutz Kettner, and Sven Schönherr}
\cgalPkgAuthors{Pedro M. M. de Castro, Olivier Devillers, Susan Hert, Michael Hoffmann, Lutz Kettner, Sven Schönherr, and Alexandru Tifrea}
\cgalPkgDesc{This package provides a variety of generators for geometric objects. They are useful as synthetic test data sets, e.g. for testing algorithms on degenerate object sets and for performance analysis. }
\cgalPkgManuals{Chapter_Geometric_Object_Generators,PkgGenerators}
\cgalPkgSummaryEnd

View File

@ -2,4 +2,5 @@ Utrecht University (The Netherlands),
ETH Zurich (Switzerland),
INRIA Sophia-Antipolis (France),
Max-Planck-Institute Saarbruecken (Germany),
Tel-Aviv University (Israel).
Tel-Aviv University (Israel),
Universidade Federal de Pernambuco (Brazil).