rename kernel global function groups

This commit is contained in:
Sébastien Loriot 2013-01-09 12:50:44 +01:00
parent 1debeb5cde
commit 7ecf2981af
15 changed files with 193 additions and 194 deletions

View File

@ -7,7 +7,7 @@ Testing whether two curves intersect.
\cgalRefines `Kernel::DoIntersect_2`
\sa \link do_intersect `CGAL::do_intersect()` \endlink
\sa \link do_intersect_grp `CGAL::do_intersect()` \endlink
*/

View File

@ -5,7 +5,7 @@
\cgalRefines `Kernel::Intersect_2`
\sa \link intersection `CGAL::intersection()` \endlink
\sa \link intersection_grp `CGAL::intersection()` \endlink
*/

View File

@ -96,15 +96,15 @@
## Geometric Global Functions ##
- \link compare_x_circular `CGAL::compare_x()` \endlink
- \link compare_y_circular `CGAL::compare_y()` \endlink
- \link compare_xy_circular `CGAL::compare_xy()` \endlink
- \link compare_y_at_x `CGAL::compare_y_at_x()` \endlink
- \link compare_x_circular_grp `CGAL::compare_x()` \endlink
- \link compare_y_circular_grp `CGAL::compare_y()` \endlink
- \link compare_xy_circular_grp `CGAL::compare_xy()` \endlink
- \link compare_y_at_x_grp `CGAL::compare_y_at_x()` \endlink
- `CGAL::compare_y_to_right()`
- `CGAL::has_in_x_range()`
- `CGAL::has_on()`
- \link do_intersect `CGAL::do_intersect()` \endlink
- \link intersection `CGAL::intersection()` \endlink
- \link do_intersect_circular_grp `CGAL::do_intersect()` \endlink
- \link intersection_circular_grp `CGAL::intersection()` \endlink
- `CGAL::x_extremal_point()`
- `CGAL::y_extremal_point()`
- `CGAL::x_extremal_points()`

View File

@ -23,14 +23,14 @@ namespace CGAL {
Compares the \f$ \theta\f$-coordinates of `p` and `q` relatively to `sphere`.
\pre `p` and `q` lie on `sphere`, but do not coincide with the poles of `sphere`.
\sa \link compare_x `CGAL::compare_x()` \endlink
\sa \link compare_xy `CGAL::compare_xy()` \endlink
\sa \link compare_xy `CGAL::compare_xy()` \endlink
\sa \link compare_x_at_y `CGAL::compare_x_at_y()` \endlink
\sa \link compare_y `CGAL::compare_y()` \endlink
\sa \link compare_yx `CGAL::compare_yx()` \endlink
\sa \link compare_y_at_x `CGAL::compare_y_at_x()` \endlink
\sa \link compare_z `CGAL::compare_z()` \endlink
\sa \link compare_x_grp `CGAL::compare_x()` \endlink
\sa \link compare_xy_grp `CGAL::compare_xy()` \endlink
\sa \link compare_xy_grp `CGAL::compare_xy()` \endlink
\sa \link compare_x_at_y_grp `CGAL::compare_x_at_y()` \endlink
\sa \link compare_y_grp `CGAL::compare_y()` \endlink
\sa \link compare_yx_grp `CGAL::compare_yx()` \endlink
\sa \link compare_y_at_x_grp `CGAL::compare_y_at_x()` \endlink
\sa \link compare_z_grp `CGAL::compare_z()` \endlink
\sa `CGAL::compare_theta_z()`
*/
template <class SphericalKernel>
@ -46,14 +46,14 @@ Compares the \f$ \theta\f$-coordinates of `p` and of the meridian defined by `m`
in the cylindrical coordinate system relative to `sphere`.
\pre `p` lies on `sphere`, but does not coincide with its poles. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$.
\sa \link compare_x `CGAL::compare_x()` \endlink
\sa \link compare_xy `CGAL::compare_xy()` \endlink
\sa \link compare_xy `CGAL::compare_xy()` \endlink
\sa \link compare_x_at_y `CGAL::compare_x_at_y()` \endlink
\sa \link compare_y `CGAL::compare_y()` \endlink
\sa \link compare_yx `CGAL::compare_yx()` \endlink
\sa \link compare_y_at_x `CGAL::compare_y_at_x()` \endlink
\sa \link compare_z `CGAL::compare_z()` \endlink
\sa \link compare_x_grp `CGAL::compare_x()` \endlink
\sa \link compare_xy_grp `CGAL::compare_xy()` \endlink
\sa \link compare_xy_grp `CGAL::compare_xy()` \endlink
\sa \link compare_x_at_y_grp `CGAL::compare_x_at_y()` \endlink
\sa \link compare_y_grp `CGAL::compare_y()` \endlink
\sa \link compare_yx_grp `CGAL::compare_yx()` \endlink
\sa \link compare_y_at_x_grp `CGAL::compare_y_at_x()` \endlink
\sa \link compare_z_grp `CGAL::compare_z()` \endlink
\sa `CGAL::compare_theta_z()`
*/
template <class SphericalKernel>
@ -67,14 +67,13 @@ Compares the \f$ \theta\f$-coordinates of the meridian defined by `m` and of `p
in the cylindrical coordinate system relative to `sphere`.
\pre `p` lies on `sphere`, but does not coincide with its poles. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$.
\sa \link compare_x `CGAL::compare_x()` \endlink
\sa \link compare_xy `CGAL::compare_xy()` \endlink
\sa \link compare_xy `CGAL::compare_xy()` \endlink
\sa \link compare_x_at_y `CGAL::compare_x_at_y()` \endlink
\sa \link compare_y `CGAL::compare_y()` \endlink
\sa \link compare_yx `CGAL::compare_yx()` \endlink
\sa \link compare_y_at_x `CGAL::compare_y_at_x()` \endlink
\sa \link compare_z `CGAL::compare_z()` \endlink
\sa \link compare_x_grp `CGAL::compare_x()` \endlink
\sa \link compare_xy_grp `CGAL::compare_xy()` \endlink
\sa \link compare_x_at_y_grp `CGAL::compare_x_at_y()` \endlink
\sa \link compare_y_grp `CGAL::compare_y()` \endlink
\sa \link compare_yx_grp `CGAL::compare_yx()` \endlink
\sa \link compare_y_at_x_grp `CGAL::compare_y_at_x()` \endlink
\sa \link compare_z_grp `CGAL::compare_z()` \endlink
\sa `CGAL::compare_theta_z()`
*/
template <class SphericalKernel>
@ -92,14 +91,14 @@ Compares `p` and `q` according to the lexicographic ordering on \f$ \theta\f$ an
in the cylindrical coordinate system relative to `sphere`.
\pre `p` and `q` lie on `sphere`, but do not coincide with the poles of `sphere`.
\sa \link compare_x `CGAL::compare_x()` \endlink
\sa \link compare_xy `CGAL::compare_xy()` \endlink
\sa \link compare_xy `CGAL::compare_xy()` \endlink
\sa \link compare_x_at_y `CGAL::compare_x_at_y()` \endlink
\sa \link compare_y `CGAL::compare_y()` \endlink
\sa \link compare_yx `CGAL::compare_yx()` \endlink
\sa \link compare_y_at_x `CGAL::compare_y_at_x()` \endlink
\sa \link compare_z `CGAL::compare_z()` \endlink
\sa \link compare_x_grp `CGAL::compare_x()` \endlink
\sa \link compare_xy_grp `CGAL::compare_xy()` \endlink
\sa \link compare_xy_grp `CGAL::compare_xy()` \endlink
\sa \link compare_x_at_y_grp `CGAL::compare_x_at_y()` \endlink
\sa \link compare_y_grp `CGAL::compare_y()` \endlink
\sa \link compare_yx_grp `CGAL::compare_yx()` \endlink
\sa \link compare_y_at_x_grp `CGAL::compare_y_at_x()` \endlink
\sa \link compare_z_grp `CGAL::compare_z()` \endlink
\sa `CGAL::compare_theta()`
*/
template <class SphericalKernel>

