rename kernel global function groups

This commit is contained in:
Sébastien Loriot 2013-01-09 12:50:44 +01:00
parent 1debeb5cde
commit 7ecf2981af
15 changed files with 193 additions and 194 deletions

View File

@ -7,7 +7,7 @@ Testing whether two curves intersect.
\cgalRefines `Kernel::DoIntersect_2` \cgalRefines `Kernel::DoIntersect_2`
\sa \link do_intersect `CGAL::do_intersect()` \endlink \sa \link do_intersect_grp `CGAL::do_intersect()` \endlink
*/ */

View File

@ -5,7 +5,7 @@
\cgalRefines `Kernel::Intersect_2` \cgalRefines `Kernel::Intersect_2`
\sa \link intersection `CGAL::intersection()` \endlink \sa \link intersection_grp `CGAL::intersection()` \endlink
*/ */

View File

@ -96,15 +96,15 @@
## Geometric Global Functions ## ## Geometric Global Functions ##
- \link compare_x_circular `CGAL::compare_x()` \endlink - \link compare_x_circular_grp `CGAL::compare_x()` \endlink
- \link compare_y_circular `CGAL::compare_y()` \endlink - \link compare_y_circular_grp `CGAL::compare_y()` \endlink
- \link compare_xy_circular `CGAL::compare_xy()` \endlink - \link compare_xy_circular_grp `CGAL::compare_xy()` \endlink
- \link compare_y_at_x `CGAL::compare_y_at_x()` \endlink - \link compare_y_at_x_grp `CGAL::compare_y_at_x()` \endlink
- `CGAL::compare_y_to_right()` - `CGAL::compare_y_to_right()`
- `CGAL::has_in_x_range()` - `CGAL::has_in_x_range()`
- `CGAL::has_on()` - `CGAL::has_on()`
- \link do_intersect `CGAL::do_intersect()` \endlink - \link do_intersect_circular_grp `CGAL::do_intersect()` \endlink
- \link intersection `CGAL::intersection()` \endlink - \link intersection_circular_grp `CGAL::intersection()` \endlink
- `CGAL::x_extremal_point()` - `CGAL::x_extremal_point()`
- `CGAL::y_extremal_point()` - `CGAL::y_extremal_point()`
- `CGAL::x_extremal_points()` - `CGAL::x_extremal_points()`

View File

@ -23,14 +23,14 @@ namespace CGAL {
Compares the \f$ \theta\f$-coordinates of `p` and `q` relatively to `sphere`. Compares the \f$ \theta\f$-coordinates of `p` and `q` relatively to `sphere`.
\pre `p` and `q` lie on `sphere`, but do not coincide with the poles of `sphere`. \pre `p` and `q` lie on `sphere`, but do not coincide with the poles of `sphere`.
\sa \link compare_x `CGAL::compare_x()` \endlink \sa \link compare_x_grp `CGAL::compare_x()` \endlink
\sa \link compare_xy `CGAL::compare_xy()` \endlink \sa \link compare_xy_grp `CGAL::compare_xy()` \endlink
\sa \link compare_xy `CGAL::compare_xy()` \endlink \sa \link compare_xy_grp `CGAL::compare_xy()` \endlink
\sa \link compare_x_at_y `CGAL::compare_x_at_y()` \endlink \sa \link compare_x_at_y_grp `CGAL::compare_x_at_y()` \endlink
\sa \link compare_y `CGAL::compare_y()` \endlink \sa \link compare_y_grp `CGAL::compare_y()` \endlink
\sa \link compare_yx `CGAL::compare_yx()` \endlink \sa \link compare_yx_grp `CGAL::compare_yx()` \endlink
\sa \link compare_y_at_x `CGAL::compare_y_at_x()` \endlink \sa \link compare_y_at_x_grp `CGAL::compare_y_at_x()` \endlink
\sa \link compare_z `CGAL::compare_z()` \endlink \sa \link compare_z_grp `CGAL::compare_z()` \endlink
\sa `CGAL::compare_theta_z()` \sa `CGAL::compare_theta_z()`
*/ */
template <class SphericalKernel> template <class SphericalKernel>
@ -46,14 +46,14 @@ Compares the \f$ \theta\f$-coordinates of `p` and of the meridian defined by `m`
in the cylindrical coordinate system relative to `sphere`. in the cylindrical coordinate system relative to `sphere`.
\pre `p` lies on `sphere`, but does not coincide with its poles. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$. \pre `p` lies on `sphere`, but does not coincide with its poles. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$.
\sa \link compare_x `CGAL::compare_x()` \endlink \sa \link compare_x_grp `CGAL::compare_x()` \endlink
\sa \link compare_xy `CGAL::compare_xy()` \endlink \sa \link compare_xy_grp `CGAL::compare_xy()` \endlink
\sa \link compare_xy `CGAL::compare_xy()` \endlink \sa \link compare_xy_grp `CGAL::compare_xy()` \endlink
\sa \link compare_x_at_y `CGAL::compare_x_at_y()` \endlink \sa \link compare_x_at_y_grp `CGAL::compare_x_at_y()` \endlink
\sa \link compare_y `CGAL::compare_y()` \endlink \sa \link compare_y_grp `CGAL::compare_y()` \endlink
\sa \link compare_yx `CGAL::compare_yx()` \endlink \sa \link compare_yx_grp `CGAL::compare_yx()` \endlink
\sa \link compare_y_at_x `CGAL::compare_y_at_x()` \endlink \sa \link compare_y_at_x_grp `CGAL::compare_y_at_x()` \endlink
\sa \link compare_z `CGAL::compare_z()` \endlink \sa \link compare_z_grp `CGAL::compare_z()` \endlink
\sa `CGAL::compare_theta_z()` \sa `CGAL::compare_theta_z()`
*/ */
template <class SphericalKernel> template <class SphericalKernel>
@ -67,14 +67,13 @@ Compares the \f$ \theta\f$-coordinates of the meridian defined by `m` and of `p
in the cylindrical coordinate system relative to `sphere`. in the cylindrical coordinate system relative to `sphere`.
\pre `p` lies on `sphere`, but does not coincide with its poles. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$. \pre `p` lies on `sphere`, but does not coincide with its poles. `m` \f$ \neq(0,0,0)\f$ and the \f$ z\f$-coordinate of `m` is \f$ 0\f$.
\sa \link compare_x `CGAL::compare_x()` \endlink \sa \link compare_x_grp `CGAL::compare_x()` \endlink
\sa \link compare_xy `CGAL::compare_xy()` \endlink \sa \link compare_xy_grp `CGAL::compare_xy()` \endlink
\sa \link compare_xy `CGAL::compare_xy()` \endlink \sa \link compare_x_at_y_grp `CGAL::compare_x_at_y()` \endlink
\sa \link compare_x_at_y `CGAL::compare_x_at_y()` \endlink \sa \link compare_y_grp `CGAL::compare_y()` \endlink
\sa \link compare_y `CGAL::compare_y()` \endlink \sa \link compare_yx_grp `CGAL::compare_yx()` \endlink
\sa \link compare_yx `CGAL::compare_yx()` \endlink \sa \link compare_y_at_x_grp `CGAL::compare_y_at_x()` \endlink
\sa \link compare_y_at_x `CGAL::compare_y_at_x()` \endlink \sa \link compare_z_grp `CGAL::compare_z()` \endlink
\sa \link compare_z `CGAL::compare_z()` \endlink
\sa `CGAL::compare_theta_z()` \sa `CGAL::compare_theta_z()`
*/ */
template <class SphericalKernel> template <class SphericalKernel>
@ -92,14 +91,14 @@ Compares `p` and `q` according to the lexicographic ordering on \f$ \theta\f$ an
in the cylindrical coordinate system relative to `sphere`. in the cylindrical coordinate system relative to `sphere`.
\pre `p` and `q` lie on `sphere`, but do not coincide with the poles of `sphere`. \pre `p` and `q` lie on `sphere`, but do not coincide with the poles of `sphere`.
\sa \link compare_x `CGAL::compare_x()` \endlink \sa \link compare_x_grp `CGAL::compare_x()` \endlink
\sa \link compare_xy `CGAL::compare_xy()` \endlink \sa \link compare_xy_grp `CGAL::compare_xy()` \endlink
\sa \link compare_xy `CGAL::compare_xy()` \endlink \sa \link compare_xy_grp `CGAL::compare_xy()` \endlink
\sa \link compare_x_at_y `CGAL::compare_x_at_y()` \endlink \sa \link compare_x_at_y_grp `CGAL::compare_x_at_y()` \endlink
\sa \link compare_y `CGAL::compare_y()` \endlink \sa \link compare_y_grp `CGAL::compare_y()` \endlink
\sa \link compare_yx `CGAL::compare_yx()` \endlink \sa \link compare_yx_grp `CGAL::compare_yx()` \endlink
\sa \link compare_y_at_x `CGAL::compare_y_at_x()` \endlink \sa \link compare_y_at_x_grp `CGAL::compare_y_at_x()` \endlink
\sa \link compare_z `CGAL::compare_z()` \endlink \sa \link compare_z_grp `CGAL::compare_z()` \endlink
\sa `CGAL::compare_theta()` \sa `CGAL::compare_theta()`
*/ */
template <class SphericalKernel> template <class SphericalKernel>

