mirror of https://github.com/CGAL/cgal
Cleanup, and add a sentence about the default kernel used in dD.
This commit is contained in:
parent
121647b223
commit
7c138d4b0f
|
|
@ -1,8 +1,8 @@
|
|||
% +------------------------------------------------------------------------+
|
||||
% | Reference manual page: CombinatorialMapWithPoints.tex
|
||||
% | Reference manual page: CellAttributeWithPoint.tex
|
||||
% +------------------------------------------------------------------------+
|
||||
% | 04.02.2010 Guillaume Damiand
|
||||
% | Package: Combinatorial_map
|
||||
% | Package: Linear_cell_complex
|
||||
% +------------------------------------------------------------------------+
|
||||
\ccRefPageBegin
|
||||
%%RefPage: end of header, begin of main body
|
||||
|
|
@ -13,17 +13,10 @@
|
|||
|
||||
The concept \ccRefName\ is a refinement of the \ccc{CellAttribute}
|
||||
concept, to represent a cell attribute containing a point.
|
||||
% For that, it refines a point concept wich can be either
|
||||
% \ccc{Kernel::Point_2} or \ccc{Kernel::Point_3} or \ccc{Kernel::Point_d} concept.
|
||||
|
||||
\ccRefines
|
||||
\ccRefConceptPage{CellAttribute} % \\
|
||||
|
||||
% If \ccc{ambient_dimension==2} \ccRefConceptPage{Kernel::Point_2}\\
|
||||
% If \ccc{ambient_dimension==3} \ccRefConceptPage{Kernel::Point_3}\\
|
||||
% Otherwise \ccRefConceptPage{Kernel::Point_d}
|
||||
|
||||
|
||||
\ccTypes
|
||||
%\ccParameters
|
||||
% \ccc{Refs} must be a model of the \ccc{CombinatorialMap} concept.
|
||||
|
|
@ -81,7 +74,6 @@ concept, to represent a cell attribute containing a point.
|
|||
|
||||
\ccHasModels
|
||||
\ccRefIdfierPage{CGAL::Cell_attribute_with_point<LCC,Info_,Tag,OnMerge,OnSplit>}
|
||||
%\ccRefIdfierPage{CGAL::Cell_attribute_with_point_and_info}\\
|
||||
|
||||
\ccSeeAlso
|
||||
%\ccRefConceptPage{LinearCellComplex}\\
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
% | Reference manual page: Cell_attribute_with_point.tex
|
||||
% +------------------------------------------------------------------------+
|
||||
% | 04.02.2010 Guillaume Damiand
|
||||
% | Package: Combinatorial_map
|
||||
% | Package: Linear_cell_complex
|
||||
% +------------------------------------------------------------------------+
|
||||
\ccRefPageBegin
|
||||
%%RefPage: end of header, begin of main body
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
% | Reference manual page: LinearCellComplexItems.tex
|
||||
% +------------------------------------------------------------------------+
|
||||
% | 04.02.2010 Guillaume Damiand
|
||||
% | Package: Combinatorial_map
|
||||
% | Package: Linear_cell_complex
|
||||
% +------------------------------------------------------------------------+
|
||||
\ccRefPageBegin
|
||||
%%RefPage: end of header, begin of main body
|
||||
|
|
@ -15,15 +15,6 @@
|
|||
0-attributes are enabled, and associated with attributes that are
|
||||
models of the \ccc{CellAttributeWithPoint} concept.
|
||||
|
||||
% In addition to the requirements of \ccc{CombinatorialMapItems},
|
||||
% the item class must also define the \ccc{Traits} type for the
|
||||
% geometrical traits used, a model of the \ccc{LinearCellComplexTraits}
|
||||
% concept.
|
||||
|
||||
% , and
|
||||
% must define a \ccc{static const int ambient_dimension} for the
|
||||
% dimension of the ambient space.
|
||||
|
||||
\ccRefines
|
||||
\ccRefConceptPage{CombinatorialMapItems}
|
||||
|
||||
|
|
@ -32,14 +23,6 @@ models of the \ccc{CellAttributeWithPoint} concept.
|
|||
|
||||
The first type in \ccc{Attributes} must be a model of the
|
||||
\ccc{CellAttributeWithPoint} concept.
|
||||
% \item \ccc{dimension}$\leq$\ccc{ambient_dimension} (?).
|
||||
|
||||
% \ccTypes
|
||||
% \ccNestedType{Traits}{a model of the \ccc{LinearCellComplexTraits} concept.}
|
||||
|
||||
% \ccConstants
|
||||
% \ccVariable{static unsigned int ambient_dimension;}
|
||||
% {The dimension of the ambient space.}
|
||||
|
||||
\ccHasModels
|
||||
%\ccRefIdfierPage{CGAL::Linear_cell_complex_min_items<d,d2,Traits>}
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
% | Reference manual page: LinearCellComplexTraits.tex
|
||||
% +------------------------------------------------------------------------+
|
||||
% | 04.02.2010 Guillaume Damiand
|
||||
% | Package: Combinatorial_map
|
||||
% | Package: Linear_cell_complex
|
||||
% +------------------------------------------------------------------------+
|
||||
\ccRefPageBegin
|
||||
%%RefPage: end of header, begin of main body
|
||||
|
|
@ -74,28 +74,12 @@ class.
|
|||
\ccGlue
|
||||
\ccNestedType{Construct_direction_2}
|
||||
{a model of \ccc{ConstructDirection_2} (used in \ccc{CGAL::import_from_plane_graph}).}
|
||||
% {Functor that provides \ccc{Direction operator() (const Vector& v)}
|
||||
% with constructs the direction corresponding to vector \ccc{v}
|
||||
% (used in \ccc{CGAL::import_from_plane_graph}).}
|
||||
|
||||
\textbf{If \ccc{ambient_dimension==3}}\\
|
||||
\ccNestedType{Construct_normal_3}
|
||||
{a model of \ccc{ConstructNormal_3} (used in \ccc{CGAL::compute_normal_of_cell_2}).}
|
||||
\ccNestedType{Collinear_3}
|
||||
{a model of \ccc{Collinear_3} (used in \ccc{CGAL::compute_normal_of_cell_2}).}
|
||||
% {Functor that provides \ccc{bool operator() (const Point& p1, const Point& p2, const Point& p3)}
|
||||
% which returns true iff the three given points \ccc{p1, p2, p3} are collinear
|
||||
% (used in \ccc{CGAL::compute_normal_of_cell_2}).}
|
||||
|
||||
% \ccGlue
|
||||
% \ccNestedType{Construct_iso_cuboid}{Functor with operator returning an iso cuboid created from two points (min and max points of the iso cuboid).}
|
||||
|
||||
% \ccHeading{Generalized Predicates}
|
||||
|
||||
% \ccNestedType{Collinear}
|
||||
% {Functor that provides \ccc{bool operator() (const Point& p1, const Point& p2, const Point& p3)}
|
||||
% which returns true iff the three given points \ccc{p1, p2, p3} are collinear
|
||||
% (used in \ccc{CGAL::compute_normal_of_cell_2}).}
|
||||
|
||||
\ccHasModels
|
||||
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
% | Reference manual page: Linear_cell_complex.tex
|
||||
% +------------------------------------------------------------------------+
|
||||
% | 04.02.2010 Guillaume Damiand
|
||||
% | Package: Combinatorial_map
|
||||
% | Package: Linear_cell_complex
|
||||
% +------------------------------------------------------------------------+
|
||||
\ccRefPageBegin
|
||||
%%RefPage: end of header, begin of main body
|
||||
|
|
@ -50,6 +50,10 @@ There are four default template arguments:
|
|||
to inherit from any model of the \ccc{CombinatorialMap} concept.
