This commit is contained in:
Andreas Fabri 2022-10-05 06:56:13 +01:00
parent a685e19ed6
commit 7afac0d118
2 changed files with 15 additions and 15 deletions

View File

@ -6,7 +6,7 @@ namespace CGAL {
The function `compute_roots_of_2()` solves a univariate polynomial as it is defined by the
coefficients given to the function. The solutions are written into the given
`OutputIterator`.
Writes the real roots of the polynomial \f$ aX^2+bX+c\f$ into \f$ oit\f$ in ascending order.
Writes the real roots of the polynomial \f$ aX^2+bX+c\f$ into `oit` in ascending order.
`OutputIterator` is required to accept \link Root_of_traits::Root_of_2 `Root_of_traits<RT>::Root_of_2`\endlink.
@ -81,8 +81,8 @@ namespace CGAL {
/*!
\ingroup nt_ralgebraic
The function `make_sqrt()` constructs a square root of a given value of type \f$ RT\f$.
Depending on the type \f$ RT\f$ the square root may be returned in a new type that
The function `make_sqrt()` constructs a square root of a given value of type `RT`.
Depending on the type `RT` the square root may be returned in a new type that
can represent algebraic extensions of degree \f$ 2\f$.
\returns \f$ \sqrt{x}.\f$

View File

@ -3,9 +3,9 @@ namespace CGAL {
/*!
\ingroup nt_ralgebraic
An instance of this class represents an extension of the type `NT` by *one* square root of the type `ROOT`.
An instance of this class represents an extension of the type `NT` by *one* square root of the type `Root`.
`NT` is required to be constructible from `ROOT`.
`NT` is required to be constructible from `Root`.
`NT` is required to be an `IntegralDomainWithoutDivision`.
@ -23,9 +23,9 @@ The result would be in \f$ \mathbb{Z}[\sqrt{a},\sqrt{b}]\f$, which is not
representable by `Sqrt_extension<Integer,Integer>`.
\attention The user is responsible to check that arithmetic operations are carried out for elements from the same extensions only.
This is not tested by `Sqrt_extension` for efficiency reasons.
A violation of the precondition leads to undefined behavior.
Be aware that for efficiency reasons the given \f$\mathrm{root}\f$ is stored as it is given to
the constructor. In particular, an extension by a square root of a square is
considered as an extension.
@ -104,7 +104,7 @@ In case `NT` is not `RealEmbeddable`, `DifferentExtensionComparable` as well as
\sa \cgalTagFalse
*/
template< typename NT, typename ROOT,
template< typename NT, typename Root,
typename DifferentExtensionComparable = Tag_false,
typename FilterPredicates = Tag_false>
class Sqrt_extension {
@ -148,7 +148,7 @@ Sqrt_extension (int a0, int a1, int r);
/*!
General constructor: `ext`\f$ = a0 + a1 \cdot sqrt(r)\f$. \pre \f$ r \neq0\f$
*/
Sqrt_extension (NT a0, NT a1, ROOT r);
Sqrt_extension (NT a0, NT a1, Root r);
/// @}
@ -172,10 +172,10 @@ const NT & a1 () const ;
/*!
Const access operator for root
*/
const ROOT & root () const;
const Root & root () const;
/*!
Returns true in case root of `ext` is not zero.
Returns `true` in case root of `ext` is not zero.
Note that \f$ a1 == 0 \f$ does not imply \f$ \mathrm{root} == 0\f$.
*/
@ -192,7 +192,7 @@ of `ext`. see also: `AlgebraicStructureTraits::Simplify`.
void simplify ();
/*!
returns true if `ext` represents the value zero.
returns `true` if `ext` represents the value zero.
*/
bool is_zero () const;
@ -326,19 +326,19 @@ In case the mode is `CGAL::IO::ASCII` the format is `EXT[a0,a1,root]`.
In case the mode is `CGAL::IO::PRETTY` the format is human readable.
\attention `operator>>` must be defined for `ROOT` and `NT`.
\attention `operator>>` must be defined for `Root` and `NT`.
\relates Sqrt_extension
*/
std::ostream& operator<<(std::ostream& os, const Sqrt_extension<NT,ROOT> &ext);
std::ostream& operator<<(std::ostream& os, const Sqrt_extension<NT,Root> &ext);
/*!
reads `ext` from istream `is` in format `EXT[a0,a1,root]`, the output format in mode `CGAL::IO::ASCII`
\attention `operator<<` must be defined exist for `ROOT` and `NT`.
\attention `operator<<` must be defined exist for `Root` and `NT`.
\relates Sqrt_extension
*/
std::istream& operator>>(std::istream& is, const Sqrt_extension<NT,ROOT> &ext);
std::istream& operator>>(std::istream& is, const Sqrt_extension<NT,Root> &ext);
} /* end namespace CGAL */