View File

@ -7,7 +7,7 @@
\cgalRefines `Kernel::DoIntersect_3` \cgalRefines `Kernel::DoIntersect_3`
\sa \link do_intersect `CGAL::do_intersect()` \endlink \sa \link do_intersect_grp `CGAL::do_intersect()` \endlink
*/ */

View File

@ -4,7 +4,7 @@
\cgalConcept \cgalConcept
\cgalRefines `Kernel::Intersect_3` \cgalRefines `Kernel::Intersect_3`
\sa \link intersection `CGAL::intersection()` \endlink \sa \link intersection_grp `CGAL::intersection()` \endlink
*/ */
class SphericalKernel::Intersect_3 { class SphericalKernel::Intersect_3 {

View File

@ -107,11 +107,11 @@
## Geometric Global Functions ## ## Geometric Global Functions ##
- \link compare_x_spherical `CGAL::compare_x()` \endlink - \link compare_x_spherical_grp `CGAL::compare_x()` \endlink
- \link compare_y_spherical `CGAL::compare_y()` \endlink - \link compare_y_spherical_grp `CGAL::compare_y()` \endlink
- \link compare_z_spherical `CGAL::compare_z()` \endlink - \link compare_z_spherical_grp `CGAL::compare_z()` \endlink
- \link compare_xy_spherical `CGAL::compare_xy()` \endlink - \link compare_xy_spherical_grp `CGAL::compare_xy()` \endlink
- \link compare_xyz_spherical `CGAL::compare_xyz()` \endlink - \link compare_xyz_spherical_grp `CGAL::compare_xyz()` \endlink
- `CGAL::compare_theta()` - `CGAL::compare_theta()`
- `CGAL::compare_theta_z()` - `CGAL::compare_theta_z()`
- `CGAL::is_theta_monotone()` - `CGAL::is_theta_monotone()`
@ -124,8 +124,8 @@
- `CGAL::y_extremal_points()` - `CGAL::y_extremal_points()`
- `CGAL::z_extremal_points()` - `CGAL::z_extremal_points()`
- `CGAL::theta_extremal_points()` - `CGAL::theta_extremal_points()`
- \link do_intersect `CGAL::do_intersect()` \endlink - \link do_intersect_grp `CGAL::do_intersect()` \endlink
- \link intersection `CGAL::intersection()` \endlink - \link intersection_grp `CGAL::intersection()` \endlink
## Algebraic Concepts ## ## Algebraic Concepts ##

View File

@ -38,7 +38,7 @@ therefore do not appear in the constructors.
\sa `Rotation` \sa `Rotation`
\sa `Scaling` \sa `Scaling`
\sa `Translation` \sa `Translation`
\sa `rational_rotation_approximation` \sa `rational_rotation_approximation_grp`
\cgalHeading{Example} \cgalHeading{Example}

View File

@ -13,8 +13,8 @@ will explicitly state where you can pass this constant as an argument
instead of a vector initialized with zeros. instead of a vector initialized with zeros.
\sa `Kernel::Vector_3` \sa `Kernel::Vector_3`
\sa `CGAL::cross_product` \sa `cross_product_grp`
\sa `CGAL::determinant` \sa `determinant_grp`
*/ */
template< typename Kernel > template< typename Kernel >