|
||||
\end{ccAdvanced}
|
||||
|
||||
Note that the default argument used for \ccc{Traits_} for
|
||||
\emph{d2}\myg{}3 does not use exact predicates because operations that
|
||||
use predicates are only defined in 2D and 3D.
|
||||
|
||||
% +-----------------------------------+
|
||||
\ccCreation
|
||||
\ccCreationVariable{lcc}
|
||||
|
|
@ -100,8 +104,6 @@ There are four default template arguments:
|
|||
a shortcut for \ccc{Attribute_const_range_d<0>::type}).
|
||||
Iterator inner type is bidirectional iterator and value type is \ccc{Vertex_attribute}.}
|
||||
|
||||
% \ccNestedType{Vertex_attribute}{First element of \ccc{Items::Dart_wrapper<Self>::Attributes}.}
|
||||
|
||||
% +-----------------------------------+
|
||||
\ccHeading{Range Access Member Functions}
|
||||
\ccThree{Vertex_attribute_const_range&}
|
||||
|
|
|
|||
|
|
@ -8,451 +8,9 @@
|
|||
%%RefPage: end of header, begin of main body
|
||||
% +------------------------------------------------------------------------+
|
||||
|
||||
%----------------------------------------------------------------------------
|
||||
% \begin{ccRefFunction}{make_segment<LCC>}
|
||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
||||
|
||||
% \ccFunction{template <class LCC>
|
||||
% typename LCC::Dart_handle make_segment(LCC& lcc,
|
||||
% const typename LCC::Point& p0,
|
||||
% const typename LCC::Point& p1);}
|
||||
% {Creates an isolated segment in \ccc{lcc} (two darts linked by \betadeux{})
|
||||
% having \ccc{p0}, \ccc{p1} as geometry.
|
||||
% Returns an handle on the dart associated with \ccc{p0}.
|
||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2.}
|
||||
% }
|
||||
% %
|
||||
% \def\LargFig{.3\textwidth}
|
||||
% \begin{ccTexOnly}
|
||||
% \begin{center}
|
||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_segment}
|
||||
% \end{center}
|
||||
% \end{ccTexOnly}
|
||||
% \begin{ccHtmlOnly}
|
||||
% <CENTER>
|
||||
% <A HREF="fig/png/make_segment.png">
|
||||
% <img src="../Linear_cell_complex_ref/fig/png/make_segment.png" alt=""></A>
|
||||
% </CENTER>
|
||||
% \end{ccHtmlOnly}
|
||||
% \centerline{Example of \ccc{r=make_segment(lcc,p0,p1)}.}
|
||||
% \ccSeeAlso
|
||||
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
||||
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
||||
% \end{ccRefFunction}
|
||||
%----------------------------------------------------------------------------
|
||||
% \begin{ccRefFunction}{make_triangle<LCC>}
|
||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
||||
|
||||
% \ccFunction{template <class LCC>
|
||||
% typename LCC::Dart_handle make_triangle(LCC& lcc,
|
||||
% const typename LCC::Point& p0,
|
||||
% const typename LCC::Point& p1,
|
||||
% const typename LCC::Point& p2);}
|
||||
% {Creates an isolated triangle in \ccc{lcc} having \ccc{p0}, \ccc{p1}, \ccc{p2} as geometry.
|
||||
% Returns an handle on the dart associated with \ccc{p0}.
|
||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}1.}
|
||||
% }
|
||||
% %
|
||||
% \def\LargFig{.3\textwidth}
|
||||
% \begin{ccTexOnly}
|
||||
% \begin{center}
|
||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_triangle}
|
||||
% \end{center}
|
||||
% \end{ccTexOnly}
|
||||
% \begin{ccHtmlOnly}
|
||||
% <CENTER>
|
||||
% <A HREF="fig/png/make_triangle.png">
|
||||
% <img src="../Linear_cell_complex_ref/fig/png/make_triangle.png" alt=""></A>
|
||||
% </CENTER>
|
||||
% \end{ccHtmlOnly}
|
||||
% \centerline{Example of \ccc{r=make_triangle(lcc,p0,p1,p2)}.}
|
||||
% \ccSeeAlso
|
||||
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
||||
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
||||
% \end{ccRefFunction}
|
||||
%----------------------------------------------------------------------------
|
||||
% \begin{ccRefFunction}{make_quadrangle<LCC>}
|
||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
||||
|
||||
% \ccFunction{template <class LCC>
|
||||
% typename LCC::Dart_handle make_quadrangle(LCC& lcc,
|
||||
% const typename LCC::Point& p0,
|
||||
% const typename LCC::Point& p1,
|
||||
% const typename LCC::Point& p2,
|
||||
% const typename LCC::Point& p3);}
|
||||
% {Creates an isolated quadrangle in \ccc{lcc} having \ccc{p0} ,\ccc{p1},
|
||||
% \ccc{p2}, \ccc{p3} as geometry.
|
||||
% Returns an handle on the dart associated with \ccc{p0}.
|
||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}1.}
|
||||
% }
|
||||
% %
|
||||
% \def\LargFig{.3\textwidth}
|
||||
% \begin{ccTexOnly}
|
||||
% \begin{center}
|
||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_quadrilateral}
|
||||
% \end{center}
|
||||
% \end{ccTexOnly}
|
||||
% \begin{ccHtmlOnly}
|
||||
% <CENTER>
|
||||
% <A HREF="fig/png/make_quadrilateral.png">
|
||||
% <img src="../Linear_cell_complex_ref/fig/png/make_quadrilateral.png" alt=""></A>
|
||||
% </CENTER>
|
||||
% \end{ccHtmlOnly}
|
||||
% \centerline{Example of \ccc{r=make_quadrangle(lcc,p0,p1,p2,p3)}.}
|
||||
% \ccSeeAlso
|
||||
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
||||
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
||||
% \end{ccRefFunction}
|
||||
%----------------------------------------------------------------------------
|
||||
% \begin{ccRefFunction}{make_rectangle<LCC>}
|
||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
||||
|
||||
% \ccFunction{template <class LCC>
|
||||
% typename LCC::Dart_handle make_rectangle(LCC& lcc,
|
||||
% const typename LCC::Iso_rectangle& ir);}
|
||||
% {Creates an isolated rectangle in \ccc{lcc} having \ccc{ir} as geometry.
|
||||
% Returns an handle on the dart associated with \ccc{ir[0]}.
|
||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}1 and \ccc{LCC::ambient_dimension}\mygeq{}2.}
|
||||
% }
|
||||
|
||||
% \ccHeading{Requirements}
|
||||
% \ccc{LCC::Traits} defines \ccc{Iso_rectangle_2} type.