View File

@ -7,7 +7,7 @@
\cgalRefines `Kernel::DoIntersect_3`
\sa \link do_intersect `CGAL::do_intersect()` \endlink
\sa \link do_intersect_grp `CGAL::do_intersect()` \endlink
*/

View File

@ -4,7 +4,7 @@
\cgalConcept
\cgalRefines `Kernel::Intersect_3`
\sa \link intersection `CGAL::intersection()` \endlink
\sa \link intersection_grp `CGAL::intersection()` \endlink
*/
class SphericalKernel::Intersect_3 {

View File

@ -107,11 +107,11 @@
## Geometric Global Functions ##
- \link compare_x_spherical `CGAL::compare_x()` \endlink
- \link compare_y_spherical `CGAL::compare_y()` \endlink
- \link compare_z_spherical `CGAL::compare_z()` \endlink
- \link compare_xy_spherical `CGAL::compare_xy()` \endlink
- \link compare_xyz_spherical `CGAL::compare_xyz()` \endlink
- \link compare_x_spherical_grp `CGAL::compare_x()` \endlink
- \link compare_y_spherical_grp `CGAL::compare_y()` \endlink
- \link compare_z_spherical_grp `CGAL::compare_z()` \endlink
- \link compare_xy_spherical_grp `CGAL::compare_xy()` \endlink
- \link compare_xyz_spherical_grp `CGAL::compare_xyz()` \endlink
- `CGAL::compare_theta()`
- `CGAL::compare_theta_z()`
- `CGAL::is_theta_monotone()`
@ -124,8 +124,8 @@
- `CGAL::y_extremal_points()`
- `CGAL::z_extremal_points()`
- `CGAL::theta_extremal_points()`
- \link do_intersect `CGAL::do_intersect()` \endlink
- \link intersection `CGAL::intersection()` \endlink
- \link do_intersect_grp `CGAL::do_intersect()` \endlink
- \link intersection_grp `CGAL::intersection()` \endlink
## Algebraic Concepts ##

View File

@ -38,7 +38,7 @@ therefore do not appear in the constructors.
\sa `Rotation`
\sa `Scaling`
\sa `Translation`
\sa `rational_rotation_approximation`
\sa `rational_rotation_approximation_grp`
\cgalHeading{Example}

View File

@ -13,8 +13,8 @@ will explicitly state where you can pass this constant as an argument
instead of a vector initialized with zeros.
\sa `Kernel::Vector_3`
\sa `CGAL::cross_product`
\sa `CGAL::determinant`
\sa `cross_product_grp`
\sa `determinant_grp`
*/
template< typename Kernel >