View File

@ -1,7 +1,7 @@
namespace CGAL { namespace CGAL {
/*! /*!
\defgroup angle CGAL::angle() \defgroup angle_grp CGAL::angle()
\ingroup kernel_global_function \ingroup kernel_global_function
*/ */
/// @{ /// @{
@ -50,7 +50,7 @@ const CGAL::Point_3<Kernel>& r);
/// @} /// @}
/// \defgroup area CGAL::area() /// \defgroup area_grp CGAL::area()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// @{ /// @{
@ -65,7 +65,7 @@ const CGAL::Point_2<Kernel>& r);
/// @} /// @}
/// \defgroup are_ordered_along_line CGAL::are_ordered_along_line() /// \defgroup are_ordered_along_line_grp CGAL::are_ordered_along_line()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::are_strictly_ordered_along_line` /// \sa `CGAL::are_strictly_ordered_along_line`
/// \sa `CGAL::collinear_are_ordered_along_line` /// \sa `CGAL::collinear_are_ordered_along_line`
@ -98,7 +98,7 @@ const CGAL::Point_3<Kernel> &r);
/// @} /// @}
/// \defgroup are_strictly_ordered_along_line CGAL::are_strictly_ordered_along_line() /// \defgroup are_strictly_ordered_along_line_grp CGAL::are_strictly_ordered_along_line()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::are_ordered_along_line` /// \sa `CGAL::are_ordered_along_line`
/// \sa `CGAL::collinear_are_ordered_along_line` /// \sa `CGAL::collinear_are_ordered_along_line`
@ -129,7 +129,7 @@ const CGAL::Point_3<Kernel> &r);
/// @} /// @}
/// \defgroup barycenter CGAL::barycenter() /// \defgroup barycenter_grp CGAL::barycenter()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa \link centroid `CGAL::centroid()` \endlink /// \sa \link centroid `CGAL::centroid()` \endlink
/// @{ /// @{
@ -256,7 +256,7 @@ const CGAL::Point_3<Kernel>& p4, const Kernel::FT&w4);
/// @} /// @}
/// \defgroup bisector CGAL::bisector() /// \defgroup bisector_grp CGAL::bisector()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// @{ /// @{
@ -310,7 +310,7 @@ const CGAL::Plane_3<Kernel> &h2);
/// @} /// @}
/// \defgroup centroid CGAL::centroid() /// \defgroup centroid_grp CGAL::centroid()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa \link barycenter `CGAL::barycenter()` \endlink /// \sa \link barycenter `CGAL::barycenter()` \endlink
/// @{ /// @{
@ -376,7 +376,7 @@ centroid( const CGAL::Tetrahedron_3<Kernel>& t);
/// @} /// @}
/// \defgroup circumcenter CGAL::circumcenter() /// \defgroup circumcenter_grp CGAL::circumcenter()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// @{ /// @{
@ -457,7 +457,7 @@ circumcenter( const CGAL::Tetrahedron_3<Kernel>& t);
/// @} /// @}
/// \defgroup collinear_are_ordered_along_line CGAL::collinear_are_ordered_along_line() /// \defgroup collinear_are_ordered_along_line_grp CGAL::collinear_are_ordered_along_line()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::are_ordered_along_line` /// \sa `CGAL::are_ordered_along_line`
/// \sa `CGAL::are_strictly_ordered_along_line` /// \sa `CGAL::are_strictly_ordered_along_line`
@ -484,7 +484,7 @@ const CGAL::Point_3<Kernel> &r);
/// @} /// @}
/// \defgroup collinear_are_strictly_ordered_along_line CGAL::collinear_are_strictly_ordered_along_line() /// \defgroup collinear_are_strictly_ordered_along_line_grp CGAL::collinear_are_strictly_ordered_along_line()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::are_ordered_along_line` /// \sa `CGAL::are_ordered_along_line`
/// \sa `CGAL::are_strictly_ordered_along_line` /// \sa `CGAL::are_strictly_ordered_along_line`
@ -512,7 +512,7 @@ const CGAL::Point_3<Kernel> &r);
/// @} /// @}
/// \defgroup collinear CGAL::collinear() /// \defgroup collinear_grp CGAL::collinear()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::left_turn` /// \sa `CGAL::left_turn`
/// \sa `CGAL::orientation` /// \sa `CGAL::orientation`
@ -539,7 +539,7 @@ const CGAL::Point_3<Kernel>&r);
/// \defgroup compare_dihedral_angle CGAL::compare_dihedral_angle() /// \defgroup compare_dihedral_angle_grp CGAL::compare_dihedral_angle()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// @{ /// @{
@ -609,7 +609,7 @@ const CGAL::Vector_3<Kernel>& w2);
/// @} /// @}
/// \defgroup compare_distance_to_point CGAL::compare_distance_to_point() /// \defgroup compare_distance_to_point_grp CGAL::compare_distance_to_point()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_squared_distance` /// \sa `CGAL::compare_squared_distance`
/// \sa `CGAL::compare_signed_distance_to_line` /// \sa `CGAL::compare_signed_distance_to_line`
@ -654,7 +654,7 @@ const CGAL::Point_3<Kernel>& r);
/// \defgroup compare_lexicographically_linear CGAL::compare_lexicographically() /// \defgroup compare_lexicographically_linear_grp CGAL::compare_lexicographically()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// @{ /// @{
@ -682,7 +682,7 @@ compare_lexicographically(const CGAL::Point_3<Kernel>& p, const CGAL::Point_3<Ke
/// @} /// @}
/// \defgroup compare_signed_distance_to_line CGAL::compare_signed_distance_to_line() /// \defgroup compare_signed_distance_to_line_grp CGAL::compare_signed_distance_to_line()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_distance_to_point` /// \sa `CGAL::compare_distance_to_point`
/// \sa `CGAL::compare_signed_distance_to_plane` /// \sa `CGAL::compare_signed_distance_to_plane`
@ -724,7 +724,7 @@ const CGAL::Point_2<Kernel>& s);
/// @} /// @}
/// \defgroup compare_signed_distance_to_plane CGAL::compare_signed_distance_to_plane() /// \defgroup compare_signed_distance_to_plane_grp CGAL::compare_signed_distance_to_plane()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_distance_to_point` /// \sa `CGAL::compare_distance_to_point`
/// \sa `CGAL::compare_signed_distance_to_line` /// \sa `CGAL::compare_signed_distance_to_line`
@ -770,7 +770,7 @@ const CGAL::Point_3<Kernel>& t);
/// \defgroup compare_slopes CGAL::compare_slopes() /// \defgroup compare_slopes_grp CGAL::compare_slopes()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// @{ /// @{
@ -790,7 +790,7 @@ const CGAL::Segment_2<Kernel> &s2);
/// @} /// @}