|
||||
|
||||
%
|
||||
% \ccSeeAlso
|
||||
% \ccRefIdfierPage{CGAL::make_segment}\\
|
||||
% \ccRefIdfierPage{CGAL::make_triangle}\\
|
||||
% \ccRefIdfierPage{CGAL::make_quadrangle}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
||||
% \ccRefIdfierPage{CGAL::make_tetrahedron}\\
|
||||
% \ccRefIdfierPage{CGAL::make_hexahedron}\\
|
||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid}\\
|
||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
||||
% \end{ccRefFunction}
|
||||
% %----------------------------------------------------------------------------
|
||||
% \begin{ccRefFunction}{make_rectangle}
|
||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
||||
|
||||
% \ccFunction{template <class LCC>
|
||||
% typename LCC::Dart_handle make_rectangle(LCC& lcc,
|
||||
% const typename LCC::Point& p0,
|
||||
% const typename LCC::Point& p1);}
|
||||
% {Creates an isolated rectangle in \ccc{lcc} having \ccc{p0} and \ccc{p1} as
|
||||
% diagonal opposite points. Returns an handle on the dart associated with \ccc{p0}.
|
||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}1 and \ccc{LCC::ambient_dimension}\mygeq{}2.}
|
||||
% }
|
||||
|
||||
% \ccHeading{Requirements}
|
||||
% \ccc{LCC::Traits} defines \ccc{Iso_rectangle_2} type.
|
||||
|
||||
%
|
||||
% \def\LargFig{.3\textwidth}
|
||||
% \begin{ccTexOnly}
|
||||
% \begin{center}
|
||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_rectangle}
|
||||
% \end{center}
|
||||
% \end{ccTexOnly}
|
||||
% \begin{ccHtmlOnly}
|
||||
% <CENTER>
|
||||
% <A HREF="fig/png/make_rectangle.png">
|
||||
% <img src="../Linear_cell_complex_ref/fig/png/make_rectangle.png" alt=""></A>
|
||||
% </CENTER>
|
||||
% \end{ccHtmlOnly}
|
||||
% \centerline{Example of \ccc{r=make_rectangle(lcc,p0,p1)}.}
|
||||
|
||||
% \ccSeeAlso
|
||||
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
||||
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
||||
% \end{ccRefFunction}
|
||||
%----------------------------------------------------------------------------
|
||||
% \begin{ccRefFunction}{make_square}
|
||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
||||
|
||||
% \ccFunction{template <class LCC>
|
||||
% typename LCC::Dart_handle make_square(LCC& lcc,
|
||||
% const typename LCC::Point& p,
|
||||
% typename LCC::FT l);}
|
||||
% {Creates an isolated square in \ccc{lcc} having \ccc{p} as based point, and \ccc{l}
|
||||
% as size. Returns an handle on the dart associated with \ccc{p}.
|
||||
% \ccPrecond{\ccc{LCC::dimension}$\geq 1$ and \ccc{LCC::ambient_dimension}$\geq 2$.}
|
||||
% }
|
||||
% %
|
||||
% \def\LargFig{.3\textwidth}
|
||||
% \begin{ccTexOnly}
|
||||
% \begin{center}
|
||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_square}
|
||||
% \end{center}
|
||||
% \end{ccTexOnly}
|
||||
% \begin{ccHtmlOnly}
|
||||
% <CENTER>
|
||||
% <A HREF="fig/png/make_square.png">
|
||||
% <img src="../Linear_cell_complex_ref/fig/png/make_square.png" alt=""></A>
|
||||
% </CENTER>
|
||||
% \end{ccHtmlOnly}
|
||||
% \centerline{Example of \ccc{r=make_square(lcc,p,l)}.}
|
||||
% \ccSeeAlso
|
||||
% \ccRefIdfierPage{CGAL::make_segment}\\
|
||||
% \ccRefIdfierPage{CGAL::make_triangle}\\
|
||||
% \ccRefIdfierPage{CGAL::make_quadrangle}\\
|
||||
% \ccRefIdfierPage{CGAL::make_rectangle}\\
|
||||
% \ccRefIdfierPage{CGAL::make_tetrahedron}\\
|
||||
% \ccRefIdfierPage{CGAL::make_hexahedron}\\
|
||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
||||
% \end{ccRefFunction}
|
||||
%----------------------------------------------------------------------------
|
||||
% \begin{ccRefFunction}{make_tetrahedron<LCC>}
|
||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
||||
|
||||
% \ccFunction{template <class LCC>
|
||||
% typename LCC::Dart_handle make_tetrahedron(LCC& lcc,
|
||||
% const typename LCC::Point& p0,
|
||||
% const typename LCC::Point& p1,
|
||||
% const typename LCC::Point& p2,
|
||||
% const typename LCC::Point& p3);}
|
||||
% {Creates an isolated tetrahedron in \ccc{lcc} having \ccc{p0} ,\ccc{p1},\ccc{p2},\ccc{p3} as geometry.
|
||||
% Returns an handle on the dart associated with \ccc{p0} and
|
||||
% belonging to the 2-cell having \ccc{p0}, \ccc{p1}, \ccc{p2}
|
||||
% as coordinates.
|
||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2.}
|
||||
% }
|
||||
% %
|
||||
% \def\LargFig{.3\textwidth}
|
||||
% \begin{ccTexOnly}
|
||||
% \begin{center}
|
||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_tetrahedron}
|
||||
% \end{center}
|
||||
% \end{ccTexOnly}
|
||||
% \begin{ccHtmlOnly}
|
||||
% <CENTER>
|
||||
% <A HREF="fig/png/make_tetrahedron.png">
|
||||
% <img src="../Linear_cell_complex_ref/fig/png/make_tetrahedron.png" alt=""></A>
|
||||
% </CENTER>
|
||||
% \end{ccHtmlOnly}
|
||||
% \centerline{Example of \ccc{r=make_tetrahedron(lcc,p0,p1,p2,p3)}.}
|
||||
% \ccSeeAlso
|
||||
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
||||
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
||||
% \end{ccRefFunction}
|
||||
%----------------------------------------------------------------------------
|
||||
% \begin{ccRefFunction}{make_hexahedron<LCC>}
|
||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
||||
|
||||
% \ccFunction{template <class LCC>
|
||||
% typename LCC::Dart_handle make_hexahedron(LCC& lcc,
|
||||
% const typename LCC::Point& p0,
|
||||
% const typename LCC::Point& p1,
|
||||
% const typename LCC::Point& p2,
|
||||
% const typename LCC::Point& p3,
|
||||
% const typename LCC::Point& p4,
|
||||
% const typename LCC::Point& p5,
|
||||
% const typename LCC::Point& p6,
|
||||
% const typename LCC::Point& p7);}
|
||||
% {Creates an isolated hexahedron in \ccc{lcc} having \ccc{p0}, \ccc{p1},
|
||||
% \ccc{p2}, \ccc{p3}, \ccc{p4}, \ccc{p5}, \ccc{p6}, \ccc{p7} as geometry.