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\defgroup angle CGAL::angle()
\defgroup angle_grp CGAL::angle()
\ingroup kernel_global_function
*/
/// @{
@ -50,7 +50,7 @@ const CGAL::Point_3<Kernel>& r);
/// @}
/// \defgroup area CGAL::area()
/// \defgroup area_grp CGAL::area()
/// \ingroup kernel_global_function
/// @{
@ -65,7 +65,7 @@ const CGAL::Point_2<Kernel>& r);
/// @}
/// \defgroup are_ordered_along_line CGAL::are_ordered_along_line()
/// \defgroup are_ordered_along_line_grp CGAL::are_ordered_along_line()
/// \ingroup kernel_global_function
/// \sa `CGAL::are_strictly_ordered_along_line`
/// \sa `CGAL::collinear_are_ordered_along_line`
@ -98,7 +98,7 @@ const CGAL::Point_3<Kernel> &r);
/// @}
/// \defgroup are_strictly_ordered_along_line CGAL::are_strictly_ordered_along_line()
/// \defgroup are_strictly_ordered_along_line_grp CGAL::are_strictly_ordered_along_line()
/// \ingroup kernel_global_function
/// \sa `CGAL::are_ordered_along_line`
/// \sa `CGAL::collinear_are_ordered_along_line`
@ -129,7 +129,7 @@ const CGAL::Point_3<Kernel> &r);
/// @}
/// \defgroup barycenter CGAL::barycenter()
/// \defgroup barycenter_grp CGAL::barycenter()
/// \ingroup kernel_global_function
/// \sa \link centroid `CGAL::centroid()` \endlink
/// @{
@ -256,7 +256,7 @@ const CGAL::Point_3<Kernel>& p4, const Kernel::FT&w4);
/// @}
/// \defgroup bisector CGAL::bisector()
/// \defgroup bisector_grp CGAL::bisector()
/// \ingroup kernel_global_function
/// @{
@ -310,7 +310,7 @@ const CGAL::Plane_3<Kernel> &h2);
/// @}
/// \defgroup centroid CGAL::centroid()
/// \defgroup centroid_grp CGAL::centroid()
/// \ingroup kernel_global_function
/// \sa \link barycenter `CGAL::barycenter()` \endlink
/// @{
@ -376,7 +376,7 @@ centroid( const CGAL::Tetrahedron_3<Kernel>& t);
/// @}
/// \defgroup circumcenter CGAL::circumcenter()
/// \defgroup circumcenter_grp CGAL::circumcenter()
/// \ingroup kernel_global_function
/// @{
@ -457,7 +457,7 @@ circumcenter( const CGAL::Tetrahedron_3<Kernel>& t);
/// @}
/// \defgroup collinear_are_ordered_along_line CGAL::collinear_are_ordered_along_line()
/// \defgroup collinear_are_ordered_along_line_grp CGAL::collinear_are_ordered_along_line()
/// \ingroup kernel_global_function
/// \sa `CGAL::are_ordered_along_line`
/// \sa `CGAL::are_strictly_ordered_along_line`
@ -484,7 +484,7 @@ const CGAL::Point_3<Kernel> &r);
/// @}
/// \defgroup collinear_are_strictly_ordered_along_line CGAL::collinear_are_strictly_ordered_along_line()
/// \defgroup collinear_are_strictly_ordered_along_line_grp CGAL::collinear_are_strictly_ordered_along_line()
/// \ingroup kernel_global_function
/// \sa `CGAL::are_ordered_along_line`
/// \sa `CGAL::are_strictly_ordered_along_line`
@ -512,7 +512,7 @@ const CGAL::Point_3<Kernel> &r);
/// @}
/// \defgroup collinear CGAL::collinear()
/// \defgroup collinear_grp CGAL::collinear()
/// \ingroup kernel_global_function
/// \sa `CGAL::left_turn`
/// \sa `CGAL::orientation`
@ -539,7 +539,7 @@ const CGAL::Point_3<Kernel>&r);
/// \defgroup compare_dihedral_angle CGAL::compare_dihedral_angle()
/// \defgroup compare_dihedral_angle_grp CGAL::compare_dihedral_angle()
/// \ingroup kernel_global_function
/// @{
@ -609,7 +609,7 @@ const CGAL::Vector_3<Kernel>& w2);
/// @}
/// \defgroup compare_distance_to_point CGAL::compare_distance_to_point()
/// \defgroup compare_distance_to_point_grp CGAL::compare_distance_to_point()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_squared_distance`
/// \sa `CGAL::compare_signed_distance_to_line`
@ -654,7 +654,7 @@ const CGAL::Point_3<Kernel>& r);
/// \defgroup compare_lexicographically_linear CGAL::compare_lexicographically()
/// \defgroup compare_lexicographically_linear_grp CGAL::compare_lexicographically()
/// \ingroup kernel_global_function
/// @{
@ -682,7 +682,7 @@ compare_lexicographically(const CGAL::Point_3<Kernel>& p, const CGAL::Point_3<Ke
/// @}
/// \defgroup compare_signed_distance_to_line CGAL::compare_signed_distance_to_line()
/// \defgroup compare_signed_distance_to_line_grp CGAL::compare_signed_distance_to_line()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_distance_to_point`
/// \sa `CGAL::compare_signed_distance_to_plane`
@ -724,7 +724,7 @@ const CGAL::Point_2<Kernel>& s);
/// @}
/// \defgroup compare_signed_distance_to_plane CGAL::compare_signed_distance_to_plane()
/// \defgroup compare_signed_distance_to_plane_grp CGAL::compare_signed_distance_to_plane()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_distance_to_point`
/// \sa `CGAL::compare_signed_distance_to_line`
@ -770,7 +770,7 @@ const CGAL::Point_3<Kernel>& t);
/// \defgroup compare_slopes CGAL::compare_slopes()
/// \defgroup compare_slopes_grp CGAL::compare_slopes()
/// \ingroup kernel_global_function
/// @{
@ -790,7 +790,7 @@ const CGAL::Segment_2<Kernel> &s2);
/// @}
/// \defgroup compare_squared_distance CGAL::compare_squared_distance()