/// \defgroup compare_squared_distance CGAL::compare_squared_distance() /// \defgroup compare_squared_distance_grp CGAL::compare_squared_distance()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_distance_to_point` /// \sa `CGAL::compare_distance_to_point`
/// \sa `CGAL::compare_signed_distance_to_line` /// \sa `CGAL::compare_signed_distance_to_line`
@ -825,7 +825,7 @@ const typename Kernel::FT& d2);
/// @} /// @}
/// \defgroup compare_squared_radius CGAL::compare_squared_radius() /// \defgroup compare_squared_radius_grp CGAL::compare_squared_radius()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// @{ /// @{
@ -875,7 +875,7 @@ const typename Kernel::FT& sr);
/// @} /// @}
/*! /*!
\defgroup compare_x CGAL::compare_x() \defgroup compare_x_grp CGAL::compare_x()
\ingroup kernel_global_function \ingroup kernel_global_function
\details Depending on which \cgal kernel is used, \details Depending on which \cgal kernel is used,
@ -892,8 +892,8 @@ described below.
*/ */
/*! /*!
\defgroup compare_x_linear CGAL::compare_x() (2D/3D Linear Kernel) \defgroup compare_x_linear_grp CGAL::compare_x() (2D/3D Linear Kernel)
\ingroup compare_x \ingroup compare_x_grp
\anchor figcompare_x \anchor figcompare_x
\image html compare1.gif \image html compare1.gif
*/ */
@ -945,8 +945,8 @@ Comparison_result compare_x(const CGAL::Line_2<Kernel> &l1,
/// @} /// @}
/*! /*!
\defgroup compare_x_circular CGAL::compare_x() (2D Circular Kernel) \defgroup compare_x_circular_grp CGAL::compare_x() (2D Circular Kernel)
\ingroup compare_x \ingroup compare_x_grp
\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel". \details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel".
\code \code
@ -973,8 +973,8 @@ Comparison_result
/// @} /// @}
/*! /*!
\defgroup compare_x_spherical CGAL::compare_x() (3D Spherical Kernel) \defgroup compare_x_spherical_grp CGAL::compare_x() (3D Spherical Kernel)
\ingroup compare_x \ingroup compare_x_grp
\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel". \details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel".
\code \code
@ -1002,7 +1002,7 @@ Comparison_result
/// @} /// @}
/*! /*!
\defgroup compare_xy CGAL::compare_xy() \defgroup compare_xy_grp CGAL::compare_xy()
\ingroup kernel_global_function \ingroup kernel_global_function
\details Depending on which \cgal kernel is used, different versions of this \details Depending on which \cgal kernel is used, different versions of this
@ -1020,8 +1020,8 @@ global function are available.
/*! /*!
\defgroup compare_xy_linear CGAL::compare_xy() (2D/3D Linear Kernel) \defgroup compare_xy_linear_grp CGAL::compare_xy() (2D/3D Linear Kernel)
\ingroup compare_xy \ingroup compare_xy_grp
*/ */
/// @{ /// @{
@ -1048,8 +1048,8 @@ compare_xy(const CGAL::Point_3<Kernel>& p, const CGAL::Point_3<Kernel>& q);
/// @} /// @}
/*! /*!
\defgroup compare_xy_circular CGAL::compare_xy() (2D Circular Kernel) \defgroup compare_xy_circular_grp CGAL::compare_xy() (2D Circular Kernel)
\ingroup compare_xy \ingroup compare_xy_grp
\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel". \details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel".
\code \code
@ -1079,8 +1079,8 @@ compare_xy(const CGAL::Circular_arc_point_2<CircularKernel> &p,
/// @} /// @}
/*! /*!
\defgroup compare_xy_spherical CGAL::compare_xy() (3D Spherical Kernel) \defgroup compare_xy_spherical_grp CGAL::compare_xy() (3D Spherical Kernel)
\ingroup compare_xy \ingroup compare_xy_grp
\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel". \details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel".
\code \code
@ -1111,7 +1111,7 @@ Comparison_result
/// @} /// @}
/*! /*!
\defgroup compare_x_at_y CGAL::compare_x_at_y() \defgroup compare_x_at_y_grp CGAL::compare_x_at_y()
\ingroup kernel_global_function \ingroup kernel_global_function
\anchor figcomparexaty \anchor figcomparexaty
@ -1176,7 +1176,7 @@ const CGAL::Line_2<Kernel> &h2);
/// @} /// @}
/*! /*!
\defgroup compare_y_at_x CGAL::compare_y_at_x() \defgroup compare_y_at_x_grp CGAL::compare_y_at_x()
\ingroup kernel_global_function \ingroup kernel_global_function
\anchor figcompareyatx \anchor figcompareyatx
@ -1295,7 +1295,7 @@ compare_y_at_x(const CGAL::Circular_arc_point_2<CircularKernel> &p,
/*! /*!
\defgroup compare_y CGAL::compare_y() \defgroup compare_y_grp CGAL::compare_y()
\ingroup kernel_global_function \ingroup kernel_global_function
\details Depending on which \cgal kernel is used, different versions of this \details Depending on which \cgal kernel is used, different versions of this
@ -1311,8 +1311,8 @@ global function are available.
*/ */
/*! /*!
\defgroup compary_y_linear CGAL::compare_y() (2D/3D Linear Kernel) \defgroup compary_y_linear_grp CGAL::compare_y() (2D/3D Linear Kernel)
\ingroup compare_y \ingroup compare_y_grp
\details See Chapter \ref chapterkernel23 "2D and 3D Geometry Kernel" \details See Chapter \ref chapterkernel23 "2D and 3D Geometry Kernel"
\anchor figcompare13 \anchor figcompare13
@ -1366,8 +1366,8 @@ Comparison_result compare_y(const CGAL::Line_2<Kernel> &l1,
/// @} /// @}
/*! /*!
\defgroup compare_y_circular CGAL::compare_y() (2D Circular Kernel) \defgroup compare_y_circular_grp CGAL::compare_y() (2D Circular Kernel)
\ingroup compare_y \ingroup compare_y_grp
\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel". \details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel".
\code \code
@ -1393,8 +1393,8 @@ compare_y(const CGAL::Circular_arc_point_2<CircularKernel> &p,
/// @} /// @}
/*! /*!
\defgroup compare_y_spherical CGAL::compare_y() (3D Spherical Kernel) \defgroup compare_y_spherical_grp CGAL::compare_y() (3D Spherical Kernel)
\ingroup compare_y \ingroup compare_y_grp
\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel". \details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel".
\code \code
@ -1420,7 +1420,7 @@ Comparison_result
/*! /*!
\defgroup compare_xyz CGAL::compare_xyz() \defgroup compare_xyz_grp CGAL::compare_xyz()
\ingroup kernel_global_function \ingroup kernel_global_function