|
||||
% Returns an handle on the dart associated with \ccc{p0} and
|
||||
% belonging to the 2-cell having \ccc{p0}, \ccc{p5}, \ccc{p6}, \ccc{p1}
|
||||
% as coordinates.
|
||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2.}
|
||||
% }
|
||||
% \def\LargFig{.4\textwidth}
|
||||
% \begin{ccTexOnly}
|
||||
% \begin{center}
|
||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_hexahedron}
|
||||
% \end{center}
|
||||
% \end{ccTexOnly}
|
||||
% \begin{ccHtmlOnly}
|
||||
% <CENTER>
|
||||
% <A HREF="fig/png/make_hexahedron.png">
|
||||
% <img src="../Linear_cell_complex_ref/fig/png/make_hexahedron.png" alt=""></A>
|
||||
% </CENTER>
|
||||
% \end{ccHtmlOnly}
|
||||
% \centerline{Example of \ccc{r=make_hexahedron(lcc,p0,p1,p2,p3,p4,p5,p6,p7)}.}
|
||||
% \ccSeeAlso
|
||||
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
||||
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
||||
% \end{ccRefFunction}
|
||||
%----------------------------------------------------------------------------
|
||||
% \begin{ccRefFunction}{make_iso_cuboid<LCC>}
|
||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
||||
|
||||
% \ccFunction{template <class LCC>
|
||||
% typename LCC::Dart_handle make_iso_cuboid(LCC& lcc,
|
||||
% const typename LCC::Iso_cuboid& ic);}
|
||||
% {Creates an isolated cuboid in \ccc{lcc} having points in \ccc{ic} as points.
|
||||
% Returns an handle on the dart associated with \ccc{ic[0]},
|
||||
% and belonging to the 2-cell having
|
||||
% \ccc{ic[0]},\ccc{ic[5]}, \ccc{ic[6]},\ccc{ic[1]} as coordinates.
|
||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2 and \ccc{LCC::ambient_dimension}\mygeq{}3.}
|
||||
% }
|
||||
|
||||
% \ccHeading{Requirements}
|
||||
% \ccc{LCC} defines \ccc{Iso_cuboid} type.
|
||||
|
||||
%
|
||||
% \def\LargFig{.4\textwidth}
|
||||
% \begin{ccTexOnly}
|
||||
% \begin{center}
|
||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_cuboid}
|
||||
% \end{center}
|
||||
% \end{ccTexOnly}
|
||||
% \begin{ccHtmlOnly}
|
||||
% <CENTER>
|
||||
% <A HREF="fig/png/make_cuboid.png">
|
||||
% <img src="../Linear_cell_complex_ref/fig/png/make_cuboid.png" alt=""></A>
|
||||
% </CENTER>
|
||||
% \end{ccHtmlOnly}
|
||||
% \centerline{Example of \ccc{r=make_iso_cuboid(lcc,ic)}.}
|
||||
% \ccSeeAlso
|
||||
% \ccRefIdfierPage{CGAL::make_segment}\\
|
||||
% \ccRefIdfierPage{CGAL::make_triangle}\\
|
||||
% \ccRefIdfierPage{CGAL::make_quadrangle}\\
|
||||
% \ccRefIdfierPage{CGAL::make_rectangle}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
||||
% \ccRefIdfierPage{CGAL::make_tetrahedron}\\
|
||||
% \ccRefIdfierPage{CGAL::make_hexahedron}\\
|
||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
||||
% \end{ccRefFunction}
|
||||
% %%----------------------------------------------------------------------------
|
||||
% \begin{ccRefFunction}{make_iso_cuboid}
|
||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
||||
|
||||
% \ccFunction{template <class LCC>
|
||||
% typename LCC::Dart_handle make_iso_cuboid(LCC& lcc,
|
||||
% const typename LCC::Point& p0,
|
||||
% const typename LCC::Point& p1);}
|
||||
% {Creates an isolated cuboid in \ccc{lcc} given having \ccc{p0} and
|
||||
% \ccc{p1} as diagonal opposite points. We denote by \ccc{ic} the
|
||||
% \ccc{Iso_cuboid_3} build from \ccc{p0} and \ccc{p1}.
|
||||
% Returns an handle on the dart associated with \ccc{ic[0]},
|
||||
% and belonging to the 2-cell having
|
||||
% \ccc{ic[0]},\ccc{ic[5]}, \ccc{ic[6]},\ccc{ic[1]} as coordinates.
|
||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2 and \ccc{LCC::ambient_dimension}\mygeq{}3.}
|
||||
% }
|
||||
|
||||
% \ccHeading{Requirements}
|
||||
% \ccc{LCC} defines \ccc{Iso_cuboid} type.
|
||||
|
||||
%
|
||||
% \def\LargFig{.4\textwidth}
|
||||
% \begin{ccTexOnly}
|
||||
% \begin{center}
|
||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_cuboid}
|
||||
% \end{center}
|
||||
% \end{ccTexOnly}
|
||||
% \begin{ccHtmlOnly}
|
||||
% <CENTER>
|
||||
% <A HREF="fig/png/make_cuboid.png">
|
||||
% <img src="../Linear_cell_complex_ref/fig/png/make_cuboid.png" alt=""></A>
|
||||
% </CENTER>
|
||||
% \end{ccHtmlOnly}
|
||||
% \centerline{Example of \ccc{r=make_iso_cuboid(lcc,p0,p1)}.}
|
||||
|
||||
% \ccSeeAlso
|
||||
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_rectangle2}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
||||
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_iso_cuboid2}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_cube}\\
|
||||
% \end{ccRefFunction}
|
||||
%----------------------------------------------------------------------------
|
||||
% \begin{ccRefFunction}{make_cube}
|
||||
% \ccInclude{Linear_cell_complex_constructors.h}\\
|
||||
|
||||
% \ccFunction{typename LCC::Dart_handle make_cube(LCC& lcc,
|
||||
% const typename LCC::Point& p,
|
||||
% typename LCC::FT l);}
|
||||
% {Creates an isolated cube in \ccc{lcc} having \ccc{p} as based point, and
|
||||
% \ccc{l} as size.
|
||||
% Returns an handle on the dart associated with \ccc{p},
|
||||
% and belonging to the 2-cell having
|
||||
% \ccc{p},\ccc{p}+(0,0,\ccc{l}), \ccc{p}+(\ccc{l},0,\ccc{l}), \ccc{a}+(\ccc{l},0,0).
|
||||
% as coordinates.