/// \defgroup compare_squared_distance_grp CGAL::compare_squared_distance()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_distance_to_point`
/// \sa `CGAL::compare_signed_distance_to_line`
@ -825,7 +825,7 @@ const typename Kernel::FT& d2);
/// @}
/// \defgroup compare_squared_radius CGAL::compare_squared_radius()
/// \defgroup compare_squared_radius_grp CGAL::compare_squared_radius()
/// \ingroup kernel_global_function
/// @{
@ -875,7 +875,7 @@ const typename Kernel::FT& sr);
/// @}
/*!
\defgroup compare_x CGAL::compare_x()
\defgroup compare_x_grp CGAL::compare_x()
\ingroup kernel_global_function
\details Depending on which \cgal kernel is used,
@ -892,8 +892,8 @@ described below.
*/
/*!
\defgroup compare_x_linear CGAL::compare_x() (2D/3D Linear Kernel)
\ingroup compare_x
\defgroup compare_x_linear_grp CGAL::compare_x() (2D/3D Linear Kernel)
\ingroup compare_x_grp
\anchor figcompare_x
\image html compare1.gif
*/
@ -945,8 +945,8 @@ Comparison_result compare_x(const CGAL::Line_2<Kernel> &l1,
/// @}
/*!
\defgroup compare_x_circular CGAL::compare_x() (2D Circular Kernel)
\ingroup compare_x
\defgroup compare_x_circular_grp CGAL::compare_x() (2D Circular Kernel)
\ingroup compare_x_grp
\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel".
\code
@ -973,8 +973,8 @@ Comparison_result
/// @}
/*!
\defgroup compare_x_spherical CGAL::compare_x() (3D Spherical Kernel)
\ingroup compare_x
\defgroup compare_x_spherical_grp CGAL::compare_x() (3D Spherical Kernel)
\ingroup compare_x_grp
\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel".
\code
@ -1002,7 +1002,7 @@ Comparison_result
/// @}
/*!
\defgroup compare_xy CGAL::compare_xy()
\defgroup compare_xy_grp CGAL::compare_xy()
\ingroup kernel_global_function
\details Depending on which \cgal kernel is used, different versions of this
@ -1020,8 +1020,8 @@ global function are available.
/*!
\defgroup compare_xy_linear CGAL::compare_xy() (2D/3D Linear Kernel)
\ingroup compare_xy
\defgroup compare_xy_linear_grp CGAL::compare_xy() (2D/3D Linear Kernel)
\ingroup compare_xy_grp
*/
/// @{
@ -1048,8 +1048,8 @@ compare_xy(const CGAL::Point_3<Kernel>& p, const CGAL::Point_3<Kernel>& q);
/// @}
/*!
\defgroup compare_xy_circular CGAL::compare_xy() (2D Circular Kernel)
\ingroup compare_xy
\defgroup compare_xy_circular_grp CGAL::compare_xy() (2D Circular Kernel)
\ingroup compare_xy_grp
\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel".
\code
@ -1079,8 +1079,8 @@ compare_xy(const CGAL::Circular_arc_point_2<CircularKernel> &p,
/// @}
/*!
\defgroup compare_xy_spherical CGAL::compare_xy() (3D Spherical Kernel)
\ingroup compare_xy
\defgroup compare_xy_spherical_grp CGAL::compare_xy() (3D Spherical Kernel)
\ingroup compare_xy_grp
\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel".
\code
@ -1111,7 +1111,7 @@ Comparison_result
/// @}
/*!
\defgroup compare_x_at_y CGAL::compare_x_at_y()
\defgroup compare_x_at_y_grp CGAL::compare_x_at_y()
\ingroup kernel_global_function
\anchor figcomparexaty
@ -1176,7 +1176,7 @@ const CGAL::Line_2<Kernel> &h2);
/// @}
/*!
\defgroup compare_y_at_x CGAL::compare_y_at_x()
\defgroup compare_y_at_x_grp CGAL::compare_y_at_x()
\ingroup kernel_global_function
\anchor figcompareyatx
@ -1295,7 +1295,7 @@ compare_y_at_x(const CGAL::Circular_arc_point_2<CircularKernel> &p,
/*!
\defgroup compare_y CGAL::compare_y()
\defgroup compare_y_grp CGAL::compare_y()
\ingroup kernel_global_function
\details Depending on which \cgal kernel is used, different versions of this
@ -1311,8 +1311,8 @@ global function are available.
*/
/*!
\defgroup compary_y_linear CGAL::compare_y() (2D/3D Linear Kernel)
\ingroup compare_y
\defgroup compary_y_linear_grp CGAL::compare_y() (2D/3D Linear Kernel)
\ingroup compare_y_grp
\details See Chapter \ref chapterkernel23 "2D and 3D Geometry Kernel"
\anchor figcompare13
@ -1366,8 +1366,8 @@ Comparison_result compare_y(const CGAL::Line_2<Kernel> &l1,
/// @}
/*!
\defgroup compare_y_circular CGAL::compare_y() (2D Circular Kernel)
\ingroup compare_y
\defgroup compare_y_circular_grp CGAL::compare_y() (2D Circular Kernel)
\ingroup compare_y_grp
\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel".
\code
@ -1393,8 +1393,8 @@ compare_y(const CGAL::Circular_arc_point_2<CircularKernel> &p,
/// @}
/*!
\defgroup compare_y_spherical CGAL::compare_y() (3D Spherical Kernel)
\ingroup compare_y
\defgroup compare_y_spherical_grp CGAL::compare_y() (3D Spherical Kernel)
\ingroup compare_y_grp
\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel".
\code
@ -1420,7 +1420,7 @@ Comparison_result
/*!
\defgroup compare_xyz CGAL::compare_xyz()
\defgroup compare_xyz_grp CGAL::compare_xyz()
\ingroup kernel_global_function
\details Depending on which \cgal kernel is used, different versions of this
@ -1437,8 +1437,8 @@ global function are available.
*/
/*!
\defgroup compare_xyz_linear CGAL::compare_xyz() (2D/3D Linear Kernel)
\ingroup compare_xyz