\details Depending on which \cgal kernel is used, different versions of this \details Depending on which \cgal kernel is used, different versions of this
@ -1437,8 +1437,8 @@ global function are available.
*/ */
/*! /*!
\defgroup compare_xyz_linear CGAL::compare_xyz() (2D/3D Linear Kernel) \defgroup compare_xyz_linear_grp CGAL::compare_xyz() (2D/3D Linear Kernel)
\ingroup compare_xyz \ingroup compare_xyz_grp
*/ */
/// @{ /// @{
@ -1456,8 +1456,8 @@ compare_xyz(const CGAL::Point_3<Kernel>& p, const CGAL::Point_3<Kernel>& q);
/// @} /// @}
/*! /*!
\defgroup compare_xyz_spherical CGAL::compare_xyz() (3D Spherical Kernel) \defgroup compare_xyz_spherical_grp CGAL::compare_xyz() (3D Spherical Kernel)
\ingroup compare_xyz \ingroup compare_xyz_grp
\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel" \details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel"
\code \code
@ -1485,7 +1485,7 @@ const CGAL::Point_3<SphericalKernel> &q);
/*! /*!
\defgroup compare_z CGAL::compare_z() \defgroup compare_z_grp CGAL::compare_z()
\ingroup kernel_global_function \ingroup kernel_global_function
\details Depending on which \cgal kernel is used, \details Depending on which \cgal kernel is used,
@ -1502,8 +1502,8 @@ described below.
*/ */
/*! /*!
\defgroup compare_z_linear CGAL::compare_z() (2D/3D Linear Kernel) \defgroup compare_z_linear_grp CGAL::compare_z() (2D/3D Linear Kernel)
\ingroup compare_z \ingroup compare_z_grp
*/ */
/// @{ /// @{
@ -1516,8 +1516,8 @@ Comparison_result compare_z(const CGAL::Point_3<Kernel> &p, const CGAL::Point_3<
/// @} /// @}
/*! /*!
\defgroup compare_z_spherical CGAL::compare_z() (3D Spherical Kernel) \defgroup compare_z_spherical_grp CGAL::compare_z() (3D Spherical Kernel)
\ingroup compare_z \ingroup compare_z_grp
\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel" \details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel"
@ -1549,7 +1549,7 @@ compare_z(const CGAL::Circular_arc_point_3<SphericalKernel> &p, const CGAL::Poin
/// @} /// @}
/// \defgroup compare_yx CGAL::compare_yx() /// \defgroup compare_yx_grp CGAL::compare_yx()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_xy` /// \sa `CGAL::compare_xy`
/// \sa `CGAL::compare_xyz` /// \sa `CGAL::compare_xyz`
@ -1573,7 +1573,7 @@ compare_yx(const CGAL::Point_2<Kernel>& p, const CGAL::Point_2<Kernel>& q);
/// @} /// @}
/// \defgroup coplanar CGAL::coplanar() /// \defgroup coplanar_grp CGAL::coplanar()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::coplanar_orientation` /// \sa `CGAL::coplanar_orientation`
/// \sa `CGAL::coplanar_side_of_bounded_circle` /// \sa `CGAL::coplanar_side_of_bounded_circle`
@ -1590,7 +1590,7 @@ const CGAL::Point_3<Kernel>&s);
/// @} /// @}
/// \defgroup coplanar_orientation CGAL::coplanar_orientation() /// \defgroup coplanar_orientation_grp CGAL::coplanar_orientation()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::coplanar` /// \sa `CGAL::coplanar`
/// \sa `CGAL::coplanar_side_of_bounded_circle` /// \sa `CGAL::coplanar_side_of_bounded_circle`
@ -1629,7 +1629,7 @@ const CGAL::Point_3<Kernel>& r);
/// \defgroup coplanar_side_of_bounded_circle CGAL::coplanar_side_of_bounded_circle() /// \defgroup coplanar_side_of_bounded_circle_grp CGAL::coplanar_side_of_bounded_circle()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::coplanar_orientation` /// \sa `CGAL::coplanar_orientation`
/// \sa `CGAL::side_of_bounded_circle` /// \sa `CGAL::side_of_bounded_circle`
@ -1649,7 +1649,7 @@ const CGAL::Point_3<Kernel>& s);
/// @} /// @}
/// \defgroup cross_product CGAL::cross_product() /// \defgroup cross_product_grp CGAL::cross_product()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// @{ /// @{
@ -1662,7 +1662,7 @@ const CGAL::Vector_3<Kernel>& v);
/// @} /// @}
/// \defgroup determinant CGAL::determinant() /// \defgroup determinant_grp CGAL::determinant()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::orientation` /// \sa `CGAL::orientation`
/// \sa `CGAL::collinear` /// \sa `CGAL::collinear`
@ -1690,16 +1690,16 @@ const CGAL::Vector_3<Kernel>& w);
// This is there to keep the global functions in alphabetical order // This is there to keep the global functions in alphabetical order
// instead of processing order. // instead of processing order.
/// \defgroup do_intersect CGAL::do_intersect() /// \defgroup do_intersect_grp CGAL::do_intersect()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \defgroup do_intersect_linear CGAL::do_intersect() (2D/3D Linear Kernel) /// \defgroup do_intersect_linear_grp CGAL::do_intersect() (2D/3D Linear Kernel)
/// \ingroup do_intersect /// \ingroup do_intersect_grp
/// \defgroup do_intersect_circular CGAL::do_intersect() (2D Circular Kernel) /// \defgroup do_intersect_circular_grp CGAL::do_intersect() (2D Circular Kernel)
/// \ingroup do_intersect /// \ingroup do_intersect_grp
/// \defgroup do_intersect_spherical CGAL::do_intersect() (3D Spherical Kernel) /// \defgroup do_intersect_spherical_grp CGAL::do_intersect() (3D Spherical Kernel)
/// \ingroup do_intersect /// \ingroup do_intersect_grp
/// \defgroup equidistant_line CGAL::equidistant_line() /// \defgroup equidistant_line_grp CGAL::equidistant_line()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// @{ /// @{
@ -1715,7 +1715,7 @@ const CGAL::Point_3<Kernel> &r);
/// @} /// @}
/// \defgroup has_larger_distance_to_point CGAL::has_larger_distance_to_point() /// \defgroup has_larger_distance_to_point_grp CGAL::has_larger_distance_to_point()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_distance_to_point` /// \sa `CGAL::compare_distance_to_point`
/// \sa `CGAL::compare_signed_distance_to_line` /// \sa `CGAL::compare_signed_distance_to_line`
@ -1751,7 +1751,7 @@ const CGAL::Point_3<Kernel>& r);
/// @} /// @}
/// \defgroup has_larger_signed_distance_to_line CGAL::has_larger_signed_distance_to_line() /// \defgroup has_larger_signed_distance_to_line_grp CGAL::has_larger_signed_distance_to_line()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_distance_to_point` /// \sa `CGAL::compare_distance_to_point`