|
||||
% \ccPrecond{\ccc{LCC::dimension}$\geq 2$ and \ccc{LCC::ambient_dimension}$\geq 3$.}
|
||||
% }
|
||||
% %
|
||||
% \def\LargFig{.3\textwidth}
|
||||
% \begin{ccTexOnly}
|
||||
% \begin{center}
|
||||
% \includegraphics[width=\LargFig]{Linear_cell_complex_ref/fig/pdf/make_cube}
|
||||
% \end{center}
|
||||
% \end{ccTexOnly}
|
||||
% \begin{ccHtmlOnly}
|
||||
% <CENTER>
|
||||
% <A HREF="fig/png/make_cube.png">
|
||||
% <img src="../Linear_cell_complex_ref/fig/png/make_cube.png" alt=""></A>
|
||||
% </CENTER>
|
||||
% \end{ccHtmlOnly}
|
||||
% \centerline{Example of \ccc{r=make_cube(lcc,p,l)}.}
|
||||
% \ccSeeAlso
|
||||
% \ccRefIdfierPage{CGAL::make_segment}\\
|
||||
% \ccRefIdfierPage{CGAL::make_triangle}\\
|
||||
% \ccRefIdfierPage{CGAL::make_quadrangle}\\
|
||||
% \ccRefIdfierPage{CGAL::make_rectangle}\\
|
||||
% %\ccRefIdfierPage{CGAL::make_square}\\
|
||||
% \ccRefIdfierPage{CGAL::make_tetrahedron}\\
|
||||
% \ccRefIdfierPage{CGAL::make_hexahedron}\\
|
||||
% \ccRefIdfierPage{CGAL::make_iso_cuboid}\\
|
||||
% \end{ccRefFunction}
|
||||
%----------------------------------------------------------------------------
|
||||
\begin{ccRefFunction}{import_from_plane_graph<LCC>}
|
||||
\ccInclude{Linear_cell_complex_constructors.h}\\
|
||||
\ccInclude{CGAL/Linear_cell_complex_constructors.h}\\
|
||||
|
||||
\ccFunction{template<class LCC>
|
||||
typename LCC::Dart_handle import_from_plane_graph(LCC& lcc,
|
||||
|
|
@ -471,13 +29,6 @@ vertex index is 0. Then for each edge of the planar graph, the two
|
|||
indices of the two vertices (two numbers between 0 and the number of
|
||||
vertices minus 1).
|
||||
|
||||
% \begin{itemize}
|
||||
% \item first line: \verb|nbvertices nbedges|;
|
||||
% \item \verb|nbvertices| lines: \verb|x y|
|
||||
% \item \verb|nbedges| lines: \verb|i j| the index of the two vertices of the edge (first vertex
|
||||
% being 0).
|
||||
% \end{itemize}
|
||||
|
||||
Here a small example:
|
||||
\begin{verbatim}
|
||||
5 6
|
||||
|
|
@ -509,7 +60,7 @@ Here a small example:
|
|||
\end{ccRefFunction}
|
||||
%----------------------------------------------------------------------------
|
||||
\begin{ccRefFunction}{import_from_triangulation_3<LCC,Triangulation>}
|
||||
\ccInclude{Linear_cell_complex_constructors.h}\\
|
||||
\ccInclude{CGAL/Linear_cell_complex_constructors.h}\\
|
||||
|
||||
\ccFunction{template <class LCC,class Triangulation_>
|
||||
typename LCC::Dart_handle import_from_triangulation_3(LCC& lcc,
|
||||
|
|
@ -525,7 +76,7 @@ Here a small example:
|
|||
\end{ccRefFunction}
|
||||
%----------------------------------------------------------------------------
|
||||
\begin{ccRefFunction}{import_from_polyhedron<LCC,Polyhedron>}
|
||||
\ccInclude{Linear_cell_complex_constructors.h}\\
|
||||
\ccInclude{CGAL/Linear_cell_complex_constructors.h}\\
|
||||
|
||||
\ccFunction{template<class LCC,class Polyhedron>
|
||||
typename LCC::Dart_handle import_from_polyhedron(LCC& lcc,
|
||||
|
|
|
|||
|
|
@ -2,14 +2,13 @@
|
|||
% | Reference manual page: Linear_cell_complex_min_items.tex
|
||||
% +------------------------------------------------------------------------+
|
||||
% | 04.02.2010 Guillaume Damiand
|
||||
% | Package: Combinatorial_map
|
||||
% | Package: Linear_cell_complex
|
||||
% +------------------------------------------------------------------------+
|
||||
\ccRefPageBegin
|
||||
%%RefPage: end of header, begin of main body
|
||||
% +------------------------------------------------------------------------+
|
||||
|
||||
\begin{ccRefClass}{Linear_cell_complex_min_items<d>} % ,d2,Traits
|
||||
% \ccRefLabel{CGAL::Linear_cell_complex_min_items}
|
||||
\begin{ccRefClass}{Linear_cell_complex_min_items<d>}
|
||||
|
||||
\ccInclude{CGAL/Linear_cell_complex_min_items.h}
|
||||
|
||||
|
|
@ -24,23 +23,13 @@ this class, 0-attributes are enabled and associated with
|
|||
\ccRefConceptPage{LinearCellComplexItems}
|
||||
|
||||
\ccParameters
|
||||
\ccc{d} the dimension of the combinatorial map. % \\
|
||||
% \ccc{d2} the dimension of the ambient space.\\
|
||||
% \ccc{Traits} the traits class used.\\
|
||||
|
||||
% By default, \ccc{d2} is equal to \ccc{d}. There is a default
|
||||
% template argument for Traits class which depends on \ccc{d2}. This is
|
||||
% \ccc{CGAL::Exact_predicates_inexact_constructions_kernel type} if
|
||||
% \ccc{d2} is 2 or 3, and this is \ccc{CGAL::Cartesian_d<double>}
|
||||
% otherwise.
|
||||
\ccc{d} the dimension of the combinatorial map.
|
||||
|
||||
\ccExample
|
||||
|
||||
The following example shows one implementation of the
|
||||
\ccRefName\ class.
|
||||
|
||||
%, unsigned int d2, class Traits_>
|
||||
% typedef Traits_ Traits;
|
||||
\begin{ccExampleCode}
|
||||
template <unsigned int d>
|
||||
struct Linear_cell_complex_min_items
|
||||
|
|
|
|||
|
|
@ -2,38 +2,15 @@
|
|||
% | Reference manual page: Linear_cell_complex_operations.tex
|
||||
% +------------------------------------------------------------------------+
|
||||
% | 04.02.2010 Guillaume Damiand
|
||||
% | Package: Combinatorial_map
|
||||
% | Package: Linear_cell_complex
|
||||
% +------------------------------------------------------------------------+
|
||||
\ccRefPageBegin
|
||||
%%RefPage: end of header, begin of main body
|
||||
% +------------------------------------------------------------------------+
|
||||
|
||||
% \begin{ccRefFunction}{barycenter<LCC,i>}
|
||||
% \ccInclude{Linear_cell_complex_operations.h}\\
|
||||
% \ccFunction{template<class LCC, unsigned int i>
|
||||
% typename LCC::Point barycenter(const LCC& lcc,
|
||||
% typename LCC::Dart_const_handle dh);}
|
||||
% {Returns the barycenter of the \emph{i}-cell containing \ccc{dh}.
|
||||
% \ccPrecond{0\myleq{}\emph{i}\myleq{}\ccc{LCC::dimension} and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}
|
||||
% }
|
||||
|
||||
% for example $i=2$ for facet, or $i=3$ for volume).\\
|
||||
% \ccCommentHeading{Template parameter}\\
|
||||
% \ccc{LCC} must be a model of the \ccc{CombinatorialLCCWithPoints} concept.