\defgroup compare_xyz_linear_grp CGAL::compare_xyz() (2D/3D Linear Kernel)
\ingroup compare_xyz_grp
*/
/// @{
@ -1456,8 +1456,8 @@ compare_xyz(const CGAL::Point_3<Kernel>& p, const CGAL::Point_3<Kernel>& q);
/// @}
/*!
\defgroup compare_xyz_spherical CGAL::compare_xyz() (3D Spherical Kernel)
\ingroup compare_xyz
\defgroup compare_xyz_spherical_grp CGAL::compare_xyz() (3D Spherical Kernel)
\ingroup compare_xyz_grp
\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel"
\code
@ -1485,7 +1485,7 @@ const CGAL::Point_3<SphericalKernel> &q);
/*!
\defgroup compare_z CGAL::compare_z()
\defgroup compare_z_grp CGAL::compare_z()
\ingroup kernel_global_function
\details Depending on which \cgal kernel is used,
@ -1502,8 +1502,8 @@ described below.
*/
/*!
\defgroup compare_z_linear CGAL::compare_z() (2D/3D Linear Kernel)
\ingroup compare_z
\defgroup compare_z_linear_grp CGAL::compare_z() (2D/3D Linear Kernel)
\ingroup compare_z_grp
*/
/// @{
@ -1516,8 +1516,8 @@ Comparison_result compare_z(const CGAL::Point_3<Kernel> &p, const CGAL::Point_3<
/// @}
/*!
\defgroup compare_z_spherical CGAL::compare_z() (3D Spherical Kernel)
\ingroup compare_z
\defgroup compare_z_spherical_grp CGAL::compare_z() (3D Spherical Kernel)
\ingroup compare_z_grp
\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel"
@ -1549,7 +1549,7 @@ compare_z(const CGAL::Circular_arc_point_3<SphericalKernel> &p, const CGAL::Poin
/// @}
/// \defgroup compare_yx CGAL::compare_yx()
/// \defgroup compare_yx_grp CGAL::compare_yx()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_xy`
/// \sa `CGAL::compare_xyz`
@ -1573,7 +1573,7 @@ compare_yx(const CGAL::Point_2<Kernel>& p, const CGAL::Point_2<Kernel>& q);
/// @}
/// \defgroup coplanar CGAL::coplanar()
/// \defgroup coplanar_grp CGAL::coplanar()
/// \ingroup kernel_global_function
/// \sa `CGAL::coplanar_orientation`
/// \sa `CGAL::coplanar_side_of_bounded_circle`
@ -1590,7 +1590,7 @@ const CGAL::Point_3<Kernel>&s);
/// @}
/// \defgroup coplanar_orientation CGAL::coplanar_orientation()
/// \defgroup coplanar_orientation_grp CGAL::coplanar_orientation()
/// \ingroup kernel_global_function
/// \sa `CGAL::coplanar`
/// \sa `CGAL::coplanar_side_of_bounded_circle`
@ -1629,7 +1629,7 @@ const CGAL::Point_3<Kernel>& r);
/// \defgroup coplanar_side_of_bounded_circle CGAL::coplanar_side_of_bounded_circle()
/// \defgroup coplanar_side_of_bounded_circle_grp CGAL::coplanar_side_of_bounded_circle()
/// \ingroup kernel_global_function
/// \sa `CGAL::coplanar_orientation`
/// \sa `CGAL::side_of_bounded_circle`
@ -1649,7 +1649,7 @@ const CGAL::Point_3<Kernel>& s);
/// @}
/// \defgroup cross_product CGAL::cross_product()
/// \defgroup cross_product_grp CGAL::cross_product()
/// \ingroup kernel_global_function
/// @{
@ -1662,7 +1662,7 @@ const CGAL::Vector_3<Kernel>& v);
/// @}
/// \defgroup determinant CGAL::determinant()
/// \defgroup determinant_grp CGAL::determinant()
/// \ingroup kernel_global_function
/// \sa `CGAL::orientation`
/// \sa `CGAL::collinear`
@ -1690,16 +1690,16 @@ const CGAL::Vector_3<Kernel>& w);
// This is there to keep the global functions in alphabetical order
// instead of processing order.
/// \defgroup do_intersect CGAL::do_intersect()
/// \defgroup do_intersect_grp CGAL::do_intersect()
/// \ingroup kernel_global_function
/// \defgroup do_intersect_linear CGAL::do_intersect() (2D/3D Linear Kernel)
/// \ingroup do_intersect
/// \defgroup do_intersect_circular CGAL::do_intersect() (2D Circular Kernel)
/// \ingroup do_intersect
/// \defgroup do_intersect_spherical CGAL::do_intersect() (3D Spherical Kernel)
/// \ingroup do_intersect
/// \defgroup do_intersect_linear_grp CGAL::do_intersect() (2D/3D Linear Kernel)
/// \ingroup do_intersect_grp
/// \defgroup do_intersect_circular_grp CGAL::do_intersect() (2D Circular Kernel)
/// \ingroup do_intersect_grp
/// \defgroup do_intersect_spherical_grp CGAL::do_intersect() (3D Spherical Kernel)
/// \ingroup do_intersect_grp
/// \defgroup equidistant_line CGAL::equidistant_line()
/// \defgroup equidistant_line_grp CGAL::equidistant_line()
/// \ingroup kernel_global_function
/// @{
@ -1715,7 +1715,7 @@ const CGAL::Point_3<Kernel> &r);
/// @}
/// \defgroup has_larger_distance_to_point CGAL::has_larger_distance_to_point()
/// \defgroup has_larger_distance_to_point_grp CGAL::has_larger_distance_to_point()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_distance_to_point`
/// \sa `CGAL::compare_signed_distance_to_line`
@ -1751,7 +1751,7 @@ const CGAL::Point_3<Kernel>& r);
/// @}
/// \defgroup has_larger_signed_distance_to_line CGAL::has_larger_signed_distance_to_line()
/// \defgroup has_larger_signed_distance_to_line_grp CGAL::has_larger_signed_distance_to_line()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_distance_to_point`
/// \sa `CGAL::compare_signed_distance_to_line`
@ -1791,7 +1791,7 @@ const CGAL::Point_2<Kernel>& s);
/// @}
