mirror of https://github.com/CGAL/cgal
Small layout changes for Power_test_3's doc entry
(cherry picked from commit fdb4959b3e06c4c3fe4dd17d4420664a5d140486)
This commit is contained in:
parent
26861f733d
commit
7cc8f59898
|
|
@ -75,28 +75,33 @@ which performs the following:
|
|||
Let \f$ {z(p,q,r,s)}^{(w)}\f$ be the power sphere of the weighted points
|
||||
\f$ (p,q,r,s)\f$. Returns
|
||||
|
||||
`ON_ORIENTED_BOUNDARY` if `t` is orthogonal to
|
||||
\f$ {z(p,q,r,s)}^{(w)}\f$,
|
||||
- `ON_ORIENTED_BOUNDARY` if `t` is orthogonal to
|
||||
\f$ {z(p,q,r,s)}^{(w)}\f$,
|
||||
|
||||
`ON_NEGATIVE_SIDE` if `t` lies outside the oriented sphere of
|
||||
center \f$ z(p,q,r,s)\f$ and radius \f$ \sqrt{ w_{z(p,q,r,s)}^2 + w_t^2 }\f$
|
||||
(which is equivalent to \f$ \Pi({t}^{(w)},{z(p,q,r,s)}^{(w)} >0\f$)),
|
||||
- `ON_NEGATIVE_SIDE` if `t` lies outside the oriented sphere of
|
||||
center \f$ z(p,q,r,s)\f$ and radius \f$ \sqrt{ w_{z(p,q,r,s)}^2 + w_t^2 }\f$
|
||||
(which is equivalent to \f$ \Pi({t}^{(w)},{z(p,q,r,s)}^{(w)} >0\f$)),
|
||||
|
||||
- `ON_POSITIVE_SIDE` if `t` lies inside this oriented sphere.
|
||||
|
||||
`ON_POSITIVE_SIDE` if `t` lies inside this oriented sphere.
|
||||
\pre `p, q, r, s` are not coplanar.
|
||||
Note that with this definition, if all the points have a weight equal
|
||||
to 0, then
|
||||
`power_test_3(p,q,r,s,t)` = `side_of_oriented_sphere(p,q,r,s,t)`.
|
||||
|
||||
<HR WIDTH=50%>
|
||||
|
||||
`Oriented_side operator()( Weighted_point_3 p, Weighted_point_3 q, Weighted_point_3 r, Weighted_point_3 t)`,
|
||||
|
||||
which has an
|
||||
which has a
|
||||
definition analogous to the previous method, for coplanar points,
|
||||
with the power circle \f$ {z(p,q,r)}^{(w)}\f$.
|
||||
\pre `p, q, r` are not collinear and `p, q, r, t` are coplanar.
|
||||
If all the points have a weight equal to 0, then
|
||||
`power_test_3(p,q,r,t)` = `side_of_oriented_circle(p,q,r,t)`.
|
||||
|
||||
<HR WIDTH=50%>
|
||||
|
||||
`Oriented_side operator()( Weighted_point_3 p, Weighted_point_3 q, Weighted_point_3 t)`,
|
||||
|
||||
which is the same for collinear points, where \f$ {z(p,q)}^{(w)}\f$ is the
|
||||
|
|
@ -107,6 +112,8 @@ If all points have a weight equal to 0, then
|
|||
`s(p,q).has_on(t)` would give, where `s(p,q)` denotes the
|
||||
segment with endpoints `p` and `q`.
|
||||
|
||||
<HR WIDTH=50%>
|
||||
|
||||
`Oriented_side operator()( Weighted_point_3 p, Weighted_point_3 q)`,
|
||||
|
||||
which is the same for equal points, that is when `p` and `q`
|
||||
|
|
|
|||
Loading…
Reference in New Issue