/// \sa `CGAL::compare_signed_distance_to_line` /// \sa `CGAL::compare_signed_distance_to_line`
@ -1791,7 +1791,7 @@ const CGAL::Point_2<Kernel>& s);
/// @} /// @}
/// \defgroup has_larger_signed_distance_to_plane CGAL::has_larger_signed_distance_to_plane() /// \defgroup has_larger_signed_distance_to_plane_grp CGAL::has_larger_signed_distance_to_plane()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_distance_to_point` /// \sa `CGAL::compare_distance_to_point`
/// \sa `CGAL::compare_signed_distance_to_line` /// \sa `CGAL::compare_signed_distance_to_line`
@ -1830,7 +1830,7 @@ const CGAL::Point_3<Kernel>& t);
/// @} /// @}
/// \defgroup has_smaller_distance_to_point CGAL::has_smaller_distance_to_point() /// \defgroup has_smaller_distance_to_point_grp CGAL::has_smaller_distance_to_point()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_distance_to_point` /// \sa `CGAL::compare_distance_to_point`
/// \sa `CGAL::compare_signed_distance_to_line` /// \sa `CGAL::compare_signed_distance_to_line`
@ -1866,7 +1866,7 @@ const CGAL::Point_3<Kernel>& r);
/// @} /// @}
/// \defgroup has_smaller_signed_distance_to_line CGAL::has_smaller_signed_distance_to_line() /// \defgroup has_smaller_signed_distance_to_line_grp CGAL::has_smaller_signed_distance_to_line()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_distance_to_point` /// \sa `CGAL::compare_distance_to_point`
/// \sa `CGAL::compare_signed_distance_to_line` /// \sa `CGAL::compare_signed_distance_to_line`
@ -1904,7 +1904,7 @@ const CGAL::Point_2<Kernel>& s);
/// @} /// @}
/// \defgroup has_smaller_signed_distance_to_plane CGAL::has_smaller_signed_distance_to_plane() /// \defgroup has_smaller_signed_distance_to_plane_grp CGAL::has_smaller_signed_distance_to_plane()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_distance_to_point` /// \sa `CGAL::compare_distance_to_point`
/// \sa `CGAL::compare_signed_distance_to_line` /// \sa `CGAL::compare_signed_distance_to_line`
@ -1946,16 +1946,16 @@ const CGAL::Point_3<Kernel>& t);
// Same reason as in defgroup do_intersect. // Same reason as in defgroup do_intersect.
/// \defgroup intersection CGAL::intersection() /// \defgroup intersection_grp CGAL::intersection()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \defgroup intersection_linear CGAL::intersection() (2D/3D Linear Kernel) /// \defgroup intersection_linear_grp CGAL::intersection() (2D/3D Linear Kernel)
/// \ingroup intersection /// \ingroup intersection_grp
/// \defgroup intersection_circular CGAL::intersection() (2D Circular Kernel) /// \defgroup intersection_circular_grp CGAL::intersection() (2D Circular Kernel)
/// \ingroup intersection /// \ingroup intersection_grp
/// \defgroup intersection_spherical CGAL::intersection() (3D Spherical Kernel) /// \defgroup intersection_spherical_grp CGAL::intersection() (3D Spherical Kernel)
/// \ingroup intersection /// \ingroup intersection_grp
/// \defgroup left_turn CGAL::left_turn() /// \defgroup left_turn_grp CGAL::left_turn()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::collinear` /// \sa `CGAL::collinear`
/// \sa `CGAL::orientation` /// \sa `CGAL::orientation`
@ -1975,7 +1975,7 @@ const CGAL::Point_2<Kernel> &r);
/// \defgroup lexicographically_xy_larger CGAL::lexicographically_xy_larger() /// \defgroup lexicographically_xy_larger_grp CGAL::lexicographically_xy_larger()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_xy` /// \sa `CGAL::compare_xy`
/// \sa `CGAL::lexicographically_xy_larger_or_equal` /// \sa `CGAL::lexicographically_xy_larger_or_equal`
@ -1996,7 +1996,7 @@ const CGAL::Point_2<Kernel>& q);
/// \defgroup lexicographically_xy_larger_or_equal CGAL::lexicographically_xy_larger_or_equal() /// \defgroup lexicographically_xy_larger_or_equal_grp CGAL::lexicographically_xy_larger_or_equal()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_xy` /// \sa `CGAL::compare_xy`
/// \sa `CGAL::lexicographically_xy_larger` /// \sa `CGAL::lexicographically_xy_larger`
@ -2016,7 +2016,7 @@ const CGAL::Point_2<Kernel>& q);
/// @} /// @}
/// \defgroup lexicographically_xy_smaller CGAL::lexicographically_xy_smaller() /// \defgroup lexicographically_xy_smaller_grp CGAL::lexicographically_xy_smaller()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_xy` /// \sa `CGAL::compare_xy`
/// \sa `CGAL::lexicographically_xy_larger` /// \sa `CGAL::lexicographically_xy_larger`
@ -2037,7 +2037,7 @@ const CGAL::Point_2<Kernel>& q);
/// @} /// @}
/// \defgroup lexicographically_xy_smaller_or_equal CGAL::lexicographically_xy_smaller_or_equal() /// \defgroup lexicographically_xy_smaller_or_equal_grp CGAL::lexicographically_xy_smaller_or_equal()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_xy` /// \sa `CGAL::compare_xy`
/// \sa `CGAL::lexicographically_xy_larger` /// \sa `CGAL::lexicographically_xy_larger`
@ -2057,7 +2057,7 @@ const CGAL::Point_2<Kernel>& q);
/// @} /// @}
/// \defgroup lexicographically_xyz_smaller CGAL::lexicographically_xyz_smaller() /// \defgroup lexicographically_xyz_smaller_grp CGAL::lexicographically_xyz_smaller()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_xyz` /// \sa `CGAL::compare_xyz`
/// \sa `CGAL::lexicographically_xyz_smaller_or_equal` /// \sa `CGAL::lexicographically_xyz_smaller_or_equal`
@ -2075,7 +2075,7 @@ const CGAL::Point_3<Kernel>& q);
/// @} /// @}
/// \defgroup lexicographically_xyz_smaller_or_equal CGAL::lexicographically_xyz_smaller_or_equal() /// \defgroup lexicographically_xyz_smaller_or_equal_grp CGAL::lexicographically_xyz_smaller_or_equal()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_xyz` /// \sa `CGAL::compare_xyz`
/// \sa `CGAL::lexicographically_xyz_smaller` /// \sa `CGAL::lexicographically_xyz_smaller`
@ -2093,7 +2093,7 @@ const CGAL::Point_3<Kernel>& q);
/// @} /// @}
/// \defgroup max_vertex CGAL::max_vertex() /// \defgroup max_vertex_grp CGAL::max_vertex()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// @{ /// @{
@ -2111,7 +2111,7 @@ CGAL::Point_3<Kernel> max_vertex( const CGAL::Iso_cuboid_3<Kernel>& ic );