/// \defgroup has_larger_signed_distance_to_plane CGAL::has_larger_signed_distance_to_plane()
/// \defgroup has_larger_signed_distance_to_plane_grp CGAL::has_larger_signed_distance_to_plane()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_distance_to_point`
/// \sa `CGAL::compare_signed_distance_to_line`
@ -1830,7 +1830,7 @@ const CGAL::Point_3<Kernel>& t);
/// @}
/// \defgroup has_smaller_distance_to_point CGAL::has_smaller_distance_to_point()
/// \defgroup has_smaller_distance_to_point_grp CGAL::has_smaller_distance_to_point()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_distance_to_point`
/// \sa `CGAL::compare_signed_distance_to_line`
@ -1866,7 +1866,7 @@ const CGAL::Point_3<Kernel>& r);
/// @}
/// \defgroup has_smaller_signed_distance_to_line CGAL::has_smaller_signed_distance_to_line()
/// \defgroup has_smaller_signed_distance_to_line_grp CGAL::has_smaller_signed_distance_to_line()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_distance_to_point`
/// \sa `CGAL::compare_signed_distance_to_line`
@ -1904,7 +1904,7 @@ const CGAL::Point_2<Kernel>& s);
/// @}
/// \defgroup has_smaller_signed_distance_to_plane CGAL::has_smaller_signed_distance_to_plane()
/// \defgroup has_smaller_signed_distance_to_plane_grp CGAL::has_smaller_signed_distance_to_plane()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_distance_to_point`
/// \sa `CGAL::compare_signed_distance_to_line`
@ -1946,16 +1946,16 @@ const CGAL::Point_3<Kernel>& t);
// Same reason as in defgroup do_intersect.
/// \defgroup intersection CGAL::intersection()
/// \defgroup intersection_grp CGAL::intersection()
/// \ingroup kernel_global_function
/// \defgroup intersection_linear CGAL::intersection() (2D/3D Linear Kernel)
/// \ingroup intersection
/// \defgroup intersection_circular CGAL::intersection() (2D Circular Kernel)
/// \ingroup intersection
/// \defgroup intersection_spherical CGAL::intersection() (3D Spherical Kernel)
/// \ingroup intersection
/// \defgroup intersection_linear_grp CGAL::intersection() (2D/3D Linear Kernel)
/// \ingroup intersection_grp
/// \defgroup intersection_circular_grp CGAL::intersection() (2D Circular Kernel)
/// \ingroup intersection_grp
/// \defgroup intersection_spherical_grp CGAL::intersection() (3D Spherical Kernel)
/// \ingroup intersection_grp
/// \defgroup left_turn CGAL::left_turn()
/// \defgroup left_turn_grp CGAL::left_turn()
/// \ingroup kernel_global_function
/// \sa `CGAL::collinear`
/// \sa `CGAL::orientation`
@ -1975,7 +1975,7 @@ const CGAL::Point_2<Kernel> &r);
/// \defgroup lexicographically_xy_larger CGAL::lexicographically_xy_larger()
/// \defgroup lexicographically_xy_larger_grp CGAL::lexicographically_xy_larger()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_xy`
/// \sa `CGAL::lexicographically_xy_larger_or_equal`
@ -1996,7 +1996,7 @@ const CGAL::Point_2<Kernel>& q);
/// \defgroup lexicographically_xy_larger_or_equal CGAL::lexicographically_xy_larger_or_equal()
/// \defgroup lexicographically_xy_larger_or_equal_grp CGAL::lexicographically_xy_larger_or_equal()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_xy`
/// \sa `CGAL::lexicographically_xy_larger`
@ -2016,7 +2016,7 @@ const CGAL::Point_2<Kernel>& q);
/// @}
/// \defgroup lexicographically_xy_smaller CGAL::lexicographically_xy_smaller()
/// \defgroup lexicographically_xy_smaller_grp CGAL::lexicographically_xy_smaller()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_xy`
/// \sa `CGAL::lexicographically_xy_larger`
@ -2037,7 +2037,7 @@ const CGAL::Point_2<Kernel>& q);
/// @}
/// \defgroup lexicographically_xy_smaller_or_equal CGAL::lexicographically_xy_smaller_or_equal()
/// \defgroup lexicographically_xy_smaller_or_equal_grp CGAL::lexicographically_xy_smaller_or_equal()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_xy`
/// \sa `CGAL::lexicographically_xy_larger`
@ -2057,7 +2057,7 @@ const CGAL::Point_2<Kernel>& q);
/// @}
/// \defgroup lexicographically_xyz_smaller CGAL::lexicographically_xyz_smaller()
/// \defgroup lexicographically_xyz_smaller_grp CGAL::lexicographically_xyz_smaller()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_xyz`
/// \sa `CGAL::lexicographically_xyz_smaller_or_equal`
@ -2075,7 +2075,7 @@ const CGAL::Point_3<Kernel>& q);
/// @}
/// \defgroup lexicographically_xyz_smaller_or_equal CGAL::lexicographically_xyz_smaller_or_equal()
/// \defgroup lexicographically_xyz_smaller_or_equal_grp CGAL::lexicographically_xyz_smaller_or_equal()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_xyz`
/// \sa `CGAL::lexicographically_xyz_smaller`
@ -2093,7 +2093,7 @@ const CGAL::Point_3<Kernel>& q);
/// @}
/// \defgroup max_vertex CGAL::max_vertex()
/// \defgroup max_vertex_grp CGAL::max_vertex()
/// \ingroup kernel_global_function
/// @{
@ -2111,7 +2111,7 @@ CGAL::Point_3<Kernel> max_vertex( const CGAL::Iso_cuboid_3<Kernel>& ic );
/// @}
/// \defgroup midpoint CGAL::midpoint()
/// \defgroup midpoint_grp CGAL::midpoint()