|
||||
% \ccCommentHeading{Parameters} \\
|
||||
% \ccc{lcc}: the combinatorial map used;\\
|
||||
% \ccc{adart}: a dart belonging to the cell;\\
|
||||
% \ccCommentHeading{Returns} \\
|
||||
% the barycenter of the cell.
|
||||
% }
|
||||
% \ccSeeAlso
|
||||
% \ccRefIdfierPage{CGAL::compute_normal_of_cell_0<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::compute_normal_of_cell_2<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::insert_center_cell_0_in_cell_2<LCC>}\\
|
||||
% \end{ccRefFunction}
|
||||
%--------------------------------------------------------------------------------
|
||||
\begin{ccRefFunction}{compute_normal_of_cell_0<LCC>}
|
||||
\ccInclude{Linear_cell_complex_operations.h}\\
|
||||
\ccInclude{CGAL/Linear_cell_complex_operations.h}\\
|
||||
\ccFunction{template <class LCC>
|
||||
typename LCC::Vector compute_normal_of_cell_0(const LCC& lcc,
|
||||
typename LCC::Dart_const_handle dh);}
|
||||
|
|
@ -43,12 +20,11 @@ typename LCC::Dart_const_handle dh);}
|
|||
}
|
||||
|
||||
\ccSeeAlso
|
||||
%\ccRefIdfierPage{CGAL::barycenter<LCC,i>}\\
|
||||
\ccRefIdfierPage{CGAL::compute_normal_of_cell_2<LCC>}\\
|
||||
\end{ccRefFunction}
|
||||
%--------------------------------------------------------------------------------
|
||||
\begin{ccRefFunction}{compute_normal_of_cell_2<LCC>}
|
||||
\ccInclude{Linear_cell_complex_operations.h}\\
|
||||
\ccInclude{CGAL/Linear_cell_complex_operations.h}\\
|
||||
\ccFunction{template <class LCC>
|
||||
typename LCC::Vector compute_normal_of_cell_2(const LCC& lcc,
|
||||
typename LCC::Dart_const_handle dh);}
|
||||
|
|
@ -57,128 +33,8 @@ typename LCC::Dart_const_handle dh);}
|
|||
}
|
||||
|
||||
\ccSeeAlso
|
||||
%\ccRefIdfierPage{CGAL::barycenter<LCC,i>}\\
|
||||
\ccRefIdfierPage{CGAL::compute_normal_of_cell_0<LCC>}\\
|
||||
\end{ccRefFunction}
|
||||
%--------------------------------------------------------------------------------
|
||||
% \begin{ccRefFunction}{insert_barycenter_in_cell<LCC,i>}
|
||||
% \ccInclude{Combinatorial_map_operations.h}\\
|
||||
|
||||
% \ccFunction{template <class LCC, unsigned int i>
|
||||
% typename LCC::Dart_handle insert_barycenter_in_cell(LCC& lcc,
|
||||
% typename LCC::Dart_handle dh);}
|
||||
% {Inserts a point in the barycenter of the \emph{i}-cell containing \ccc{dh}.
|
||||
% Returns an handle on one dart of this cell.
|
||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}1 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}\\
|
||||
% % \begin{ccAdvanced}
|
||||
% If \emph{i}-attributes are non void,
|
||||
% \ccc{Attribute_type<i>::type::On_split}(\emph{a},\emph{a'}) is called,
|
||||
% with \emph{a} the original \emph{i}-attribute associated
|
||||
% with \emph{dh} and \emph{a'} each new \emph{i}-attribute created during the operation.
|
||||
% % \end{ccAdvanced}
|
||||
% }
|
||||
|
||||
% \ccSeeAlso
|
||||
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_1<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_2<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::insert_barycenter_in_cell<LCC,i>}\\
|
||||
% \ccRefIdfierPage{CGAL::insert_dangling_cell_1_in_cell_2<LCC>}\\
|
||||
% \end{ccRefFunction}
|
||||
%--------------------------------------------------------------------------------
|
||||
% \begin{ccRefFunction}{insert_point_in_cell<LCC,i>}
|
||||
% \ccInclude{Combinatorial_map_operations.h}\\
|
||||
|
||||
% \ccFunction{template <class LCC, unsigned int i>
|
||||
% typename LCC::Dart_handle insert_point_in_cell(LCC& lcc,
|
||||
% typename LCC::Dart_handle dh,
|
||||
% typename LCC::Point p);}
|
||||
% {Inserts a point, copy of \ccc{p}, in the \emph{i}-cell containing \ccc{dh}.
|
||||
% Returns an handle on one dart of this cell.
|
||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}1 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}\\
|
||||
% % \begin{ccAdvanced}
|
||||
% If \emph{i}-attributes are non void,
|
||||
% \ccc{Attribute_type<i>::type::On_split}(\emph{a},\emph{a'}) is called,
|
||||
% with $a$ the original \emph{i}-attribute associated
|
||||
% with $dh$ and $a'$ each new \emph{i}-attribute created during the operation.
|
||||
% % \end{ccAdvanced}
|
||||
% }
|
||||
|
||||
% \ccSeeAlso
|
||||
% \ccRefIdfierPage{CGAL::insert_barycenter_in_cell<LCC,i>}\\
|
||||
% \ccRefIdfierPage{CGAL::insert_dangling_cell_1_in_cell_2<LCC>}\\
|
||||
% \end{ccRefFunction}
|
||||
%--------------------------------------------------------------------------------
|
||||
% \begin{ccRefFunction}{insert_cell_0_in_cell_2<LCC>}
|
||||
% \ccInclude{Linear_cell_complex_operations.h}\\
|
||||
% \ccFunction{template <class LCC>
|
||||
% typename LCC::Dart_handle insert_cell_0_in_cell_2(LCC & lcc,
|
||||
% typename LCC::Dart_handle dh,
|
||||
% typename LCC::Point p);}
|
||||
% {Inserts a 0-cell in the 2-cell containing \ccc{dh}, associated with
|
||||
% a 0-attribute having \ccc{p} as point.
|
||||
% The 2-cell is splitted in triangles, one for each initial edge of the facet.
|
||||
% Returns an handle on one dart belonging to the new 0-cell.
|
||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}\\
|
||||
% % \begin{ccAdvanced}
|
||||
% If 2-attributes are non void,
|
||||
% \ccc{Attribute_type<2>::type::On_split}(\emph{a},\emph{a'}) is called,
|
||||
% with \emph{a} the original 2-attribute associated
|
||||
% with \emph{dh} and \emph{a'} each new 2-attribute created during the operation.
|
||||
% % \end{ccAdvanced}
|
||||
% }
|
||||
|
||||
% \ccSeeAlso
|
||||
% \ccRefIdfierPage{CGAL::insert_middle_cell_0_in_cell_1<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_1<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::insert_center_cell_0_in_cell_2<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::insert_dangling_cell_1_in_cell_2<LCC>}\\
|
||||
% \end{ccRefFunction}
|
||||
%--------------------------------------------------------------------------------
|
||||
% \begin{ccRefFunction}{insert_center_cell_0_in_cell_2<LCC>}
|
||||
% \ccInclude{Linear_cell_complex_operations.h}\\
|
||||
% \ccFunction{template <class LCC>
|
||||
% typename LCC::Dart_handle insert_center_cell_0_in_cell_2(LCC & lcc,
|
||||
% typename LCC::Dart_handle dh);}
|
||||
% {Inserts a 0-cell in the barycenter of the 2-cell containing \ccc{dh}.