/// @} /// @}
/// \defgroup midpoint CGAL::midpoint() /// \defgroup midpoint_grp CGAL::midpoint()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// @{ /// @{
@ -2130,7 +2130,7 @@ CGAL::Point_3<Kernel> midpoint( const CGAL::Point_3<Kernel>& p, const CGAL::Poin
/// @} /// @}
/// \defgroup min_vertex CGAL::min_vertex() /// \defgroup min_vertex_grp CGAL::min_vertex()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// @{ /// @{
@ -2148,7 +2148,7 @@ CGAL::Point_3<Kernel> min_vertex( const CGAL::Iso_cuboid_3<Kernel>& ic );
/// @} /// @}
/// \defgroup normal CGAL::normal() /// \defgroup normal_grp CGAL::normal()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// @{ /// @{
@ -2161,7 +2161,7 @@ CGAL::Vector_3<Kernel> normal( const CGAL::Point_3<Kernel>& p, const CGAL::Point
/// @} /// @}
/// \defgroup orientation CGAL::orientation() /// \defgroup orientation_grp CGAL::orientation()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::collinear` /// \sa `CGAL::collinear`
/// \sa `CGAL::left_turn` /// \sa `CGAL::left_turn`
@ -2214,7 +2214,7 @@ const CGAL::Vector_3<Kernel> &w);
/// \defgroup orthogonal_vector CGAL::orthogonal_vector() /// \defgroup orthogonal_vector_grp CGAL::orthogonal_vector()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// @{ /// @{
@ -2238,7 +2238,7 @@ const CGAL::Point_3<Kernel>& r );
/// @} /// @}
/// \defgroup parallel CGAL::parallel() /// \defgroup parallel_grp CGAL::parallel()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// @{ /// @{
@ -2303,7 +2303,7 @@ const CGAL::Segment_3<Kernel>& s2);
/// \defgroup radical_line CGAL::radical_line() /// \defgroup radical_line_grp CGAL::radical_line()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// @{ /// @{
@ -2320,10 +2320,10 @@ const CGAL::Circle_2<Kernel>& c2);
// Same reason as do_intersect. // Same reason as do_intersect.
/// \defgroup rational_rotation_approximation CGAL::rational_rotation_approximation() /// \defgroup rational_rotation_approximation_grp CGAL::rational_rotation_approximation()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \defgroup right_turn CGAL::right_turn() /// \defgroup right_turn_grp CGAL::right_turn()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::collinear` /// \sa `CGAL::collinear`
/// \sa `CGAL::left_turn` /// \sa `CGAL::left_turn`
@ -2342,7 +2342,7 @@ const CGAL::Point_2<Kernel> &r);
/// @} /// @}
/// \defgroup side_of_bounded_circle CGAL::side_of_bounded_circle() /// \defgroup side_of_bounded_circle_grp CGAL::side_of_bounded_circle()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::coplanar_side_of_bounded_circle` /// \sa `CGAL::coplanar_side_of_bounded_circle`
/// \sa `CGAL::side_of_oriented_circle` /// \sa `CGAL::side_of_oriented_circle`
@ -2376,7 +2376,7 @@ const CGAL::Point_2<Kernel> &t);
/// \defgroup side_of_bounded_sphere CGAL::side_of_bounded_sphere() /// \defgroup side_of_bounded_sphere_grp CGAL::side_of_bounded_sphere()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::side_of_oriented_sphere` /// \sa `CGAL::side_of_oriented_sphere`
@ -2420,7 +2420,7 @@ const CGAL::Point_3<Kernel> &t);
/// @} /// @}
/// \defgroup side_of_oriented_circle CGAL::side_of_oriented_circle() /// \defgroup side_of_oriented_circle_grp CGAL::side_of_oriented_circle()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::side_of_bounded_circle` /// \sa `CGAL::side_of_bounded_circle`
@ -2450,7 +2450,7 @@ const CGAL::Point_2<Kernel> &test);
/// \defgroup side_of_oriented_sphere CGAL::side_of_oriented_sphere() /// \defgroup side_of_oriented_sphere_grp CGAL::side_of_oriented_sphere()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::side_of_bounded_sphere` /// \sa `CGAL::side_of_bounded_sphere`
@ -2479,7 +2479,7 @@ const CGAL::Point_3<Kernel> &test);
/// @} /// @}
/// \defgroup squared_area CGAL::squared_area() /// \defgroup squared_area_grp CGAL::squared_area()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// @{ /// @{
@ -2497,10 +2497,10 @@ const CGAL::Point_3<Kernel>& r);
// The same reason as do_intersect. // The same reason as do_intersect.
/// \defgroup squared_distance CGAL::squared_distance() /// \defgroup squared_distance_grp CGAL::squared_distance()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \defgroup squared_radius CGAL::squared_radius() /// \defgroup squared_radius_grp CGAL::squared_radius()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::Circle_2<Kernel>` /// \sa `CGAL::Circle_2<Kernel>`
/// \sa `CGAL::Circle_3<Kernel>` /// \sa `CGAL::Circle_3<Kernel>`
@ -2575,7 +2575,7 @@ squared_radius( const CGAL::Point_3<Kernel>& p);
/// @} /// @}
/// \defgroup unit_normal CGAL::unit_normal() /// \defgroup unit_normal_grp CGAL::unit_normal()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// @{ /// @{
@ -2587,7 +2587,7 @@ CGAL::Vector_3<Kernel> unit_normal( const CGAL::Point_3<Kernel>& p, const CGAL::
/// @} /// @}
/// \defgroup volume CGAL::volume() /// \defgroup volume_grp CGAL::volume()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::Tetrahedron_3<Kernel>` /// \sa `CGAL::Tetrahedron_3<Kernel>`
@ -2605,7 +2605,7 @@ Kernel::FT volume(const CGAL::Point_3<Kernel> & p0, const CGAL::Point_3<Kernel>
/// @} /// @}
/// \defgroup x_equal CGAL::x_equal() /// \defgroup x_equal_grp CGAL::x_equal()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_x` /// \sa `CGAL::compare_x`
/// \sa `CGAL::y_equal` /// \sa `CGAL::y_equal`
@ -2633,7 +2633,7 @@ const CGAL::Point_3<Kernel> &q);
/// \defgroup y_equal CGAL::y_equal() /// \defgroup y_equal_grp CGAL::y_equal()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_y` /// \sa `CGAL::compare_y`
/// \sa `CGAL::x_equal` /// \sa `CGAL::x_equal`
@ -2660,7 +2660,7 @@ const CGAL::Point_3<Kernel> &q);
/// @} /// @}
/// \defgroup z_equal CGAL::z_equal() /// \defgroup z_equal_grp CGAL::z_equal()
/// \ingroup kernel_global_function /// \ingroup kernel_global_function
/// \sa `CGAL::compare_z` /// \sa `CGAL::compare_z`
/// \sa `CGAL::x_equal` /// \sa `CGAL::x_equal`