/// \ingroup kernel_global_function
/// @{
@ -2130,7 +2130,7 @@ CGAL::Point_3<Kernel> midpoint( const CGAL::Point_3<Kernel>& p, const CGAL::Poin
/// @}
/// \defgroup min_vertex CGAL::min_vertex()
/// \defgroup min_vertex_grp CGAL::min_vertex()
/// \ingroup kernel_global_function
/// @{
@ -2148,7 +2148,7 @@ CGAL::Point_3<Kernel> min_vertex( const CGAL::Iso_cuboid_3<Kernel>& ic );
/// @}
/// \defgroup normal CGAL::normal()
/// \defgroup normal_grp CGAL::normal()
/// \ingroup kernel_global_function
/// @{
@ -2161,7 +2161,7 @@ CGAL::Vector_3<Kernel> normal( const CGAL::Point_3<Kernel>& p, const CGAL::Point
/// @}
/// \defgroup orientation CGAL::orientation()
/// \defgroup orientation_grp CGAL::orientation()
/// \ingroup kernel_global_function
/// \sa `CGAL::collinear`
/// \sa `CGAL::left_turn`
@ -2214,7 +2214,7 @@ const CGAL::Vector_3<Kernel> &w);
/// \defgroup orthogonal_vector CGAL::orthogonal_vector()
/// \defgroup orthogonal_vector_grp CGAL::orthogonal_vector()
/// \ingroup kernel_global_function
/// @{
@ -2238,7 +2238,7 @@ const CGAL::Point_3<Kernel>& r );
/// @}
/// \defgroup parallel CGAL::parallel()
/// \defgroup parallel_grp CGAL::parallel()
/// \ingroup kernel_global_function
/// @{
@ -2303,7 +2303,7 @@ const CGAL::Segment_3<Kernel>& s2);
/// \defgroup radical_line CGAL::radical_line()
/// \defgroup radical_line_grp CGAL::radical_line()
/// \ingroup kernel_global_function
/// @{
@ -2320,10 +2320,10 @@ const CGAL::Circle_2<Kernel>& c2);
// Same reason as do_intersect.
/// \defgroup rational_rotation_approximation CGAL::rational_rotation_approximation()
/// \defgroup rational_rotation_approximation_grp CGAL::rational_rotation_approximation()
/// \ingroup kernel_global_function
/// \defgroup right_turn CGAL::right_turn()
/// \defgroup right_turn_grp CGAL::right_turn()
/// \ingroup kernel_global_function
/// \sa `CGAL::collinear`
/// \sa `CGAL::left_turn`
@ -2342,7 +2342,7 @@ const CGAL::Point_2<Kernel> &r);
/// @}
/// \defgroup side_of_bounded_circle CGAL::side_of_bounded_circle()
/// \defgroup side_of_bounded_circle_grp CGAL::side_of_bounded_circle()
/// \ingroup kernel_global_function
/// \sa `CGAL::coplanar_side_of_bounded_circle`
/// \sa `CGAL::side_of_oriented_circle`
@ -2376,7 +2376,7 @@ const CGAL::Point_2<Kernel> &t);
/// \defgroup side_of_bounded_sphere CGAL::side_of_bounded_sphere()
/// \defgroup side_of_bounded_sphere_grp CGAL::side_of_bounded_sphere()
/// \ingroup kernel_global_function
/// \sa `CGAL::side_of_oriented_sphere`
@ -2420,7 +2420,7 @@ const CGAL::Point_3<Kernel> &t);
/// @}
/// \defgroup side_of_oriented_circle CGAL::side_of_oriented_circle()
/// \defgroup side_of_oriented_circle_grp CGAL::side_of_oriented_circle()
/// \ingroup kernel_global_function
/// \sa `CGAL::side_of_bounded_circle`
@ -2450,7 +2450,7 @@ const CGAL::Point_2<Kernel> &test);
/// \defgroup side_of_oriented_sphere CGAL::side_of_oriented_sphere()
/// \defgroup side_of_oriented_sphere_grp CGAL::side_of_oriented_sphere()
/// \ingroup kernel_global_function
/// \sa `CGAL::side_of_bounded_sphere`
@ -2479,7 +2479,7 @@ const CGAL::Point_3<Kernel> &test);
/// @}
/// \defgroup squared_area CGAL::squared_area()
/// \defgroup squared_area_grp CGAL::squared_area()
/// \ingroup kernel_global_function
/// @{
@ -2497,10 +2497,10 @@ const CGAL::Point_3<Kernel>& r);
// The same reason as do_intersect.
/// \defgroup squared_distance CGAL::squared_distance()
/// \defgroup squared_distance_grp CGAL::squared_distance()
/// \ingroup kernel_global_function
/// \defgroup squared_radius CGAL::squared_radius()
/// \defgroup squared_radius_grp CGAL::squared_radius()
/// \ingroup kernel_global_function
/// \sa `CGAL::Circle_2<Kernel>`
/// \sa `CGAL::Circle_3<Kernel>`
@ -2575,7 +2575,7 @@ squared_radius( const CGAL::Point_3<Kernel>& p);
/// @}
/// \defgroup unit_normal CGAL::unit_normal()
/// \defgroup unit_normal_grp CGAL::unit_normal()
/// \ingroup kernel_global_function
/// @{
@ -2587,7 +2587,7 @@ CGAL::Vector_3<Kernel> unit_normal( const CGAL::Point_3<Kernel>& p, const CGAL::
/// @}
/// \defgroup volume CGAL::volume()
/// \defgroup volume_grp CGAL::volume()
/// \ingroup kernel_global_function
/// \sa `CGAL::Tetrahedron_3<Kernel>`
@ -2605,7 +2605,7 @@ Kernel::FT volume(const CGAL::Point_3<Kernel> & p0, const CGAL::Point_3<Kernel>
/// @}
/// \defgroup x_equal CGAL::x_equal()
/// \defgroup x_equal_grp CGAL::x_equal()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_x`
/// \sa `CGAL::y_equal`
@ -2633,7 +2633,7 @@ const CGAL::Point_3<Kernel> &q);
/// \defgroup y_equal CGAL::y_equal()
/// \defgroup y_equal_grp CGAL::y_equal()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_y`
/// \sa `CGAL::x_equal`
@ -2660,7 +2660,7 @@ const CGAL::Point_3<Kernel> &q);
/// @}
/// \defgroup z_equal CGAL::z_equal()
/// \defgroup z_equal_grp CGAL::z_equal()
/// \ingroup kernel_global_function
/// \sa `CGAL::compare_z`
/// \sa `CGAL::x_equal`