|
||||
% The 2-cell is splitted in triangles, one for each initial edge of the facet.
|
||||
% Returns an handle on one dart belonging to the new 0-cell.
|
||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}\\
|
||||
% % \begin{ccAdvanced}
|
||||
% If 2-attributes are non void,
|
||||
% \ccc{Attribute_type<2>::type::On_split}(\emph{a},\emph{a'}) is called,
|
||||
% with \emph{a} the original 2-attribute associated
|
||||
% with \emph{dh} and \emph{a'} each new 2-attribute created during the operation.
|
||||
% % \end{ccAdvanced}
|
||||
% }
|
||||
|
||||
% \ccSeeAlso
|
||||
% \ccRefIdfierPage{CGAL::barycenter<LCC,i>}\\
|
||||
% \ccRefIdfierPage{CGAL::insert_middle_cell_0_in_cell_1<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_1<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_2<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::insert_dangling_cell_1_in_cell_2<LCC>}\\
|
||||
% \end{ccRefFunction}
|
||||
%--------------------------------------------------------------------------------
|
||||
% \begin{ccRefFunction}{insert_dangling_cell_1_in_cell_2<LCC>}
|
||||
% \ccInclude{Combinatorial_map_operations.h}\\
|
||||
|
||||
% \ccFunction{template <class LCC>
|
||||
% typename LCC::Dart_handle insert_dangling_cell_1_in_cell_2(LCC& lcc,
|
||||
% typename LCC::Dart_handle dh,
|
||||
% typename LCC::Point p);}
|
||||
% {Inserts a 1-cell in a the 2-cell containing \ccc{adart}, the 1-cell
|
||||
% being attached only by one of its vertex to the 0-cell containing \ccc{dh}.
|
||||
% The second vertex is associated with a new 0-attribute containing a copy of
|
||||
% \ccc{p} as point. Returns an handle on one dart belonging to the new 0-cell.
|
||||
% \ccPrecond{\ccc{LCC::dimension}\mygeq{}2 and \ccc{*dh}\myin{}\ccc{lcc.darts()}.}
|
||||
% }
|
||||
% \ccSeeAlso
|
||||
% \ccRefIdfierPage{CGAL::insert_middle_cell_0_in_cell_1<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_1<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::insert_cell_0_in_cell_2<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::insert_center_cell_0_in_cell_2<LCC>}\\
|
||||
% \end{ccRefFunction}
|
||||
%--------------------------------------------------------------------------------
|
||||
|
||||
% +------------------------------------------------------------------------+
|
||||
%%RefPage: end of main body, begin of footer
|
||||
|
|
|
|||
|
|
@ -2,7 +2,7 @@
|
|||
% | Reference manual page: LinearCellComplexTraits.tex
|
||||
% +------------------------------------------------------------------------+
|
||||
% | 04.02.2010 Guillaume Damiand
|
||||
% | Package: Combinatorial_map
|
||||
% | Package: Linear_cell_complex
|
||||
% +------------------------------------------------------------------------+
|
||||
\ccRefPageBegin
|
||||
%%RefPage: end of header, begin of main body
|
||||
|
|
@ -33,12 +33,8 @@ types and functors corresponding to the given dimension.
|
|||
\ccConstants
|
||||
\ccVariable{static unsigned int ambient_dimension = d;}{}
|
||||
|
||||
% \ccTypes
|
||||
% \ccTypedef{typedef K Kernel;}{}
|
||||
|
||||
\ccSeeAlso
|
||||
|
||||
%\ccRefConceptPage{LinearCellComplex}\\
|
||||
\ccRefIdfierPage{CGAL::Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>}\\
|
||||
\ccRefConceptPage{LinearCellComplexItems}
|
||||
|
||||
|
|
@ -48,105 +44,3 @@ types and functors corresponding to the given dimension.
|
|||
\ccRefPageEnd
|
||||
% EOF
|
||||
% +------------------------------------------------------------------------+
|
||||
|
||||
%for example \ccc{CGAL::Cartesian<double>} or \ccc{CGAL::Simple_cartesian<CGAL::Gmpq>}.
|
||||
|
||||
% \ccRefines
|
||||
% \ccc{CopyConstructable}, \ccc{Assignable}.
|
||||
|
||||
% ... Question is all these typedef required ?
|
||||
|
||||
|
||||
% \ccTypes
|
||||
|
||||
% % \ccNestedType{Kernel}{kernel type.}
|
||||
|
||||
% \ccTypedef{Kernel::FT FT;}{Number type.}
|
||||
|
||||
% \subsection{If \ccc{Dimension==2}}
|
||||
|
||||
% \ccTypes
|
||||
|
||||
% \ccTypedef{Kernel::Point_2 Point;}{point type.}
|
||||
% \ccGlue
|
||||
% \ccTypedef{Kernel::Vector_2 Vector;}{vector type.}
|
||||
% % \ccGlue
|
||||
% % \ccTypedef{Kernel::Iso_rectangle_2 Iso_rectangle}{iso rectangle type.}
|
||||
|
||||
% \ccHeading{Constructions}
|
||||
|
||||
% \ccTypedef{Kernel::Construct_translated_point_2 Construct_translated_point;}{}
|
||||
% \ccGlue
|
||||
% \ccTypedef{Kernel::Construct_vector_2 Construct_vector;}{}
|
||||
% \ccGlue
|
||||
% \ccTypedef{Kernel::Construct_sum_of_vectors_2 Construct_sum_of_vectors;}{}
|
||||
% \ccGlue
|
||||
% \ccTypedef{Kernel::Construct_scaled_vector_2 Construct_scaled_vector;}{}
|
||||
% \ccGlue
|
||||
% \ccTypedef{Kernel::Construct_midpoint_2 Construct_midpoint;}{}
|
||||
% \ccGlue
|
||||
% \ccTypedef{Kernel::Construct_direction_2 Construct_direction;}{}
|
||||
|
||||
% ...
|
||||
|
||||
% \subsection{If \ccc{Dimension==3}}
|
||||
|
||||
% \ccTypes
|
||||
|
||||
% \ccTypedef{Kernel::Point_3 Point;}{point type.}
|
||||
% \ccGlue
|
||||
% \ccTypedef{Kernel::Vector_3 Vector;}{vector type.}
|
||||
% % \ccGlue
|
||||
% % \ccTypedef{Kernel::Iso_cuboid_3 }{iso cuboid type.}
|
||||
|
||||
% \ccHeading{Constructions}
|
||||
|
||||
% \ccTypedef{Kernel::Construct_translated_point_3 Construct_translated_point;}{}
|
||||
% \ccGlue
|
||||
% \ccTypedef{Kernel::Construct_vector_3 Construct_vector;}{}
|
||||
% \ccGlue
|
||||
% \ccTypedef{Kernel::Construct_sum_of_vectors_3 Construct_sum_of_vectors;}{}
|
||||
% \ccGlue
|
||||
% \ccTypedef{Kernel::Construct_scaled_vector_3 Construct_scaled_vector;}{}
|
||||
% \ccGlue
|
||||
% \ccTypedef{Kernel::Construct_midpoint_3 Construct_midpoint;}{}
|
||||
% \ccGlue
|
||||
% \ccTypedef{Kernel::Construct_direction_3 Construct_direction;}{}
|
||||
|
||||
% ...