View File

@ -1,7 +1,7 @@
namespace CGAL { namespace CGAL {
/*! /*!
\addtogroup do_intersect \addtogroup do_intersect_grp
\brief \brief
\details Depending on which \cgal kernel is used, different overloads of this global \details Depending on which \cgal kernel is used, different overloads of this global
@ -9,16 +9,16 @@ function are available.
*/ */
/*! /*!
\addtogroup do_intersect_linear CGAL::do_intersect() (2D/3D Linear Kernel) \addtogroup do_intersect_linear_grp
\ingroup do_intersect \ingroup do_intersect
\code \code
#include <CGAL/intersections.h> #include <CGAL/intersections.h>
\endcode \endcode
\sa \ref do_intersect_circular \sa `do_intersect_circular_grp`
\sa \ref do_intersect_spherical \sa `do_intersect_spherical_grp`
\sa \link intersection `CGAL::intersection()` \endlink \sa `intersection_grp`
\details See Chapter \ref chapterkernel23 "2D and 3D Geometry Kernel" for details on a linear kernel instantiation. \details See Chapter \ref chapterkernel23 "2D and 3D Geometry Kernel" for details on a linear kernel instantiation.
*/ */
@ -68,21 +68,21 @@ bool do_intersect(Type1<Kernel> obj1, Type2<Kernel> obj2);
/*! /*!
\addtogroup do_intersect_circular \addtogroup do_intersect_circular_grp
\ingroup do_intersect \ingroup do_intersect
\code \code
#include <CGAL/Circular_kernel_intersections.h> #include <CGAL/Circular_kernel_intersections.h>
\endcode \endcode
\sa \ref do_intersect_linear \sa `do_intersect_linear_grp`
\sa \ref do_intersect_spherical \sa `do_intersect_spherical_grp`
\sa \link intersection `CGAL::intersection()` \endlink \sa `intersection_grp`
\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel" for details on a circular kernel instantiation. \details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel" for details on a circular kernel instantiation.
When using a circular kernel, in addition to the function overloads documented \ref do_intersect_linear "here", When using a circular kernel, in addition to the function overloads documented \ref do_intersect_linear_grp "here",
the following function overloads are also available. the following function overloads are also available.
@ -112,21 +112,21 @@ bool do_intersect(Type1<CircularKernel> obj1, Type2<CircularKernel> obj2);
/*! /*!
\addtogroup do_intersect_spherical \addtogroup do_intersect_spherical_grp
\ingroup do_intersect \ingroup do_intersect
\code \code
#include <CGAL/Spherical_kernel_intersections.h> #include <CGAL/Spherical_kernel_intersections.h>
\endcode \endcode
\sa \ref do_intersect_linear \sa `do_intersect_linear_grp`
\sa \ref do_intersect_circular \sa `do_intersect_circular_grp`
\sa \link intersection `CGAL::intersection()` \endlink \sa `intersection_grp`
\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel" for details on a spherical kernel instantiation. \details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel" for details on a spherical kernel instantiation.
When using a circular kernel, in addition to the function overloads documented \ref do_intersect_linear "here", When using a circular kernel, in addition to the function overloads documented \ref do_intersect_linear_grp "here",
the following function overloads are also available. the following function overloads are also available.
@ -169,7 +169,7 @@ bool do_intersect(Type1<SphericalKernel> obj1, Type2<SphericalKernel> obj2, Type
/*! /*!
\addtogroup intersection \addtogroup intersection_grp
\brief \brief
\details Depending on which \cgal kernel is used, different overloads of this global \details Depending on which \cgal kernel is used, different overloads of this global
@ -178,16 +178,16 @@ function are available.
/*! /*!
\addtogroup intersection_linear \addtogroup intersection_linear_grp
\ingroup intersection \ingroup intersection
\code \code
#include <CGAL/intersections.h> #include <CGAL/intersections.h>
\endcode \endcode
\sa intersection_circular \sa `intersection_circular_grp`
\sa intersection_spherical \sa `intersection_spherical_grp`
\sa \link do_intersect `CGAL::do_intersect()` \endlink \sa `do_intersect_grp`
\sa `CGAL::Object` \sa `CGAL::Object`
\details See Chapter \ref chapterkernel23 "2D and 3D Geometry Kernel" for details on a linear kernel instantiation. \details See Chapter \ref chapterkernel23 "2D and 3D Geometry Kernel" for details on a linear kernel instantiation.
@ -421,21 +421,21 @@ Object intersection(const Plane_3<Kernel>& pl1,
/// @} /// @}
/*! /*!
\addtogroup intersection_circular \addtogroup intersection_circular_grp
\ingroup intersection \ingroup intersection
\code \code
#include <CGAL/Circular_kernel_intersections.h> #include <CGAL/Circular_kernel_intersections.h>
\endcode \endcode
\sa intersection_linear \sa `intersection_linear_grp`
\sa intersection_spherical \sa `intersection_spherical_grp`
\sa \link do_intersect `CGAL::do_intersect()` \endlink \sa `do_intersect_grp`
\sa `CGAL::Object` \sa `CGAL::Object`
\details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel" for details on a circular kernel instantiation. \details See Chapter \ref Chapter_2D_Circular_Geometry_Kernel "2D Circular Geometry Kernel" for details on a circular kernel instantiation.
When using a circular kernel, in addition to the function overloads documented \ref intersection_linear "here", When using a circular kernel, in addition to the function overloads documented \ref intersection_linear_grp "here",
the following function overloads are also available. the following function overloads are also available.
Since both the number of intersections, if any, and their type, Since both the number of intersections, if any, and their type,
@ -480,21 +480,21 @@ intersection(const Type1 &obj1, const Type2 &obj2,
/// @} /// @}
/*! /*!
\addtogroup intersection_spherical \addtogroup intersection_spherical_grp
\ingroup intersection \ingroup intersection
\code \code
#include <CGAL/Spherical_kernel_intersections.h> #include <CGAL/Spherical_kernel_intersections.h>
\endcode \endcode
\sa intersection_linear \sa `intersection_linear_grp`
\sa intersection_circular \sa `intersection_circular_grp`
\sa \link do_intersect `CGAL::do_intersect()` \endlink \sa `do_intersect_grp`
\sa `CGAL::Object` \sa `CGAL::Object`
\details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel" for details on a spherical kernel instantiation. \details See Chapter \ref Chapter_3D_Spherical_Geometry_Kernel "3D Spherical Geometry Kernel" for details on a spherical kernel instantiation.
When using a spherical kernel, in addition to the function overloads documented \ref intersection_linear "here", When using a spherical kernel, in addition to the function overloads documented \ref intersection_linear_grp "here",
the following function overloads are also available. the following function overloads are also available.
Since both the number of intersections, if any, and their type, Since both the number of intersections, if any, and their type,

View File

@ -1,7 +1,7 @@
namespace CGAL { namespace CGAL {
/*! /*!
\addtogroup rational_rotation_approximation \addtogroup rational_rotation_approximation_grp
*/ */

View File

@ -1,7 +1,7 @@
namespace CGAL { namespace CGAL {
/*! /*!
\addtogroup squared_distance \addtogroup squared_distance_grp
\code \code
#include <squared_distance_2.h> //for 2D functions #include <squared_distance_2.h> //for 2D functions

View File

@ -15,7 +15,7 @@ in case the default, based on `Kernel_traits` is not sufficient. The
dimension is also deduced automatically. dimension is also deduced automatically.
\sa \link PkgPrincipalComponentAnalysisDCentroid `CGAL::centroid()` \endlink \sa \link PkgPrincipalComponentAnalysisDCentroid `CGAL::centroid()` \endlink
\sa \link barycenter `CGAL::barycenter() (Linear Kernel)` \endlink \sa \link barycenter_grp `CGAL::barycenter() (Linear Kernel)` \endlink
*/ */
/// @{ /// @{

View File

@ -22,7 +22,7 @@ facets (3D triangles).
\sa \link PkgPrincipalComponentAnalysisDBary `CGAL::barycenter()` \endlink \sa \link PkgPrincipalComponentAnalysisDBary `CGAL::barycenter()` \endlink
\sa \link centroid `CGAL::centroid() (Linear Kernel)` \endlink \sa \link centroid_grp `CGAL::centroid() (Linear Kernel)` \endlink
*/ */
/// @{ /// @{