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\addtogroup do_intersect
\addtogroup do_intersect_grp
\brief
\details Depending on which \cgal kernel is used, different overloads of this global
@ -9,16 +9,16 @@ function are available.
*/
/*!
\addtogroup do_intersect_linear CGAL::do_intersect() (2D/3D Linear Kernel)
\addtogroup do_intersect_linear_grp
\ingroup do_intersect
\code
#include <CGAL/intersections.h>
\endcode
\sa \ref do_intersect_circular
\sa \ref do_intersect_spherical
\sa \link intersection `CGAL::intersection()` \endlink
\sa `do_intersect_circular_grp`
\sa `do_intersect_spherical_grp`
\sa `intersection_grp`
\details See Chapter \ref chapterkernel23 "2D and 3D Geometry Kernel" for details on a linear kernel instantiation.
*/
@ -68,21 +68,21 @@ bool do_intersect(Type1<Kernel> obj1, Type2<Kernel> obj2);
/*!
\addtogroup do_intersect_circular
\addtogroup do_intersect_circular_grp
\ingroup do_intersect
\code
#include <CGAL/Circular_kernel_intersections.h>
\endcode
\sa \ref do_intersect_linear
\sa \ref do_intersect_spherical
\sa \link intersection `CGAL::intersection()` \endlink
\sa `do_intersect_linear_grp`
\sa `do_intersect_spherical_grp`
\sa `intersection_grp`
\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel" for details on a circular kernel instantiation.
When using a circular kernel, in addition to the function overloads documented \ref do_intersect_linear "here",
When using a circular kernel, in addition to the function overloads documented \ref do_intersect_linear_grp "here",
the following function overloads are also available.
@ -112,21 +112,21 @@ bool do_intersect(Type1<CircularKernel> obj1, Type2<CircularKernel> obj2);
/*!
\addtogroup do_intersect_spherical
\addtogroup do_intersect_spherical_grp
\ingroup do_intersect
\code
#include <CGAL/Spherical_kernel_intersections.h>
\endcode
\sa \ref do_intersect_linear
\sa \ref do_intersect_circular
\sa \link intersection `CGAL::intersection()` \endlink
\sa `do_intersect_linear_grp`
\sa `do_intersect_circular_grp`
\sa `intersection_grp`
\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel" for details on a spherical kernel instantiation.
When using a circular kernel, in addition to the function overloads documented \ref do_intersect_linear "here",
When using a circular kernel, in addition to the function overloads documented \ref do_intersect_linear_grp "here",
the following function overloads are also available.
@ -169,7 +169,7 @@ bool do_intersect(Type1<SphericalKernel> obj1, Type2<SphericalKernel> obj2, Type
/*!
\addtogroup intersection
\addtogroup intersection_grp
\brief
\details Depending on which \cgal kernel is used, different overloads of this global
@ -178,16 +178,16 @@ function are available.
/*!
\addtogroup intersection_linear
\addtogroup intersection_linear_grp
\ingroup intersection
\code
#include <CGAL/intersections.h>
\endcode
\sa intersection_circular
\sa intersection_spherical
\sa \link do_intersect `CGAL::do_intersect()` \endlink
\sa `intersection_circular_grp`
\sa `intersection_spherical_grp`
\sa `do_intersect_grp`
\sa `CGAL::Object`
\details See Chapter \ref chapterkernel23 "2D and 3D Geometry Kernel" for details on a linear kernel instantiation.
@ -421,21 +421,21 @@ Object intersection(const Plane_3<Kernel>& pl1,
/// @}
/*!
\addtogroup intersection_circular
\addtogroup intersection_circular_grp
\ingroup intersection
\code
#include <CGAL/Circular_kernel_intersections.h>
\endcode
\sa intersection_linear
\sa intersection_spherical
\sa \link do_intersect `CGAL::do_intersect()` \endlink
\sa `intersection_linear_grp`
\sa `intersection_spherical_grp`
\sa `do_intersect_grp`
\sa `CGAL::Object`
\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel" for details on a circular kernel instantiation.
When using a circular kernel, in addition to the function overloads documented \ref intersection_linear "here",
When using a circular kernel, in addition to the function overloads documented \ref intersection_linear_grp "here",
the following function overloads are also available.
Since both the number of intersections, if any, and their type,
@ -480,21 +480,21 @@ intersection(const Type1 &obj1, const Type2 &obj2,
/// @}
/*!
\addtogroup intersection_spherical
\addtogroup intersection_spherical_grp
\ingroup intersection
\code
#include <CGAL/Spherical_kernel_intersections.h>
\endcode
\sa intersection_linear
\sa intersection_circular
\sa \link do_intersect `CGAL::do_intersect()` \endlink
\sa `intersection_linear_grp`
\sa `intersection_circular_grp`
\sa `do_intersect_grp`
\sa `CGAL::Object`
\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel" for details on a spherical kernel instantiation.
When using a spherical kernel, in addition to the function overloads documented \ref intersection_linear "here",
When using a spherical kernel, in addition to the function overloads documented \ref intersection_linear_grp "here",
the following function overloads are also available.
Since both the number of intersections, if any, and their type,

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\addtogroup rational_rotation_approximation
\addtogroup rational_rotation_approximation_grp
*/

View File

@ -1,7 +1,7 @@
namespace CGAL {
/*!
\addtogroup squared_distance
\addtogroup squared_distance_grp
\code
#include <squared_distance_2.h> //for 2D functions

View File

@ -15,7 +15,7 @@ in case the default, based on `Kernel_traits` is not sufficient. The
dimension is also deduced automatically.
\sa \link PkgPrincipalComponentAnalysisDCentroid `CGAL::centroid()` \endlink
\sa \link barycenter `CGAL::barycenter() (Linear Kernel)` \endlink
\sa \link barycenter_grp `CGAL::barycenter() (Linear Kernel)` \endlink
*/
/// @{

View File

@ -22,7 +22,7 @@ facets (3D triangles).
\sa \link PkgPrincipalComponentAnalysisDBary `CGAL::barycenter()` \endlink
\sa \link centroid `CGAL::centroid() (Linear Kernel)` \endlink
\sa \link centroid_grp `CGAL::centroid() (Linear Kernel)` \endlink
*/
/// @{