|
||||
|
||||
% \subsection{If \ccc{Dimension>3}}
|
||||
|
||||
% \ccTypes
|
||||
|
||||
% \ccTypedef{Kernel::Point_d;}{point type.}
|
||||
% \ccGlue
|
||||
% \ccTypedef{Kernel::Vector_d;}{vector type.}
|
||||
|
||||
% \ccHeading{Constructions}
|
||||
|
||||
% \ccTypedef{Kernel::Construct_vector_d;}{a model of \ccc{Kernel::ConstructVector_d}}
|
||||
% \ccGlue
|
||||
% \ccTypedef{Kernel::Construct_midpoint_d;}{a model of \ccc{Kernel::ConstructMidpoint_d}}
|
||||
% \ccGlue
|
||||
% \ccTypedef{Kernel::Point_to_vector_d;}{a model of \ccc{Kernel::Point_to_vector_d}}
|
||||
|
||||
% \ccHeading{Generalized Predicates}
|
||||
|
||||
% \ccTypedef{Kernel::Compare_lexicographically_d;}{a model of \ccc{Kernel::Compare_lexicographically_d}}
|
||||
|
||||
% \ccHeading{Operators}
|
||||
|
||||
% Because there is no construction for these operations.
|
||||
|
||||
% \ccTypedef{Vector_d(int,Base_vector,FT);}{}
|
||||
% \ccGlue
|
||||
% \ccTypedef{operator+(Point_d,Point_d);}{}
|
||||
% \ccGlue
|
||||
% \ccTypedef{operator+(Point_d,Vector_d);}{}
|
||||
% \ccGlue
|
||||
% \ccTypedef{operator+(Vector_d,Vector_d);}{}
|
||||
% \ccGlue
|
||||
% \ccTypedef{operator*(Vector_d,FT);}{}
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -5,43 +5,25 @@
|
|||
|
||||
\subsection{Concepts}
|
||||
|
||||
%\ccRefConceptPage{LinearCellComplex}\\
|
||||
\ccRefConceptPage{LinearCellComplexTraits}\\
|
||||
\ccRefConceptPage{LinearCellComplexItems}\\
|
||||
\ccRefConceptPage{CellAttributeWithPoint}
|
||||
%\ccRefConceptPage{LinearCellComplexTraitsVector}
|
||||
|
||||
\subsection{Classes}
|
||||
\ccRefIdfierPage{CGAL::Linear_cell_complex<d,d2,Traits_,Items_,Alloc_>}\\
|
||||
\ccRefIdfierPage{CGAL::Linear_cell_complex_min_items<d>}\\
|
||||
\ccRefIdfierPage{CGAL::Linear_cell_complex_traits<d,K>}\\
|
||||
%\ccRefIdfierPage{CGAL::Linear_cell_complex_cartesian_traits}\\
|
||||
%\ccRefIdfierPage{CGAL::Linear_cell_complex_epik_traits}\\
|
||||
\ccRefIdfierPage{CGAL::Cell_attribute_with_point<LCC,Info_,Tag,OnMerge,OnSplit>}
|
||||
%\ccRefIdfierPage{CGAL::Cell_attribute_with_point_and_info}
|
||||
|
||||
\subsection{Global Functions}
|
||||
|
||||
\subsubsection{Constructions for Linear cell complex}
|
||||
% \ccRefIdfierPage{CGAL::make_segment<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_triangle<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_quadrangle<LCC>}\\
|
||||
%\ccRefIdfierPage{CGAL::make_rectangle<LCC>}\\
|
||||
%\ccRefIdfierPage{CGAL::make_square}\\
|
||||
% \ccRefIdfierPage{CGAL::make_tetrahedron<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::make_hexahedron<LCC>}\\
|
||||
%\ccRefIdfierPage{CGAL::make_iso_cuboid<LCC>}\\
|
||||
%\ccRefIdfierPage{CGAL::make_cube}\\
|
||||
\ccRefIdfierPage{CGAL::import_from_plane_graph<LCC>}\\
|
||||
\ccRefIdfierPage{CGAL::import_from_triangulation_3<LCC,Triangulation>}\\
|
||||
\ccRefIdfierPage{CGAL::import_from_polyhedron<LCC,Polyhedron>}
|
||||
|
||||
\subsubsection{Operations for Linear cell complex}
|
||||
%\ccRefIdfierPage{CGAL::barycenter<LCC,i>}\\
|
||||
\ccRefIdfierPage{CGAL::compute_normal_of_cell_0<LCC>}\\
|
||||
\ccRefIdfierPage{CGAL::compute_normal_of_cell_2<LCC>}\\
|
||||
% \ccRefIdfierPage{CGAL::insert_barycenter_in_cell<LCC,i>}\\
|
||||
% \ccRefIdfierPage{CGAL::insert_point_in_cell<LCC,i>}\\
|
||||
% \ccRefIdfierPage{CGAL::insert_dangling_cell_1_in_cell_2<LCC>}
|
||||
\ccRefIdfierPage{CGAL::compute_normal_of_cell_2<LCC>}
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -9,25 +9,17 @@
|
|||
\input{Linear_cell_complex_ref/intro.tex}
|
||||
|
||||
% First: concepts
|
||||
% \input{Linear_cell_complex_ref/LinearCellComplex.tex}
|
||||
|
||||
\input{Linear_cell_complex_ref/LinearCellComplexTraits.tex}
|
||||
\input{Linear_cell_complex_ref/LinearCellComplexItems.tex}
|
||||
\input{Linear_cell_complex_ref/CellAttributeWithPoint.tex}
|
||||
|
||||
%\input{Linear_cell_complex_ref/LinearCellComplexTraitsVector.tex}
|
||||
|
||||
% Second: classes
|
||||
\input{Linear_cell_complex_ref/Linear_cell_complex.tex}
|
||||
|
||||
\input{Linear_cell_complex_ref/Linear_cell_complex_min_items.tex}
|
||||
\input{Linear_cell_complex_ref/Linear_cell_complex_traits.tex}
|
||||
%\input{Linear_cell_complex_ref/Linear_cell_complex_cartesian_traits.tex}
|
||||
%\input{Linear_cell_complex_ref/Linear_cell_complex_epik_traits.tex}
|
||||
|
||||
\input{Linear_cell_complex_ref/Cell_attribute_with_point.tex}
|
||||
%\input{Linear_cell_complex_ref/Cell_attribute_with_point_and_info.tex}
|
||||
|
||||
|
||||
% Third: global functions.
|
||||
\input{Linear_cell_complex_ref/Linear_cell_complex_constructors.tex}
|
||||
|
|
|
|||
Loading…
Reference in New Issue